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ABSTRACT  
The aim of this paper is to consider and analyze the dynamic behavior of a modified Leslie-Gower 

prey-predator model with  SIS-disease in predator incorporating prey protection and harvesting factor. 

The disease is spread from one predator to another through two ways. Physical contact; or external 

source. Firstly, the details of the assumptions in the proposed model and the significant of the parameters 

used in  are discussed. Then the boundedness of the model is proved, certain conditions for persistence of 

the model are given and the existence as well as stability analysis of all possible non-negative equilibrium 

points is studied. Finally, to confirm our analytical finding we discussed numerical simulation of the 

model. 
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1. INTRODUCTION 

 
n the mid-1920s, Voltera [19] and Lotka 

[5] introduce the first mathematical model 

in ecology, their model describe the dynamics of 

interaction  between predator and prey.  Lotka-

Voltera Model has been modified during these 

thirty years [8, 11-12, 15-16]. ].  Functional 

response is main aspect of modeling the 

dynamics of predator-prey interaction because it 

describes a predator’s intendances per capita as 

function of prey abundance, many authors 

proposed the lotka-Voletra model with more 

realistic functional response [1, 4, 10, and 21]. 

There are various factor which effect positively 

or negatively on the dynamics between prey and 

predator like epidemic disease among one 

species or both,  prey refuge which is a type of 

protection that protect prey species from 

predation, harvesting species and many other 

factors[9,17-18].  Leslie and Gower [6] 

introduced Leslie-Gower prey-predator Model, 

in their model the carrying capacity of predator  

depends on to the prey density which is not 

recognized in  Lotka-Volter Model.  In case of 

severe scarcity, the predator species can switch 

over to other population but its growth will be 

limited by the fact that it’s most favorite food is 

not available in abundance, therefore, Aziz-

Aloui and Daher [2] modified the Leslie-Gower 

Model which can be written as follows 

 
𝑑𝑋

𝑑𝑡
= 𝑟1𝑥 (1 −

𝑋

𝐾
) −

𝛼𝑋𝑌

1+𝛼𝑇𝑥
 

𝑑𝑌

𝑑𝑡
= 𝑟2𝑦 (1 −

𝑌

𝑋+𝑐
)  

               (1)       

                                                                                                                                                                                                                                                                                                                                                                                                                              

Where x (t) and y (t) are numbers of prey and 

predator, respectively. the prey species x (t) 

grows with intrinsic growth rate 𝑟1 and carrying 

capacity k and predator grows with  intrinsic 

growth rate 𝑟2 and its carrying capacity is prey 

density x (t)  added by the additional food c 

which provides protection to the predators and 

the predators consumes the prey species 

according Hollying Type functional responses 

[13-14].  Like the working on modification of  

lotka-Voltera model by many researcher 

considered the system (1) including the same 

factors which taking into account to the  lotka -

Voltera model[ 3,7,21-22  ]and the references 

therein. Most of this modification included at 

most two factors, therefore, in this work; we 

considered and studied the dynamic behavior of 

a new modified Leslie-Gower  prey-predator 

model with more than two factors. Our proposed 

model is considered system (1) with SIS-disease 

in predator species only species and 

incorporating prey refuge and population 

harvesting. The disease is transmitted within 
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predator species by contact between susceptible 

predator and infected predator as well as by 

external source.  This paper is structured as 

follows. In the next section we have discussed 

the details of the assumptions in the new model 

and the significant of the parameters used in it, 

section 3 deals with positive, boundednees and 

persistence of the model. In section 4 all possible 

equilibrium points and their existence criteria 

and discussed stability analysis, in section 5, we 

give the numerical verification of our analytical 

finding. Finally, we discussed the conclusion of 

our work. 

 

2. THE MODEL FORMULATION 

 

The proposed model based on the following 

assumptions: 

 

1- In the absence of predators and harvesting 

factor, the prey species follow the Logistic 

dynamics. 

2- An epidemic  SIS-disease is transmitted 

within the predator  only by contact directly 

according to non linear incidence rate, and 

through an external source, therefore the 

presence of disease divide the predator species in 

to two groups: susceptible predator and infected 

predator.  

3-  All predators are capable of reproduce 

susceptible predator and follow logistic 

dynamics. 

4- There is additional source for predator. 

5- Not all prey available to be predated, because 

there is a type of protection of prey from 

predation (prey refuge). 

6- Finally, both prey species and predator 

species are harvested by external forces. 

With above assumption, our  model leads to 

the following set of ordinary differential 

equation: 
𝑑𝑋

𝑑𝑡
= 𝑟1𝑋 (1 −

𝑋

𝑘
) −

𝛼1(1 − 𝑚)𝑋𝐼

1 + 𝑇𝛼1(1 − 𝑚)𝑋
− 𝛼2(1 − 𝑚)𝑋𝑆 − ℎ1𝑋 

𝑑𝑆

𝑑𝑡
 = 𝑟2(𝑆 + 𝐼) (1 −

𝑆+𝐼

𝑋+𝑐
) −

𝜆1𝐼𝑆

1+𝐼
− 𝜆2𝑆 + 𝑎𝐼 −

ℎ2𝑆                                                                                     
(2) 
𝑑𝐼

𝑑𝑡
=

𝜆1𝐼𝑆

1 + 𝐼
+ 𝜆2𝑆 − 𝑎𝐼 − 𝑑𝐼 − ℎ3𝐼 

Where 𝑋(t), S (t) and I (t) represent the 

densities at time 𝑡 for prey, susceptible predator 

and infected predator respectively, with  𝑥(0) ≥
0, 𝑆(0) ≥ 0 ,  𝐼(0) ≥ 0 and all the parameters 

are positive, they have been defined in the Table 

1:

 

Table (1): Biological interpretation of parameters 

Parameters                             Biological interpretation  

𝑟1                                            Growth rate of prey population 

𝑟2                                        Growth rate of susceptible predator  

𝛼1                                           Predation rate by infected predator 

𝛼2                                           Predation rate by infected predator 

𝑇                                             Time of handling 

𝐾                                            Carrying capacity of prey species 

𝑚                                            Prey refuge protection rate 

𝜆1                                           Infected rate from contact within predators 

𝜆2                                            Infected rate from external source 

𝑎                                             Recovering  rate of  infected predator 

𝑐                                              Additional source for predator species 

𝑑                                              rate of natural death of infected predator 

ℎ1                                            Prey harvesting rate  

ℎ2                                            Susceptible predator harvesting rate 

ℎ4                                           Infected predator harvesting rate 

 

 

 

3. BOUNDEDNESS AND PERSISTENCE 

 

    the right hand sides of system (2) are 

continuously differentiable functions in the 
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positive octant, therefore systems (2) has a 

unique solution. Furthermore  in theorem(1)  we 

proved the boundedness of system (2), The 

persistence of the system (2) is indicated in 

theorem(2) 

Theorem 1. All solutions of the model system 

(2) that initiate in the state space 𝑅+
3  are 

uniformly bounded. 

Proof: Let  (𝑋(𝑡), 𝑆(𝑡), 𝐼(𝑡)) be any solution of 

the system (2)  

the first equation of system (2), it is obtained 

that:

 

 

 
𝑑𝑋

𝑑𝑡
≤ 𝑟1𝑋(1 −

𝑋

𝑘
) 

Then                                                         lim
𝑡→∞

𝑆𝑢𝑝𝑋(𝑡) ≤ 𝐾 

From the system (2), it is obtained that  
𝑑(𝑆 + 𝐼)

𝑑𝑡
= 𝑟2(𝑆 + 𝐼) (1 −

𝑆 + 𝐼

𝑘 + 𝑐
) − ℎ2𝑆 − 𝑑𝐼 − ℎ3𝐼 

Thus                              
𝑑(𝑆 + 𝐼)

𝑑𝑡
≤ 𝑟2(𝑆 + 𝐼) (1 −

𝑆 + 𝐼

𝑘 + 𝑐
) 

And hence                                             lim
𝑡→∞

(𝑆 + 𝐼) ≤ 𝑘 + 𝑐 

The proof is completed. 

 

Theorem  2.  if the following conditions hold, then every solution of model(2) has no zero limit 

(1 − 𝑚)(𝑘 + 𝑐)(𝛼1 + 𝛼2) + ℎ1 < 𝑟1                                                (3)                                                                                                           

𝜆1 + 𝜆2 + ℎ2 < 𝑟2  <
𝑎(𝑐+

𝐾

𝑟1
(1−((1−𝑚)(𝑘+𝑐)(𝛼1+𝛼2)+ℎ1)))

𝑘+𝑐
             (4)       

                                                                                                              

Proof . From system (2), we have  
𝑑𝑋

𝑑𝑡
= 𝑟1𝑋 (1 −

𝑋

𝑘
) −

𝛼1(1 − 𝑚)𝑋

1 + 𝛼1𝑇(1 − 𝑚)𝑋
𝐼 − 𝛼2(1 − 𝑚)𝑋𝑆 − ℎ1𝑋 

and in theorem (1), we have        lim
𝑡→∞

𝑆𝑢𝑝𝑋(𝑡) ≤ 𝐾 

Thus as time approaches infinity, we obtain that  

                     
𝑑𝑥

𝑑𝑡
≥ 𝑟1𝑋 (1 −

𝑋

𝑘
) − ((1 − 𝑚)(𝑘 + 𝑐)(𝛼1 + 𝛼2) + ℎ1)𝑋 

 = 𝑟1𝑋 (1 −
1

𝑟1
((1 − 𝑚)(𝑘 + 𝑐)(𝛼1 + 𝛼2) + ℎ1) −

𝑋

𝑘
) = 𝑟1𝑋(𝛽 −

𝑋

𝑘
) 

Where 𝛽 = 1 −
1

𝑟1
((1 − 𝑚)(𝑘 + 𝑐)(𝛼1 + 𝛼2) + ℎ1) 

Condition 3 guarantees that     lim
𝑡→∞

𝑋(𝑡) ≥ 𝛽𝑘 > 0. 

Now since 𝑟2𝑆 (1 −
𝑆+𝐼

𝑐+𝑋
) is  logistic reproduction of susceptible predator by susceptible predator 

only and 𝑟2(𝑆 + 𝐼) (1 −
𝑆+𝐼

𝑐+𝑋
) is logistic reproduction of susceptible predator by usceptible predator a 

swell as infected predator, so 𝑟2(𝑆 + 𝐼) (1 −
𝑆+𝐼

𝑐+𝑋
) > 𝑟2𝑆 (1 −

𝑆+𝐼

𝑐+𝑋
). 

That is     
𝑑𝑠

𝑑𝑡
≥ 𝑟2𝑆 (1 −

𝑆+𝐼

𝑐+𝑋
) − 𝜆1𝑆 − 𝜆2𝑆 − ℎ2𝑆 + 𝑎𝐼 

And in theorem(1), we have   lim
𝑡→∞

𝑆 ≤ 𝑘 + 𝑐 

 Thus as  time approaches infinity, we get 

𝑑𝑠

𝑑𝑡
≥ 𝑟2𝑆 (1 −

𝑆

𝑐 + 𝑋
) + (𝑎 −

𝑟2(𝑘 + 𝑐)

𝑐 + 𝑋
) 𝐼 − (𝜆1 + 𝜆2 + ℎ2)𝑆 

If condition(4) holds, then 𝑎 −
𝑟2(𝑘+𝑐)

𝑐+𝑋
> 0 
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 That is       
𝑑𝑠

𝑑𝑡
≥ 𝑟2𝑆 ((1 −

𝜆1+𝜆2+ℎ2

𝑟2
) −

𝑆

𝑐+𝑋
) ≥ 𝑟2𝑆(𝛾 −

𝑆

𝑐
) ,    where       𝛾 = (1 −

𝜆1+𝜆2+ℎ2

𝑟2
) > 0     

under condition(4) 

Consequently,  lim
𝑡→∞

𝑆(𝑡) ≥ 𝛾𝑐 > 0 and  from the third equation of the model (2), we get  

𝑑𝐼

𝑑𝑡
≥ 𝜆2 𝑆 − (𝑎 + 𝑑 + ℎ3)𝐼 > 𝜆2 𝛾𝑐 − (𝑎 + 𝑑 + ℎ3)𝐼 and hence    lim

𝑡→∞
𝐼(𝑡) ≥

𝜆2𝛾𝑐

𝑎+𝑑+ℎ3
> 0 

This completes the proof. 

 
4. EQUILIBRIUM POINT AND STABILITY 

 

In this section we will study the existence and 

stability behavior for each of zero equilibrium 

point , predator free equilibrium point,  prey free 

equilibrium point and positive equilibrium point  

of  system (2). 

 

4.1  The trivial equilibrium point and axial 

Equilibrium point. 

 

 The Trivial equilibrium point 𝐸1 = (0,0,0)is 

always exist while the predator free equilibrium 

point.   𝐸2 = (𝑘 (1 −
ℎ1

𝑟1
) , 0,0) exist if the 

following condition holds  

               ℎ1 < 𝑟1                                               (5)                                                                                                                               
The locally asymptotically stable of 𝐸1 =

(0,0,0)  and 𝐸2 = (𝑘 (1 −
ℎ1

𝑟1
) , 0,0) established 

in the following theorem. 

    

Theorem  3.  Suppose that the following 

condition holds, 

   𝑟2 <  𝜆2 + ℎ2 −
𝜆2(𝑟2+𝑎)

𝑎+𝑑+ℎ3
                                (6)                                                                                          

 Then  

i. The trivial equilibrium point is locally 

asymptotically stable and the predator free 

equilibrium point does not exist if 𝑟1 < ℎ1 

ii. The predator free equilibrium point is locally 

asymptotically stable if  𝑟1 > ℎ1 

Proof i.    If   𝑟1 < ℎ1 then the predator free 

equilibrium point is negative which is 

impossible, so it does not exist.  And the 

eigenvalue of the jacobian matrix at 𝐸1 =
(0,0,0) , in the 𝑋 − direction is negative,  while 

its eigenvalues in 𝑆 − direction and 𝐼 − direction 

are roots for the following equation 

𝛾2 + (𝜆2 + ℎ2 + 𝑎 + 𝑑 + ℎ3 − 𝑟2)𝛾 +
(𝜆2 + ℎ2 − 𝑟2)(𝑎 + 𝑑 + ℎ3) − 𝜆2(𝑟2 + 𝑎) = 0               
(7)                                                                                 

Thus both eigenvalues in 𝑆 − direction and 𝐼 − 

direction are negative iff the condition (6) holds. 

Consequently  𝐸0 = (0,0,0) is locally 

asymptotically stable. 

Proof ii.  If    𝑟1 > ℎ1  then the axial equilibrium 

point exist, and eigenvalue of jacobian matrix at 

𝐸2 = (𝑘 (1 −
ℎ1

𝑟1
) , 0,0)  in the 𝑋 − direction is 

negative. The last two eigenvalues of the 

jacobian matrix at  𝐸2 = (𝑘 (1 −
ℎ1

𝑟1
) , 0,0)   in 

𝑆 − direction and 𝐼 − direction are roots for the 

Eq.  (7), thus both eigenvalues in 𝑆 − direction 

and 𝐼 − direction are negative iff the condition 

(6) holds. Consequently 𝐸2 = (𝑘 (1 −
ℎ1

𝑟1
) , 0,0) 

is locally asymptotically stable. 

 

 

 

The global stability conditions of 𝐸0 =

(0,0,0)  and 𝐸2 = (𝑘 (1 −
ℎ1

𝑟1
) , 0,0)   are given  

in theorem (4) and theorem (5), respectively. 
Theorem  4. Suppose  the following condition 
hold, then the trivial equilibrium point𝐸0 =

(0,0,0) is global stability in
3
R .

  
 
 
 
 
 
 
 
𝑚𝑎𝑥{𝑟1, 𝑟2} < 𝑚𝑖𝑛{ℎ1, ℎ2, 𝑑 + ℎ3}                                                                                                                 (8)                                                                                                 

Proof.  From system (2), we have  
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𝑑(𝑋+𝑆+𝐼)

𝑑𝑡
≤ 𝑋(𝑟1 − ℎ1)+(𝑟2 − ℎ2)𝑆 + (𝑟2 − 𝑑 − ℎ3)𝐼    ∀(𝑋, 𝑆, 𝐼) ∈ 3. RInt  

So, from the condition (8), we have   

Then lim
𝑡→∞

(𝑋 + 𝑆 + 𝐼) = 0 

Consequently 𝐸0 = (0,0,0) is globally asymptotically stable.  

Theorem 5. If  𝐸2 = (𝑘 (1 −
ℎ1

𝑟1
) , 0,0) is locally asymptotically stable  and the following condition 

hold.  

 𝑚𝑎𝑥 {(
𝛼1(1−𝑚)

1+𝛼1𝑇𝐾
)

2 𝐾2+𝑐𝐾

2𝑟1
, 𝛼2

2(1 − 𝑚)2 𝐾2+𝑐𝐾

2𝑟1
} < 𝑟2 < 𝑚𝑖𝑛{ℎ2, 𝑑 + ℎ3}                                 (9) 

then the equilibrium point 𝐸2 = (𝑘 (1 −
ℎ1

𝑟1
) , 0,0) is globally asymptotically stable. 

Proof.  Consider the following function: 

𝑉(𝑋, 𝑆, 𝐼) = 𝑋 − 𝑘 (1 −
ℎ1

𝑟1
) − 𝑘 (1 −

ℎ1

𝑟1
) 𝑙𝑛 (

𝑋

𝑘(1−
ℎ1
𝑟1

)
) + 𝑆 + 𝐼   

 It is easy to see that ),(),,( 31 RRCISXV  , in addition 𝑉 (𝑘 (1 −
ℎ1

𝑟1
) , 0,0) = 0, 

while 𝑉(𝑋, 𝑆, 𝐼) > 0; 3),,(  RISX  and(𝑋, 𝑆, 𝐼) ≠ (𝑘 (1 −
ℎ1

𝑟1
) , 0,0). Further  

 

 
𝑑𝑉

𝑑𝑡
≤ − (

𝑟1

2𝐾
(𝑋 − 𝑘 (1 −

ℎ1

𝑟1
))

2

+𝛼2(1 − 𝑚) (𝑋 − 𝑘 (1 −
ℎ1

𝑟1
)) 𝑆 +  

𝑟2

𝐾+𝑐
𝑆2) − (ℎ2 − 𝑟2)𝑆 

− (
𝑟1

2𝐾
(𝑋 − 𝑘 (1 −

ℎ1

𝑟1
))

2

+
𝛼1(1 − 𝑚)

1 + 𝛼1𝑇𝐾
(𝑋 −   𝑘 (1 −

ℎ1

𝑟1
)) 𝐼 +

𝑟2

𝐾 + 𝑐
𝐼2) − (𝑑 + ℎ3 − 𝑟2)𝐼 

 
 

Clearly, under the condition (9), 
dt
dV  is 

negative definite, and hence the proof is 

complete.  

 

4.2 The prey free equilibrium point. 

 

The prey free equilibrium point is  𝐸2 =

(0, 𝑆,̅ 𝐼 ̅), where 𝑆 ̅ =
(𝑎+𝑑+ℎ3)𝐼

𝜆1𝐼

1+𝐼 
+ 𝜆2

  and   𝐼   is a root   

for the following equation 

 

𝐹(𝐼) = 𝑟2(ℎ(𝐼) + 𝐼) (1 −
ℎ(𝐼)+𝐼

𝑐
) −

𝜆1𝐼ℎ(𝐼)

1+𝐼
−

𝜆2ℎ(𝐼) + 𝑎𝐼 − ℎ2ℎ(𝐼) = 0 , where  ℎ(𝐼) =
(𝑎+𝑑+ℎ3)𝐼

𝜆1𝐼

1+𝐼 
+ 𝜆2

   

 

In theorem(1) we proved that   lim
𝑡→∞

(𝐼(𝑡) +

𝑆(𝑡)) ≤ 𝐾 + 𝑐  , So, if the  following condition 

hold, then by using the intermediate value 

theorem, 𝐹(𝐼)has a unique positive root 

namely 𝐼 ∈ (0, 𝐾 + 𝑐) 

𝐹(0) > 0   and  𝐹(𝐾 + 𝑐) < 0  and 
𝑑𝐹

𝑑𝑡
< 0 

for all I ∈ [0, 𝐾 + 𝑐]                          

                                   

Now, globally asymptotically stable of the 

prey free equilibrium point 𝐸2 = (0, 𝑆,̅ 𝐼 ̅) is 

established in the following theorem. 

 

Theorem 6.  If the prey free equilibrium 

point𝐸3 = (0, 𝑆,̅ 𝐼 ̅) exist uniquely, the 

conditions in theorem (2) and the following 

condition hold then  𝐸3 = (0, 𝑆,̅ 𝐼 ̅) is globally 

asymptotically stable. 

𝑟1 < ℎ1                                                                                                                                                                       
(10)                                                                                                                                                                    

𝐼𝑚𝑎𝑥 <
𝑐

𝑟2
(𝑟2 + 𝑎)                                                                                                                                                 

( 11)                                                                                                                                              

Proof. From first equation of the system (2)  
𝑑𝑋

𝑑𝑡
≤ 𝑋(𝑟1 − ℎ1) 

Thus from condition (10),   we get      

lim
𝑡→∞

𝑥(𝑡) = 0 

Thus , system (2) can be reduced to the 

following prey free subsystem                                             
𝑑𝑆

𝑑𝑡
= 𝑟2(𝑆 + 𝐼) (1 −

𝑆 + 𝐼

𝑐
) −

𝜆1𝐼𝑆

1 + 𝐼
− 𝜆2𝑆 + 𝑎𝐼

− ℎ2𝑆 = 𝑓(𝑆, 𝐼)   
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𝑑𝐼

𝑑𝑡
=

𝜆1𝐼𝑆

1 + 𝐼
+ 𝜆2𝑆 − 𝑎𝐼 − 𝑑𝐼 − ℎ3𝐼 = 𝑔(𝑆, 𝐼) 

Consider now the function𝐻(𝑆, 𝐼) =
1

𝑆𝐼
, 

clearly  RRIntH 

2.:  which is a 

continuously differentiable function. Further, 

since 

 

 

𝐵(𝑆, 𝐼) =
𝜕

𝜕𝑆
(𝐻𝑓) +

𝜕

𝜕𝐼
(𝐻𝑔)

=
𝑟2𝐼 − 𝑟2𝑐 − 𝑎𝑐

𝑐𝑆2
−

𝑟2

𝑐𝐼

−
𝜆1

(1 + 𝐼)2
−

𝜆1

𝐼2
 

 

 

Here, 𝑓and 𝑔 are given in the prey free 

subsystem. We can say   𝐼𝑚𝑎𝑥  represents the 

upper bound constant for the variable because 

system(2) is bounded. Therefore, condition (11) 

guarantees that 𝐵(𝑆, 𝐼) is not identically zero and 

it has no change in its sign. So, by Bendixon-

Dulac criterion, there is no periodic curve in the 
2. RInt  of the SI plane.  

Now, from conditions in theorem(2), we have  

lim
𝑡→∞

𝑆(𝑡) ≥ 𝛾𝑐 > 0   and  lim
𝑡→∞

𝐼(𝑡) ≥
𝜆2𝛾𝑐

𝑎+𝑑+ℎ3
>

0, So no of trajectory goes to boundary 

equilibrium point, and since (𝑆, 𝐼)  is unique 

positive equilibrium point, so, every trajectory in 
2. RInt goes to the  equilibrium point (𝑆, 𝐼) 

Hence the equilibrium point (𝑆, 𝐼) of the prey 

free subsystem and then the associated prey free 

equilibrium point 𝐸3 = (0, 𝑆,̅ 𝐼 ̅) of system (2) is 

globally asymptotically.  

 

4.3 The positive equilibrium point. 

 

The positive equilibrium point   𝐸4=(𝑋̌, 𝑆̌, 𝐼) 

is the solution of the following set of equations.

 

𝑟1 (1 −
𝑋

𝑘
) −

𝛼1(1 − 𝑚)

1 + 𝑇ℎ𝛼1(1 − 𝑚)𝑋
𝐼 − 𝛼2(1 − 𝑚)𝑆 − ℎ1 = 0 

𝑟2(𝑆 + 𝐼) (1 −
𝑆 + 𝐼

𝑋 + 𝑐
) −

𝜆1𝐼𝑆

1 + 𝐼
− 𝜆2𝑆 + 𝑎𝐼 − ℎ2𝑆 = 0                                                 

𝜆1𝐼𝑆

1 + 𝐼
+ 𝜆2𝑆 − 𝑎𝐼 − 𝑑𝐼 − ℎ3𝐼 = 0 

Straight forward computation gives that: 

 

𝑆 =
(𝑎 + 𝑑 + ℎ3)𝐼

𝜆1𝐼

1+𝐼
+ 𝜆2

= 𝑔1(𝐼) ,      𝑋 =
𝑔1(𝐼) + 𝐼

𝑟2(𝑔1(𝐼) + 𝐼) −
𝜆1𝐼𝑔1(𝐼)

1+𝐼
− 𝜆2𝑔1(𝐼) + 𝑎𝐼 − ℎ2𝑔1(𝐼)

− 𝑐

= 𝑔2(𝐼)    

𝐺(𝐼) = 𝑟1 (1 −
𝑔2(𝐼)

𝑘
) −

𝛼1(1 − 𝑚)𝐼

1 + 𝑇ℎ𝛼1(1 − 𝑚)𝑔2(𝐼)
− 𝛼2(1 − 𝑚)𝑔1(𝐼) − ℎ1 = 0           

Thus,  𝑆̌ = 𝑔1(𝐼) , 𝑋̌ = 𝑔2(𝐼)    While 𝐼 ̅ ∈ (0, 𝑘 + 𝑐) represents a positive root of the function 𝐺(𝐼) 

 

 

 

From the intermediate value theorem, 

𝐺(𝐼) has a unique positive root namely 𝐼 ̅ ∈
(0, 𝑘 + 𝑐), if 𝐺(𝐼): [𝑜, 𝑘 + 𝑐] → 𝑅 is continuous 

function with  𝐺(0) > 0(𝑜𝑟 𝐺(0) < 0): 𝐺(𝑘 +

𝑐) < 0(𝑜𝑟 𝐺(𝑘 + 𝑐) > 0) and 
𝑑𝐺

𝑑𝐼
= 𝐺′(𝐼) < 0 

for all I ∈ [0, 𝑘 + 𝑐]. 

The locally asymptotical stable of the 

positive equilibrium point 𝐸4=(𝑋̌, 𝑆̌, 𝐼)  is 

established in the following theorem 

 

Theorem  7. if  the following conditions hold 

and the positive equilibrium point exist,  then  

                  𝐸4=(𝑋̌, 𝑆̌, 𝐼)   is locally 

asymptotically stable.
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𝛼1(1 − 𝑚)𝑋̌

1 + 𝑇𝛼1(1 − 𝑚)𝑋̌
+ 𝑟1 <

2𝑟1

𝑘
𝑋̌ +

𝛼1(1 − 𝑚)𝐼

(1 + 𝑇ℎ𝛼1(1 − 𝑚)𝑋̌)
2 + 𝛼2(1 − 𝑚)(𝑆̌ − 𝑋̌) + ℎ1            (12) 

𝑟2(𝑆̌+𝐼)2

(𝑋̌+𝑐)2 + |𝑟2 − 2𝑟2 (
𝑆̌+𝐼

𝑋̌+𝑐
) −

𝜆1𝑆̌

(1+𝐼)2 + 𝑎| + 𝑟2 < 2𝑟2 (
𝑆̌+𝐼

𝑋̌+𝑐
) + (

𝜆1𝐼

1+𝐼
) + 𝜆2 + ℎ2                            (13)  

𝜆1𝐼

1+𝐼
+

𝜆1𝑆̌

(1+𝐼)̅2 < 𝑎 + 𝑑 + ℎ3 − 𝜆2                                                                                                    (14) 

 

 

Proof. The variational matrix for  system (2)at the point 𝐸4 can be written as 

J(𝐸4) = (𝑐𝑖𝑗)3×3: 𝑖, 𝑗 = 1,2,3; where 

𝑐11 = 𝑟1 −
2𝑟1𝑋̌

𝑘
−

𝛼1(1 − 𝑚)𝐼

(1 + 𝑇𝛼1(1 − 𝑚𝑋̌))
2 − 𝛼2(1 − 𝑚)𝑆̌ − ℎ1, 𝑐12 = −𝛼2(1 − 𝑚)𝑋̌ 

𝑐13 = −
𝛼1(1−𝑚)𝑋̌

1+𝑇𝛼1(1−𝑚)𝑋̌
 ,   𝑐21 =

𝑟2(𝑆̌+𝐼)2

(𝑋̌+𝑐)2  ,   𝑐22 = 𝑟2 − 2𝑟2 (
𝑆̌+𝐼

𝑋̌+𝑐
) − (

𝜆1𝐼

1+𝐼
) − 𝜆2 − ℎ2 

       

     𝑐23 = 𝑟2 − 2𝑟2 (
𝑆̌+𝐼

𝑋̌+𝑐
) −

𝜆1𝑆̌

(1+𝐼)2 + 𝑎,𝑐31 = 0, 𝑐32 =
𝜆1𝐼

1+𝐼
+ 𝜆2 𝑎𝑛𝑑  𝑐33 =

𝜆1𝑆̌

(1+𝐼)2 − 𝑎 − 𝑑 − ℎ3 

 

From theorem of Gerschgorin, the eigenvalues are in the following circles 

|𝑡 − 𝑐11| = |𝑐12| + |𝑐13| 
|𝑡 − 𝑐22| = |𝑐21| + |𝑐23| 
      |𝑡 − 𝑐33| = |𝑐31| + |𝑐32| 
 

If all the conditions (12-14) hold then 𝑐𝑖𝑖 < 0: 𝑖 = 1,2,3  and 

|𝑐11| > |𝑐12| + |𝑐13| 
|𝑐22| > |𝑐21| + |𝑐23|,  
|𝑐33| > |𝑐31| + |𝑐32| 
This means that all the Eigen values are negative 

And hence𝐸4=(𝑋̌, 𝑆̌, 𝐼)  is locally asymptotically stable. 

 

5 NUMERICAL CONFIRM 

 

                In this section, we will investigate the 
dynamics of the system (2) numerically to 
confirms the analytical finding and discuss the 
role of the existence of prey refuge and 
population harvesting on the dynamics of 
system (2). The numerical solution  system (2)at 
different initial point with  the  parameters as 
given in Table 2, is illustrated in Fig. (1). 
 
 

Table (2): Parameter values for Fig. 1 

Parameters             Values 

𝑟1                                      1.2               

𝑟2                                  0.8 

𝛼1                                     0.3 

𝛼2                                     0.4 

𝑇                                          1 

𝐾                                       100 

𝑚                                      0.5 

𝜆1                                      0.5 

𝜆2                                      0.2 

𝑎                                        0.1 

𝑐                                         10 

𝑑                                        0.4 

ℎ1                                      0.5  

ℎ2                                      0.5 

ℎ3                                      0.6 

 

 

 

Obviously, as shown in Fig. 1, system (2) is 
persist and approaches asymptotically to the 

positive equilibrium pointin the 
(9.3522,2.5992,1.03883) it is easy to verify 
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that the data in Table 2 satisfy the stability 
conditions (12-14).  However for the data set in 
Table 2 with 𝑚 = 0.1 system (2) approaches 

asymptotically prey free equilibrium point 

(𝐸3 = 0, 1.6032, 0.5501) as shown in Fig. 2.

 

 
Fig. (1): The phase portrait of the system (2) for the different initial point with parameter values given in Table 2. 

 

 
Fig. (2): The phase portrait of the system (2) for the different initial point and 𝑚 = 0.1  with other parameter 

values given in Table 2. 
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Note that the data of parameters used in  Fig. 2, Satisfy the stability conditions (10)-(11), and hence 

the above figure confirms the analytical results. Further, it is observed that for the set of data in Table 

2 with increasing the predator harvesting rates to ℎ2 = 0.9, ℎ3 = 0.7  , the solution of system (2) 

approaches asymptotically to the predator free equilibrium point𝐸2 = (53.3333,0,0)  as shown in Fig. 

3. 

 
 

 
Fig. (3): The phase portrait of the system (2) for the different initial point and ℎ2 = 0.9, ℎ3 = 0.7.  with other 

parameter values given in Table 2. 

 
Again, at the data used in Fig. 3 the local 

stability conditions (5)-(9) hold too. Now, for the 

data set in Table 2, with 𝑚 = 0.1, ℎ1 =
1.23, h2 = 0.9 , ℎ3 = 0.7, the solution of the 

system (2) approaches asymptotically the trivial 

equilibrium point 𝐸1 = (0,0,0)  as shown in the 

Fig. 4 below. 
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Fig. (4): The phase portrait of the system (2) for the different initial point and 𝑚 = 0.1, ℎ1 = 1.23, h2 =
0.9 , ℎ3 = 0.7. with other parameter values given in Table 2. 

 
Off course, straight forward computations 

show that the data set used in the last figure 

satisfy the stability conditions of the trivial 

equilibrium point. 

 

6 DISCUSSIONS AND CONCLUSIONS 

 

In this work, we modeled the effect of prey 

refuge, population harvesting and infection 

disease on modified the Leslie-Gower prey-

predator model and Holling type II functional 

response. It is assumed that the disease is 

transmitted through two ways, contact and an 

external factor, the boundedness of all solution 

of the system(2)are discussed. The existences of 

each positive equilibrium points are investigated. 

Both  local as well as global stability analyses 

for our system are performed. Moreover, in 

order to confirm our analytical results and 

discussing the role of parameters used for prey 

refuge, harvesting rate, infectious rate on the 

dynamics of system (2), numerical simulations 

are used for a biologically feasible set of 

parameters. For the set of data given in Table 2, 

it is observed that: 

1. System (2) persists and the solution initiate at 

any point in the 
3. RInt  approaches 

asymptotically to the positive equilibrium 

point𝐸4 = (7.9656,2.5986,1.2390) for all 

values of parameters as given in Table 2   

2.  if we increase  the harvesting rates on 

predator  from  {ℎ2 = 0.5, ℎ3 = 0.6}   to {ℎ2 =
0.9, ℎ3 = 0.7}   with the rest of parameter kept 

as  in Table 2  leads to extinction in the predator 

and prey will be persist,  the solution of the 

system (2) approaches asymptotically to axial 

equilibrium point 𝐸2 = (53.3333,0,0)  

3. Decreasing prey refuge rate from 0.5 to 0.1 

with the rest of parameters kept fixed as given in 

Table 2, causes extinction in the prey and then 

the solution of the system (2) approaches 

asymptotically to the prey free equilibrium point 

𝐸3 = (0, 1.6032, 0.5501)  , thus the system loses 

the persistence.  

4. Finally, if we increase all population 

harvesting rates from ℎ1 = 0.5, ℎ2 = 0.5, ℎ3 =
0.6    to  

ℎ1 = 0.9, ℎ2 = 0.9, ℎ3 = 0.7    and decreasing 

prey refuge rate from 𝑚 = 0.5  to 𝑚 = 0.1 with 

rest of the parameters kept as Table 2, causes 

extinction in both prey and predator species and 

system (2) approaches asymptotically to the 

travail equilibrium point𝑡𝐸1 = (0,0,0). 
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Consequently, the harvesting rate and prey 

refuge rate play a vital role in the dynamics of 

the system (2). In fact, they represent the 

bifurcation parameters of the system (2). 
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