KINETIC PARAMETERS OF PHENOL BIODEGRADATION WITH DIFFERENT MICROORGANISMS: A REVIEW

  • NASHWAN SHAWKAT MIZZOURI Dept. of Civil Engineering, University of Duhok, Kurdistan Region-Iraq
Keywords: kinetic parameters, Phenol, different microorganisms, biological treatment

Abstract

Most industries release wastewater contains high concentrations of phenol which is toxic and contaminating the environment. Biological treatments are preferable for the phenolic compounds treatment. This review aims to investigate the impacts of temperatures, pH, and concentration of substrate on the phenolic compounds biodegradation, to compare the kinetic parameters of different microorganisms, and to discuss the different between the kinetic parameters of aerobic and anaerobic treatment. The review showed that most of the phenol biodegrading bacteria are P. Putida species and mixed cultures but P. Putida has a better adaptation to phenol biodegradation. The values of µmax and Ks in anaerobic process are smaller than the values attained in aerobic process. The optimum temperature to acclimatize bacteria to the phenol substrate is 30 ºC while the optimum pH condition is between 6.5 and 7.5. As the phenol concentration was increased, there was an increase in the values of the Ks and even when concentration is low; phenols have a significant inhibitory impact on (μ). The values of Ki for phenol degradation for P. putida species were higher than the values of Ki of mixed cultures. The highest Ki value for the phenol degrading among P.Putida species was 1185.8 mg/L and the highest Ki value among mixed cultures was 648.1 mg/L and the highest Ki value among the other species was 2434.7 mg/L.

Downloads

Download data is not yet available.

References

 Annadurai, G., Juang, R.-S., & Lee, D.-J. (2002). Microbiological degradation of phenol using mixed liquors of Pseudomonas putida and activated sludge. Waste Management, 22(7), 703-710.
 Arutchelvan, V., Kanakasabai, V., Elangovan, R., Nagarajan, S., & Muralikrishnan, V. (2006). Kinetics of high strength phenol degradation using Bacillus brevis. Journal of hazardous materials, 129(1), 216-222.
 Bajaj, M., Gallert, C., & Winter, J. (2009). Phenol degradation kinetics of an aerobic mixed culture. Biochemical Engineering Journal, 46(2), 205-209.
 Bodalo, A., Gomez, J., Gomez, M., Leon, G., Hidalgo, A., & Ruiz, M. (2008). Phenol removal from water by hybrid processes: study of the membrane process step. Desalination, 223(1-3), 323-329.
 Chen, W.-M., Chang, J.-S., Wu, C.-H., & Chang, S.-C. (2004). Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis. Research in Microbiology, 155(8), 672-680.
 Chung, T.-P., Tseng, H.-Y., & Juang, R.-S. (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochemistry, 38(10), 1497-1507.
 Edalatmanesh, M., Mehrvar, M., & Dhib, R. (2008). Optimization of phenol degradation in a combined photochemical–biological wastewater treatment system. Chemical Engineering Research and Design, 86(11), 1243-1252.
 El-Naas, M., & Makhlouf, S. (2008). A spouted bed bioreactor for the biodegradation of phenols in refinery wastewater. Journal of Biotechnology, 136, S650.
 El-Naas, M. H., Al-Muhtaseb, S. A., & Makhlouf, S. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. Journal of hazardous materials, 164(2), 720-725.
 El Hajjouji, H., Bailly, J.-R., Winterton, P., Merlina, G., Revel, J.-C., & Hafidi, M. (2008). Chemical and spectroscopic analysis of olive mill waste water during a biological treatment. Bioresource Technology, 99(11), 4958-4965.
 Ellis, L. B., Roe, D., & Wackett, L. P. (2006). The University of Minnesota biocatalysis/biodegradation database: the first decade. Nucleic Acids Research, 34(suppl 1), D517-D521.
 Etzensperger, M., Thoma, S., Petrozzi, S., & Dunn, I. (1989). Phenol degradation in a three-phase biofilm fluidized sand bed reactor. Bioprocess and Biosystems Engineering, 4(4), 175-181.
 Fang, H., & Zhou, G. (1997). Denitrification of phenolic wastewater by immobilized sludge. Environmental technology, 18(8), 827-834.
 Firozjaee, T. T., Najafpour, G. D., Khavarpour, M., Bakhshi, Z., Pishgar, R., & Mousavi, N. (2011). Phenol biodegradation kinetics in an anaerobic batch reactor. Iranian Journal of Energy and Environment, 2, 68-73.
 Freire, D., Cammarota, M., & Sant'Anna, G. (2001). Biological treatment of oil field wastewater in a sequencing batch reactor. Environmental Technology, 22(10), 1125-1135.
 Grady, C. L., Smets, B. F., & Barbeau, D. S. (1996). Variability in kinetic parameter estimates: a review of possible causes and a proposed terminology. Water Research, 30(3), 742-748.
 Grady Jr, C. L., Daigger, G. T., Love, N. G., & Filipe, C. D. (2011). Biological wastewater treatment: CRC press.
 Hao, O. J., Kim, M. H., Seagren, E. A., & Kim, H. (2002). Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere, 46(6), 797-807.
 Juang, R.-S., & Tsai, S.-Y. (2006a). Enhanced biodegradation of mixed phenol and sodium salicylate by Pseudomonas putida in membrane contactors. Water Research, 40(19), 3517-3526.
 Juang, R.-S., & Tsai, S.-Y. (2006b). Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochemical Engineering Journal, 31(2), 133-140.
 Juang, R.-S., & Wu, C.-Y. (2007). Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contactors. Chemosphere, 66(1), 191-198.
 Kargi, F., Uygur, A., & Baskaya, H. S. (2005). para-Chlorophenol inhibition on COD, nitrogen and phosphate removal from synthetic wastewater in a sequencing batch reactor. Bioresource Technology, 96(15), 1696-1702.
 Keith, L., & Telliard, W. (1979). ES&T special report: priority pollutants: Ia perspective view. Environmental science & technology, 13(4), 416-423.
 Kumar, A., Kumar, S., & Kumar, S. (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22(2), 151-159.
 Kumaran, P., & Paruchuri, Y. (1997). Kinetics of phenol biotransformation. Water Research, 31(1), 11-22.
 Léonard, D., & Lindley, N. D. (1999). Growth of Ralstonia eutropha on inhibitory concentrations of phenol: diminished growth can be attributed to hydrophobic perturbation of phenol hydroxylase activity. Enzyme and Microbial Technology, 25(3), 271-277.
 Li, Y., Li, J., Wang, C., & Wang, P. (2010). Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresource Technology, 101(17), 6740-6744.
 Marotta, E., Ceriani, E., Schiorlin, M., Ceretta, C., & Paradisi, C. (2012). Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor. Water Research, 46(19), 6239-6246.
 Marrot, B., Barrios-Martinez, A., Moulin, P., & Roche, N. (2006). Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochemical Engineering Journal, 30(2), 174-183.
 Martín, M. B., Pérez, J. S., Fernández, F. A., Sánchez, J. G., López, J. C., & Rodríguez, S. M. (2008). A kinetics study on the biodegradation of synthetic wastewater simulating effluent from an advanced oxidation process using Pseudomonas putida CECT 324. Journal of hazardous materials, 151(2), 780-788.
 Melo, J., Kholi, S., Patwardhan, A., & D’Souza, S. (2005). Effect of oxygen transfer limitations in phenol biodegradation. Process Biochemistry, 40(2), 625-628.
 Metcalf, E. I., 2003. Wastewater Engineering: Treatment and Reuse: McGraw-Hill, Boston.
 Mizzouri, N. S., & Shaaban, M. G. (2013). Kinetic and hydrodynamic assessment of an aerobic purification system for petroleum refinery wastewater treatment in a continuous regime. International Biodeterioration & Biodegradation, 83, 1-9.
 Monteiro, Á. A., Boaventura, R. A., & Rodrigues, A. r. E. (2000). Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochemical Engineering Journal, 6(1), 45-49.
 Mordocco, A., Kuek, C., & Jenkins, R. (1999). Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme and Microbial Technology, 25(6), 530-536.
 Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40(3), 1233-1239.
 Okaygun, M., 1991. Kinetics of phenol biodegradation. PhD thesis submitted to Texas A&M University.

 Pai, S.-L., Hsu, Y.-L., Chong, N.-M., Sheu, C.-S., & Chen, C.-H. (1995). Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate. Bioresource Technology, 51(1), 37-42.
 Park, K. (1999). Biodegradation of the Fuel Oxygenate, Methyl Tert-butyl Ether (IMTBE), and Treatment of MTBE Contaminated Ground Water in Laboratory Scale Reactors.
 Pazarlioğlu, N. K., & Telefoncu, A. (2005). Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry, 40(5), 1807-1814.
 Peyton, B. M., Wilson, T., & Yonge, D. R. (2002). Kinetics of phenol biodegradation in high salt solutions. Water Research, 36(19), 4811-4820.
 Polymenakou, P. N., & Stephanou, E. G. (2005). Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation, 16(5), 403-413.
 Powell, E. (1967). Microbial physiology and continuous culture.
 Sa, C., & Boaventura, R. (2001). Biodegradation of phenol by Pseudomonas putida DSM 548 in a trickling bed reactor. Biochemical Engineering Journal, 9(3), 211-219.
 Shpiner, R., Liu, G., & Stuckey, D. (2009). Treatment of oilfield produced water by waste stabilization ponds: Biodegradation of petroleum-derived materials. Bioresource Technology, 100(24), 6229-6235.
 Suidan, M. T., Najm, I. N., Pfeffer, J. T., & Wang, Y. T. (1988). Anaerobic biodegradation of phenols inhibition kinetics and system stability. Journal of environmental engineering, 114(6), 1359-1376.
 Tabak, H., & Grady, L. (1990). Biodegradation Kinetics of Substituted Phenolics: Demonstrations of a Protocol Based on Electrolytic Respirometry. Water Research WATRAG, 24(7).
 Tsai, S.-Y., & Juang, R.-S. (2006). Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365. Journal of hazardous materials, 138(1), 125-132.
 Vasiliadou, I., Tziotzios, G., & Vayenas, D. (2008). A kinetic study of combined aerobic biological phenol and nitrate removal in batch suspended growth cultures. International Biodeterioration & Biodegradation, 61(3), 261-271.
 Viero, A. F., de Melo, T. M., Torres, A. P. R., Ferreira, N. R., Sant’Anna Jr, G. L., Borges, C. P., & Santiago, V. M. (2008). The effects of long-term feeding of high organic loading in a submerged membrane bioreactor treating oil refinery wastewater. Journal of Membrane Science, 319(1), 223-230.
 Vinod, A. V., & Reddy, G. V. (2006). Mass transfer correlation for phenol biodegradation in a fluidized bed bioreactor. Journal of hazardous materials, 136(3), 727-734.
 Wang, S.-J., & Loh, K.-C. (1999). Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme and Microbial Technology, 25(3), 177-184.
 Yan, J., Jianping, W., Hongmei, L., Suliang, Y., & Zongding, H. (2005). The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochemical Engineering Journal, 24(3), 243-247.
 Yavuz, H., & Celebi, S. (2004). Influence of magnetic field on the kinetics of activated sludge. Environmental Technology, 25(1), 7-13.
 Zhang, F., Li, M., Li, W., Feng, C., Jin, Y., Guo, X., & Cui, J. (2011). Degradation of phenol by a combined independent photocatalytic and electrochemical process. Chemical engineering journal, 175, 349-355.
Published
2017-07-28
How to Cite
MIZZOURI, N. S. (2017). KINETIC PARAMETERS OF PHENOL BIODEGRADATION WITH DIFFERENT MICROORGANISMS: A REVIEW. Journal of Duhok University, 20(1), 196-206. https://doi.org/10.26682/sjuod.2017.20.1.18