
Journal of University of Duhok, Vol. 20,No.1(Pure and Eng. Sciences), Pp 307-318, 2017 
eISSN: 2521-4861 & pISSN: 1812-7568 

https://doi.org/10.26682/sjuod.2017.20.1.28 

      

 
 

307 

PREDICTION MODELLING APPROACH FOR CRACK PROGRESSION OF 

HEAVY DUTY FLEXIBLE PAVEMENTS 
 

NAHLA H. AL ASWADKO 

Dept. of Civil Engineering, University of Duhok, Kurdistan Region-Iraq  

 

ABSTRACT 

Pavement management at a network level requires reliable accurate performance prediction models to 

help road agencies make useful complex decisions about highways maintenance and rehabilitating activities. 

The purpose of this paper is to report the approach adopted for model development and validation for heavy 

duty flexible pavements representing by seven rural freeways segments. Hierarchical generalized linear 

modelling approach has been applied to predict multilevel model to capture the effect of variations among 

time series data, among road sections and among highways with same duty pavements. The estimation of 

pavement cracking progression has been based on longitudinal dataset contain cracking data (reported as a 

percent of the affected area) as dependent variable and cumulative traffic loading, pavement strength and 

environmental conditions as independent variables. 

The study illustrates how panel data can be nested to predict the probability of crack progression to 

capture the effect of significant unobserved heterogeneity. The significance of relevant contributing factors in 

predicting crack progression were presented and elucidated.The validation results indicate that the model 

replicates the pavement behavior well, and that the inclusion of additional factors in addition to time is 

improving the model prediction.  
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1. INTRODUCTION 

 

racking is one of many measurable 

distress modes that can be used to assess 

pavement condition. Predicting surface 

performance of spray sealed pavement is 

important for both pavement design and 

management due to the fact that cracking is one of 

the primary distress modes in pavement surface 

performance and its prediction is a major concern 

for pavement engineers. In addition, the extended 

cracking in pavement surface layers frequently 

speeds up pavement deterioration because it 

allows water ingress and weakens the pavement 

and subgrade layers (Paterson, 1987) by 

increasing the moisture content. Although road 

roughness has been the most suitable measure for 

evaluating long-term functional performance of 

road pavements, it may not always be an effective 

measure for evaluating pavement maintenance and 

rehabilitation requirements. There are other more 

appropriate pavement distress measures such as 

cracking and rutting for triggering intervention 

(Toole et al., 2009). Further, monitoring of 

cracking data is needed to indicate pavement 

deterioration where rutting data is not sufficiently 

extensive at network level (Moffatt and Hassan, 

2006).  

Cracks often occur for two main reasons, 

namely traffic loading and environmental factors. 

The first cause is due to repeated loading or 

overstressing by traffic, while the second cause is 

due to moisture changes, expansion potential of 

subgrade soils, oxidation or chemical shrinkage of 

the pavement and/or surfacing materials (Moffatt 

and Hassan, 2006).  

Modelling cracking is a relatively complex 

process, making a probabilistic modelling 

approach more suitable for such complex 

phenomena (Yang, 2004). By using a probabilistic 

approach, the model can quantify the probabilities 

of pavement failure, while considering the full life 

of pavement surface with an associated probability 

for cracking in every year and identifying all 

factors that significantly affect crack behavior 

(Henning, 2008). In this study, hierarchical 

generalized linear model was developed to predict 

the probability of severity levels for surface 

cracking. The model has been developed to take 

into account the effect of variations among 

observations, among sections and among 

highways. Readily available historical time series 

data from seven highway segments have been 

C 
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collected and prepared for modelling. These time 

series include surface cracking as a performance 

parameter and traffic loading, expansion potential 

of subgrade soil, climate condition, condition of 

drainage system and pavement strength as 

predictor parameters. Cracking data includes all 

types of cracking: transverse, longitudinal and 

crocodile cracking and is reported as a percent of 

the affected area. The study predicts the 

probability of a pavement maintaining its current 

level of cracking.  

 

2. NETWORK SELECTION 

 

A representative network was selected from 

rural highway network of the State of 

Victoria/Australia. The sample network includes 

heavy duty pavement sections from seven 

highways of class M roads with a total length 

around 170 km (170 of 100m-sections). This class 

refers to roads that have a high standard of driving 

conditions, including four traffic lanes, sealed 

shoulders, divided carriageways and visible line 

marking. Road of this class connects Melbourne 

(the capital of Victoria) with other capital cities 

and major provincial centers (VicRoads, 2016). In 

Victoria, the rural network is essentially spray 

sealed surface over natural gravels. Road agencies 

practice for almost all rural roads is to prime or 

prime seal, then a single or double coat seal of 

bitumen with one sized aggregate (size 10 or 14 

mm). 

The selected sample has a reasonable coverage 

of network characteristics and conditions. It 

covers wide ranges of all major parameters that 

contribute to pavement cracking progression 

including traffic loading, pavement strength, 

climate and drainage condition. The pavements of 

all these highway sections have granular bases and 

sub-bases with single or double coat spray/chip 

seal.  

 

3. DESCRIPTION OF STUDY VARIABLES 

 

Based on the availability of information for the 

sample network, the variables considered in this 

study include surface cracking as the dependent 

variable (DV) and the following parameters as the 

independent or predictor variables: traffic loading, 

pavement strength, soil type, climate, and drainage 

condition. Provided in the following sections are 

brief descriptions of the study variables: 

1. Cracking  

Cracking data were collected in Victoria by using 

a manual crack recording method and relying on 

the following requirements (Moffatt and Hassan, 

2006): 

•Using a visual system for rating surface cracking 

of a lane from an interpretation of digital video 

images of a moving vehicle in dry and daylight 

conditions. 

•Surveying a minimum of one lane for each 

carriageway in a preferred direction (generally the 

outer lane). 

•Measuring the full lane width of the section, 

between the centers of lane lines. 

•Using 100m intervals in one lane for longitudinal 

sampling frequency. 

•Including all types of cracking (visible and 

repaired): transverse, longitudinal and crocodile 

cracking types and reporting as a percentage of 

cracking. 

•Surveying at a frequency equal to once every two 

years. 

2. Traffic Loading  

Traffic volume data in terms of number of 

Heavy Vehicles (HV) for different road classes 

was extracted from the relevant database for 2002, 

2009, 2010 and 2011. Estimates of traffic data for 

missing years were obtained for each highway by 

using the average growth factor for all its 

segments. HV numbers at the time of construction 

(HVcon) for different sections along each highway 

were estimated using current HV (HVcur), section 

age and relevant growth rate. This data was then 

used to determine cumulative traffic loading in 

terms of million equivalent standard axles 

(MESA) (Jameson, 2012) in conjunction with 

relevant parameters from VicRoads’ code of 

practice (VicRoads, 2013). The number of heavy 

vehicles at time of construction and the 

cumulative growth factor (in each year for which 

condition data was available) was calculated then 

cumulative traffic loading data (MESA) was 

determined using the following equation  

(Jameson, 2012):

 

MESA = (HVcon * CGF * DF * LDF * NHVAG * (ESA/HVAG)* 365)/10
6
    ……….....….. (1)    
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Where: 

MESA= million equivalent standard axles, 

cumulative ESA (equivalent standard axle loads) 

from construction time to any year condition data.  

HVcon = number of heavy vehicles at time of 

construction. 

    = HVcur / [(1+ GF) ^ (Age at current HV year)]                                                              

    HVcur = number of heavy vehicles in any year 

of actual traffic is available. 

    GF = average annual growth rate of heavy 

vehicles. 

    Age = pavement age. 

CGF = Cumulative Growth Factor. 

  = (((1+0.01*GF) ^Age) -1) / (0.01*GF)                      

DF = direction factor = 1; assuming all HVs 

(100%) travel in the direction of design lane 

(VicRoads, 2013).  

LDF = lane distribution factor = 1; assuming 

100% of HVs travel along the design lane (outer 

lane). According to VicRoads’ code of practice 

document (VicRoads, 2013); the LDF value is 

considered as 1 when the number of road lanes is 

less than 3 in one direction (Class M roads have 

two lanes in each direction). 

NHVAG = average number of axle groups per 

heavy vehicle = 3.1 (VicRoads, 2013). 

ESA/HVAG = average ESA per heavy vehicle 

axle group = 0.82 (VicRoads, 2013). 

3. Pavement Strength 

The pavement consists of different layers of 

materials that typically have different properties 

and behavior under load. Insufficient pavement 

strength or deformation and displacement in the 

upper layers of pavement can contribute to 

pavement deterioration (Paterson, 1987). As 

pavement deflection data were not available for 

the whole network, the following two equations 

were used to estimate the structural number (SN). 

The SN is an index providing an indication of the 

strength of the pavement layers and of the total 

pavement structure. The initial value of the 

structural number (SNC0) at the time of pavement 

construction (Age = 0) (Chen and Martin, 2012) 

and modified structural number (SNCi) at any 

time (i) during the life of pavement (Martin, 

2008), have been estimated as follows:

 

 

SNC0= 0.55 * Log10 (MESADL / 120 * 10
6
) + 0.6                                            … ....………….. (2) 

SNCi = SNC0* (2- EXP (0.33 * Age / DL))                                                             …....………..… (3) 

 

 

Where:          

MESADL= cumulative traffic loading that was 

expected to be experienced over the nominal 

pavement design life and calculated based on 

cumulative growth factor over the design life 

(DL), where DL = 30 years for class M roads 

(VicRoads, 2013). 

All other terms are as previously defined. 

4. Climate Condition 

Thornthwaite Moisture Index (TMI) deals with 

engineering applications that lie on or beneath the 

ground surface, such as road pavements (Byrne 

and Aguiar, 2010). It is defined as the 

combination of annual effects of precipitation, 

moisture deficit, evapotranspiration, soil water 

storage and runoff (Thornthwaite, 1948). 

Historical climate time series data in terms of TMI 

was extracted from the climate extraction tool 

developed by Byrne and Aguiar (2010). It is 

provided as an Excel database which uses latitude 

and longitude values to access relevant data over 

time for each 100m road section. TMI values were 

extracted along all highway sections for all 

relevant years. Generally, a positive sign of TMI 

refers to a wet area while a negative sign of TMI 

refers to a dry area. 

5. Subgrade Soil Type 

Subgrade soil provides support to the upper 

layers of road pavement and withstands the 

stresses applied to it under load. Roads are 

constructed on different types of soils and 

seasonal moisture variations affect their strength 

and/or volume differently. Though, all these roads 

are expected to deteriorate over time. Yet, if roads 

are constructed on expansive subgrade soils, they 

can deteriorate at a faster rate than those with 

stable subgrade (Mann, 2003). Expansive soils 

(i.e. reactive soils which are sensitive to moisture 

changes during seasonal variation cycles) cover a 

large area of the State of Victoria which coincides 

with a significant portion of the State’s rural 

highway network. More than half of Victorian 

road pavements are built on expansive subgrade 

soils with varying levels of expansion potential. 
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The integrated color coded map of expansive soil 

regions in Victoria (Mann, 2003) was used in 

conjunction with AutoCAD software to establish 

the type of subgrade soils for all selected sites 

using their start and end chainages as a reference. 

The different colors in the map represent different 

soil types with different reactivity levels. For this 

study, two levels of expansion potential of 

subgrade soils were identified; namely: moderate 

to highly expansive soils and the non-expansive 

soils. 

6. Drainage  

Drainage has been identified as an important 

factor for both the functional and structural 

performance of road pavement (Pearson, 2012). 

The condition of drainage system for the selected 

sections was extracted from relevant database 

between 2004 and 2011; rated as good or poor.  

 

4. STUDY APPROACH 

 

Although a deterministic approach is still 

widely used in developing cracking models and 

can provide good prediction results (Martin et al., 

2011), this approach cannot effectively take into 

account the stochastic nature of pavement 

performance ( Toole et al., 2009). In order to 

capture the uncertainty and variability associated 

with the pavement deterioration process, there is 

recently an increased interest in developing 

probabilistic rather than deterministic models 

(Kadar et al., 2015). Pavement cracking is 

characterized as a random process due to 

stochastic variation in its mechanism and the non-

linear properties of pavement surface layers.  

When using historical time series data for 

many pavement sections (panel data) in estimating 

future condition, examining the cause of 

heterogeneity across sections data is an essential 

element (Greene, 2004). This heterogeneity may 

be due to differences in construction quality, 

subgrade soil type, climate condition and 

maintenance activities applied in different ways at 

different times. Therefore, the data structure is 

hierarchical with three levels of variation within 

any road class. Time series observations (level-1) 

are nested within sections (level-2) which are 

nested within highways (level-3). Therefore, 

pavement performance variability should be 

included in model parameters and it is likely that 

the variability (i.e. heterogeneity) may be due to 

observed variables or unobserved variables 

(factors beyond those included in the proposed 

model) in the network (Hong, 2007).  

However, as recommended by statistical 

studies (Raundebush and Bryk, 2002), when the 

available data have a multi-level hierarchical 

structure, it is necessary to capture the effect of 

variance at higher levels to build up a more robust 

model. The overall aim of the present study is to 

apply a multilevel modelling approach to predict 

the probability of pavement crack progression and 

to capture the effects of variances at high levels 

through logistic models. Also, the paper aims to 

study the effects of several factors on pavement 

crack progression.  

 

5. STUDY METHODOLOGY 

 

One of the most useful nested data analysis 

techniques is hierarchical linear modelling 

(HLM). It is a statistical modelling approach that 

captures the effects of variation at multiple levels 

(Raudenbush and Bryk, 2002, Field, 2009). HLM 

explicitly models the dependency between 

observation data, producing more stable intercept 

and slope estimates with unbiased standard errors. 

These models are able to accommodate 

unbalanced data (Field, 2009).  

Cracking data are mostly reported as either 

predominant cracking type, cracking severity or 

extent of cracking (percentage of affected area). 

However, the cracking data used for this study 

was reported only in terms of extent and was 

considered as continuous data. However, Wang 

(2013) recommended that converting cracking 

data from a continuous variable into a discrete 

categorical variable would help smooth out 

abnormality in the dataset. 

Accordingly, this continuous cracking extent 

data was divided into four discrete categories 

where used to predict crack progression in terms 

of the probability of pavement falling into each 

category. The four categories of crack extent used 

were insignificant, limited, considerable and 

significant affected area, with the ranges shown in 

Table (1) (Moffatt and Hassan, 2006).      

Ordinal logistic regression models are 

employed when there are more than two 

categories of the dependent variable and there is a 

natural order between these categories. In the 

context of pavement cracking extent, the progress 

of the affected area has an order structure starting 

from an insignificant affected area, progressing to 

limited affected area and then considerable and 
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finally a significant affected area. This means that 

the four categories of cracking data have an 

ordinal structure relating to cracking progress over 

time. Hence, the ordinal logistic model was used 

to predict the cumulative probability of achieving 

each category. In terms of multilevel modelling, 

the logistic regression is extended to include 

multiple levels of nesting and is known as 

hierarchical generalized linear modelling (HGLM) 

(Raudenbush et al., 2011).
  

Table (1): Classification of the ranges of affected area for crack categories 
Category description Range of affected area Cracking category 

Insignificant affected area 0% to 1% Insignificant 

Limited affected area 1% to < 5% Limited 

Considerable affected area 5% to < 15% Considerable 

Significant affected area ≥ 15% Significant 

   

6. HIERARCHICAL GENERALIZED 

LINEAR MODEL SPECIFICATION 

 

In traditional logistic regression, the logit of 

the odds serves as the dependent variable (logit 

link function). This logit in binary regression 

model is the natural logarithm of the odds that an 

event occurs (Raudenbush et al., 2011). In this 

study, the event is the crack occurred or not. The 

general form of the logit (η) is calculated using the 

following formula:

 

η = LN [odds (cracked)]  

η = LN [Probability (cracked)/ Probability (uncracked)]       

η = LN [P1/ (1- P1)]                                                                                                    ……………………..(4) 

Where:   

LN: is the natural logarithm 

P1: is the probability of cracked  

(1- P1): is the probability of uncracked 

The predicted log-odds can be used to derive the probability of crack pavement (P1) by computing: 

P1 = 1/ [1+ Exp (-η)]                                                                                                    …….……………...(5)   

The log-odds (η) and P1 can be estimated via a linear combination of predictor(s) X1, X2….. Xn: 

η = β0 + β1* X1 + β2* X2 +…………+ βn*Xn                                                            ....….………………(6) 

P1 = 1/ [1+ Exp - (β0 + β1* X1 + β2* X2 +…………+ βn* Xn)]                                  ..…………………...(7)   

Where: 

X1, X2, …., Xn: are the independent variables.  

β0, β1, β2, ….., βn: are fixed and unknown coefficients, where β0 is the intercept and β1, β2 and βn are the 

slopes. 

 

 

As mentioned in section 5 in this paper, it is 

expected that there are three levels of random 

variation (heterogeneity) within the existing panel 

dataset, including Level-1 (e) variation among 

time series observations within same sections, 

Level-2 (r0) variation among pavement sections 

within same highways, and Level-3 (u00) variation 

among highways within same road classes.  

Theoretically, the effect of heterogeneity can 

be captured by implementing randomness over the 

model parameter(s) (Raudenbush and Bryk, 2002, 

Field, 2009). Hence, the random intercept 

approach is used by allowing the intercepts to vary 

at level-2 (β0) and level-3 (β00). The multilevel 

model for the binary logistic regression depending 

on one predictor can be presented as follow:

  

Level-1:  η = β0 + β1* X1 + e  

Level-2:  β0 = β00 + r0 

Level-3:  β00 = β000 + u00 

The final mixed model is: 

η = β000 + β10* X1 + e + r0+ u00                                                                              …………………… (8) 
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Where: 

η, X1, β0,  and β 1: are as defined previously. 

e, r0, and u00: are the random variables for level-1, 

level-2 and level-3, respectively. 

β00 and β000: are the fixed intercept coefficients 

for level-2 and level-3, respectively. 

By incorporating other network variables 

considered in this study, the above multilevel 

models can be extended by including variables 

that vary over time within section (Time, MESA, 

SNCi and TMI) at level-1, and variables that vary 

from one section to another ( SSR and DRA) at 

level-2. The extended model for crack progression 

model would include the following variables:

 

 

Level-1:  η = β0 + β1* Time + β2*MESA + β3*TMI + β4* SNCi + e  

Level-2:  β0 = β00 + β01*SSR + β02*DRA + r0 

Level-3:  β00 = β000 + u00 

The mixed model that incorporates all the above levels is referred to as the conditional model below: 

η=β000+β1*Time +β2*MESA +β3*TMI +β4*SNCi +β01*SSR+ β02*DRA+ e+ r0+u00          ……………..(9) 

 

 

Where: 

η: is the predicted logit odds.  

Time: is the time variable in years. 

MESA: is the traffic loading variable in terms of 

Million Equivalent Standard Axles load /lane. 

TMI: is the climate condition variable in terms of 

Thornthwaite Moisture Index. 

SNCi is the pavement strength at time (i) in terms 

of modified structural number. 

SSR: is the subgrade soil reactivity variable 

(coded as, non-expansive = 0 and expansive = 1). 

DRA: is the drainage condition variable (coded as, 

good = 0 and poor = 1). 

All other variables are as defined previously. 

In ordinal logistic regression, multiple logit 

functions are utilized to yield the predicted 

cumulative probability (CP) of each cracking 

category. As clarified earlier in this study, four 

discrete categories can be used to predict crack 

progression in terms of the probability (P) of 

pavement falling into each category, as presented 

below:

  

 

Cumulative probability of significant cracking (CPsig) = Psig                                          

Cumulative probability of considerable cracking (CPcon) = Psig + Pcon  

Cumulative probability of limited cracking (CPlim) = Psig + Pcon + Plim                                       ……....(10)                                        

Cumulative probability of insignificant cracking (CPins) = Psig + Pcon + Plim + Pins = 1 

 

From the above formulas, the probability of each cracking category can be obtained as follows: 

Probability of significant cracking (Psig) = (CPsig)   

Probability of considerable cracking (Pcon) = (CPcon) - (CPsig)                                       ……..………(11) 

Probability of limited cracking (Plim) = (CPlim) - (CPcon)  

Probability of insignificant cracking (Pins) = 1- (CPlim) 

 

 

The set of cumulative predicted probability 

(equation 10) has one redundant probability 

(CPins) due to the constraint that the sum of 

probabilities equal one, so only three equations are 

needed in this case. Hence, the log-odds can be 

predicted via the linear combination of predictors 

for the first three categories which are separated 

by the threshold value (δ) as the following 

formulas:

 

 

η (CPsig) = β0 + β1* X1 + β2* X2 +…………+ βn* Xn                                         

η (CPcon) = β0 + β1* X1 + β2* X2 +…………+ βn* Xn + δ1                                           ………….…….(12)                    

η (CPlim) = β0 + β1* X1 + β2* X2 +…………+ βn* Xn + δ2                                      
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Where: 

β0: is the first threshold value between significant and considerable categories. 

(β0 + δ1): is the second threshold value between considerable and limited categories. 

(β0 + δ2): is the third threshold value between limited and insignificant categories. 

All other variables are as defined previously. 

 

7. DATA ANALYSIS USING MULTILEVEL 

MODELLING APPROACH 

 

Multilevel hierarchical generalized linear 

model (HGLM) was used to develop pavement 

crack progression (CR) probability models with 

the Logit Link Function. The study analysis was 

performed using Hierarchical Linear and 

Nonlinear Modelling software (HLM7, 2016) and 

Statistical Package for Social Sciences software 

(SPSS, 2016). This type of analysis was selected 

to ensure that the hierarchical structure in the 

dataset was not ignored; otherwise, very different 

conclusions would be reached (Field, 2009).  

Data splitting is a simple technique for 

validating a developed model, ensuring prediction 

accuracy. Good and Hardin (2003) recommended 

that one-fourth to one-third of the data should be 

set aside for validation purposes. Before 

developing the models, a random data split               

was used to divide the dataset into two               

parts; approximately two-third of the data was 

used for model development and the remaining 

one-third of the data was used for model 

validation. The statistics of continuous 

independent variables that were used for model 

development are presented in Table (2).

 
Table (2): Statistics of continuous independent variables used for progression models development 

Statistics CR TMI SNCi MESA 

Mean 3.79 12 3.28 6.50 

Standard Deviation 7.33 28.06 0.18 4.14 

Minimum 0 -13 2.73 0.93 

Maximum 91 94 3.96 31.28 

 

8. PREDICTING PROBABILITY MODEL OF CRACK PROGRESSION (CR) 

 

A three-level model was used to predict the 

probability of crack progression in terms of the 

probability of a pavement falling into each of four 

discrete categories. The four categories are 

presented in Table (1) for different ranges of 

percent cracking area and described as 

insignificant, limited, considerable and significant 

area affected.  

The null model indicates that the variance 

components for r0 and u00 are highly significant 

(p<0.001). The proportion of variance over time is 

high (36%) within segments and very high (53%) 

between highways. Around 11% of the variance 

was found between sections. The significant 

variance between observations, sections and 

highways confirms that there is statistical 

justification for using a multilevel logistic analysis 

approach to predict the probability of crack 

progression in order to capture the variance 

between levels efficiently. The estimated null 

models for the cumulative probabilities (CP) of 

cracking are:

CPsig = 1/ (1 + Exp (-η)) = 1/ (1+ Exp (-(-3.18))) = 0.0399                                              ………………(13) 

CPcon =1/ (1 + Exp (- (η + δ1))) = 1/ (1+ Exp (-(-3.18+2.83))) = 0.4134                          ………………(14) 

CPlim = 1/ (1 + Exp (- (η + δ2))) = 1/ (1+ Exp (-(-3.18+3.93))) =0.6792                           ………………(15) 

 

Transforming the above predicted cumulative 

probabilities to the probabilities of cracking for 

each category using the formulas in equation (11); 

it is found that on average only 4% of the 

observations within sections in the selected 

network are expected to exhibit significant 

cracking during the study period. Around 37% 

(41% - 4%) and 27% (68% - 41%) of the 

observations within sections are expected to 

exhibit considerable and limited affected cracking 

areas, respectively. However, about 32% (100% – 

68%) of the observations within sections in the 
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selected network are expected to reveal 

insignificant affected areas (uncracked) during the 

study period. Available independent variables are 

added to the null model as predictors to estimate 

the conditional predicted cumulative probability 

(CP) for each cracking category. The final mixed 

model for the CP of significant, considerable and 

limited categories are presented below:

 

CPsig = 1/ (1+ Exp (-(-0.072 + 0.482* Time + 0.019* MESA –2.317* SNCi +0.369* SSR + 0.047 * 

TMI)))                                                                                                                                     ……(16) 

CPcon = 1/ (1+ Exp (-(-0.072 + 0.482* Time + 0.019* MESA – 2.317* SNCi + 0.369* SSR + 0.047 * 

TMI))) + 3.807)))     ...………………………(17) 

CPlim = 1/ (1+ Exp (-(-0.072 + 0.482* Time + 0.019* MESA – 2.317* SNCi + 0.369* SSR + 0.047 * 

TMI))) + 5.380)))     …………………………(18) 

 

The analysis results show that the variances for 

the random errors (r0 and u00) and the fixed 

parameters (Time, MESA, SNCi, SSR and TMI) 

are statistically significant with p-values less than 

0.001. However, drainage condition (DRA) was 

not significant hence excluded from the model. 

This means that drainage condition has no 

significant contribution to pavement cracking in 

the selected sample. The reason behind that is 

heavy duty pavement (class M road sections) has 

high standards of design and construction, well 

maintained, and generally exhibit high levels of 

smoothness. Also, road cross sections’ crowns are 

generally high, with deep table drain inverts and 

sub-soil drains may also be present, and therefore 

there is a little opportunity for water to gain access 

to the pavement (Toole et al., 2004).” Time, 

MESA, TMI and SSR were positively related to 

the probability of CR, whereas, SNCi was 

negatively related to the probability of CR. The 

three models estimated in equations (16), (17) and 

(18) have the same estimated slopes for all 

predictors with estimated thresholds of (-0.072), (-

0.072+3.807) and (-0.072+5.380), respectively. 

The absolute values of t-ratios indicate that the 

effect of Time is stronger than the effects of other 

variables on crack progression, followed by TMI, 

SNCi and SSR. Yet, MESA has a smaller effect 

on CR. The effect of odds ratios for the predictors 

of the CR conditional model can be explained as 

follows: 

1. Time factor: for every additional year in time 

the odds of greater cracking (significant cracking 

category) as opposed to less cracking 

(insignificant cracking category) increase 1.62 

times on average when the other factors are 

statistically controlled. 

2. Traffic loading factor: for every additional 

MESA in traffic loading the odds of greater 

cracking as opposed to less cracking increase 1.02 

times on average when the other factors are 

statistically controlled. 

3. Pavement strength: if all the other factors 

remain the same, the decrease of pavement 

strength by one unit of SNCi results in increasing 

the odds of greater cracking as opposed to less 

cracking by 90% ([1-0.099]*100%).  

4. Soil type factor: after controlling all other 

factors, the odds of greater cracking as opposed to 

less cracking is 45% higher (or 1.45 times) for the 

pavements built on expansive subgrade soil than 

for pavements built on non-expansive soil. 

5. Climate factor: for every additional unit in TMI 

the odds of greater cracking as opposed to less 

cracking increase 1.05 times on average when the 

other factors are statistically controlled. 

By using the cumulative probability equations 

(equations 16 to 18), the probability of each 

cracking category can be found using formulas in 

equation (11). These probabilities are presented 

below:

 

Psig = 1/ (1+ Exp (-(-0.072 + 0.482* Time + 0.019* MESA – 2.317* SNCi + 0.369* SSR + 0.047 * 

TMI)))                                                                                   …………………………(19) 

Pcon = 1/ (1+ Exp (-(-0.072 + 0.482* Time + 0.019* MESA – 2.317* SNCi + 0.369* SSR + 0.047 * 

TMI))) + 3.807 - 1/ (1+ Exp (-(-0.072 + 0.482* Time + 0.019* MESA – 2.317* SNCi + 0.369* SSR + 

0.047 * TMI)))                                             ...………………………(20) 

Plim = CPlim = 1/ (1+ Exp (-(-0.072 + 0.482* Time + 0.019* MESA – 2.317* SNCi + 0.369* SSR + 0.047 

* TMI))) + 5.380))) - 1/ (1+ Exp (-(-0.072 + 0.482* Time + 0.019* MESA – 2.317* SNCi + 0.369* SSR 

+ 0.047 * TMI))) + 3.807)))                             …………………………(21) 
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Pins = 1- CPlim = 1/ (1+ Exp (-(-0.072 + 0.482* Time + 0.019* MESA – 2.317* SNCi + 0.369* SSR + 

0.047 * TMI))) + 5.380)))               …………………………(22) 

 

On the basis of above equations, Figure (1) 

shows the simulation for the change of probability 

of crack progression for the four categories with 

time, when MESA and SNCi are at their mean 

values with wet climate and expansive soil. The 

inference from this figure is that a section say at 

year 6 has a 3% probability of having insignificant 

affected area, a 10% probability of having limited 

affected area, a 74% probability of having a 

considerable affected area and a 13% probability 

of having significant affected area. Therefore, due 

to the highest probability of considerable cracking 

category, it is the most likely cracking state    for 

that section. However, these observations could be 

more or less in different conditions                            

when considering various values of MESA and 

SNCi with wet or dry climate conditions                      

and expansive or non-expansive soils.

 
 

 
Fig. (1): Simulation for the probabilities of crack progression model over time 

 

 

9. MODEL EVALUATION 

 

Cross-tabulation analysis is used to test the 

ability of the developed models to correctly 

predict crack progression. The developed model is 

evaluated by testing the success of each of the 

developed probability model. The analysis 

result shows the frequency distribution of the 

predicted and observed cracking data. The 

numbers of observations that are being correctly 

predicted in the dataset are used to determine the 

success rate of the developed model. The results 

indicate that out of the 142 observations as 

significant affected area category, only 105 are 

correctly assigned to that category using the 50% 

predicted probability. Out of the 763 observations 

as considerable affected area category, 417 are 

correctly assigned. For the observations of limited 

affected area category, 430 out of 540 are 

correctly assigned. For the observations as 

insignificant affected area category, 1155 out of 

1499 are correctly assigned. These results indicate 

that the overall success rate of the crack 

progression model is 72%, which is calculated as 

below:  
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  Success rate of  R progression  = 
105 + 417 + 430 + 1155

2944
 = 72                                         ……   ………(23) 

 

 

The above success rate increases to 86% for 

developed crack progression model, when the 

estimated probability is increased to 60%. 

However, the accuracy of cracking data is 

subjective in a way and certainty subject to human 

error and this certainly affects the accuracy of 

model and results in addition to the fact that some 

model parameters are estimated and not measured 

(such as pavement strength). 
 

10. MODEL VALIDATION 

 

Internal validation method is used to ensure 

that the developed models have the ability to 

predict the future conditions accurately. As 

mentioned before in this paper, around one-third 

of the data is set aside to use for model validation. 

This dataset is used to develop a validation model 

with the same variables that have been used for 

the developed model. Multiple statistical testing 

using a Bonferroni correction (Field, 2009) is 

applied when checking whether the coefficients 

for the validation models fell within the 95% 

confidence intervals for the coefficients of the 

developed models. The confidence interval 

(CI) estimate provides a range of likely values for 

each of the models parameters. Based on the 

general form of a confidence interval, the lower 

and upper bounds of the 95% confidence intervals 

are calculated using the following formula (Field, 

2009): 

95% confidence interval = estimated parameter ± 

1.96 * standard error                   …………….(24) 

The internal validation result for the developed 

crack progression model is presented in Table (3). 

The result indicates that all parameters of the 

model based on the validation dataset fell within 

the upper and lower bound intervals for the 

parameters of the developed model. This means 

that the probability model exhibit internal validity.  

 

11. SUMMARY AND CONCLUSIONS 

 

The study presents multilevel hierarchical 

generalized linear model that can account for the 

correlation among time series data of the same 

pavement section and capture the effect of 

unobserved factors on pavement deterioration. 

The study demonstrates the application of 

multilevel analysis using HLM7 software for 

modelling the probability of pavement 

progression. The procedure can be applied to any 

pavement condition variable that has ordinal 

classification with data that has a hierarchical 

structure, such as pavement rutting and skid 

resistance.  

From the analysis approach performed for the 

sets of road sections of heavy duty pavement, the 

results indicate that unobserved heterogeneity is a 

critical aspect that should be considered among 

sections and among highways for modelling heavy 

duty cracking pavement. The developed 

progression model is statistically significant and 

the parameter estimates are significant and have 

correct signs. The developed models indicate that 

time, traffic loading, climate condition and 

subgrade soil type have positive contributions to 

crack progression. However, pavement strength 

has negative contribution to crack progression. 

Drainage condition has no significant contribution 

to pavement cracking in the selected sample. The 

effect of time is stronger than the other variables 

on crack progression. The effect of climate 

condition at any time is stronger than the effect of 

pavement strength and traffic loading in crack 

progression.  

The model can generate the probability of a 

pavement staying at a certain distress level and the 

odds ratio, which enables highway agencies not 

only predict probability of cracking but also assess 

the confidence of making such predictions. The 

probabilistic model format for cracking data 

provides such flexibility in the application of the 

model when triggers are set according to risk 

considerations. 

Further, the results of model validation indicate 

that the developed probability model is well 

estimating the crack condition and has the ability 

to predict future condition accurately. The model 

can be used only within the range of input data 

(independent variables) used in their development. 

Therefore, it is recommended that the developed 

models should be used only within the data limits 

presented in this study and only for spray sealed 

pavements.
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Table (3): Internal validation result for developed crack progression model 

Cracking model 

variables 

CDM
1 

p-value (Developed 

model) 

Standard 

Error 

95% CI
3
 

LB
4 

95% CI
3
  

UB
5 

CVM
2 

p-value 

(Validated 

model) 

Intercept -

0.071691 

0.978 2.523377 -5.018 4.874 -1.690793 0.633 

Time 0.481903 <0.001 0.039007 0.405 0.558 0.462373 <0.001 

MESA 0.019106 0.04 0.026491 -0.033 0.071 0.055041 0.01 

SNCi -

2.316598 

<0.001 0.714724 -3.717 -0.916 -1.764982 0.05 

SSR 0.368997 0.01 0.146766 0.081 0.657 0.267209 0.01 

TMI 0.046572 <0.001 0.007362 0.032 0.061 0.046266 <0.001 

Threshold (δ1) 3.806797 <0.001 0.197419 3.420 4.194 3.441873 <0.001 

Threshold (δ2) 5.379809 <0.001 0.298725 4.794 5.965 4.895593 <0.001 

1: Coefficient of developed model   2: Coefficient of validated model   3: Confidence interval    4: Lower bound   5: 

Upper bound 
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