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ABSTRACT

The nature and orientation of underlying Late Precambrian basement structures, and their relationships
to the seismic distribution and surface linear structures has provided a basis for studying the basement fault
reactivation in the Zakho — Silopi region. This border region between Iraqi Kurdistan and Turkey is located
in the north-eastern boundary of the Arabian plate and covers some parts of the Zagros fold-thrust belt as
well as the high folded and foothill zones of Iraq. The Zakho — Silopi region is characterized by moderate-
sized earthquakes of shallow-focus that caused mostly by the neotectonic reactivation of Late Precambrian
thrust and strike-slip basement faults due to the on-going active continental collision between Arabia and
Eurasia. Four potential NE- and NW-trending seismic lineaments were identified, based on the epicentral
alignments of major earthquake and the orientation of nodal fault planes, to be the most seismically active
basement faults in the Zakho - Silopi region. Any potential for the future damaging earthquakes throughout
this region will be more likely associated with the reactivation of the basement faults along these active
seismic lineaments. Therefore, a detailed seismic hazard assessment is recommended for the major cities and
urban localities. The present-day stress-field orientation inferred from the inversion of fault plane solutions
and lineament analysis indicates that the Zakho — Silopi region is undergoing a continuous state of nearly N-S
(NO5°E) compression. The trend analysis of lineament patterns and seismic lineaments reveals three
dominant basement fault trends in the Zakho - Silopi region; roughly N-S, NE-SW, and NW-SE. These
basement faults were probably initiated in Late Precambrian as normal faults, and subsequently inverted
into thrust faults with a significant strike-slip component, and reactivated continuously from Late Cretaceous
to present-day.
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INTRODUCTION sedimentary section above the Late Precambrian

basement (Doski and McClay, 2011). The exposed

t least eleven major earthquakes, with

magnitudes 4 to 5.5, occurred in the
Zakho — Silopi region from November 25, 1950 to
July 13, 2013. The seismicity and basement fault
reactivation of this border region between lIraqi
Kurdistan and Turkey so far have not received the
extensive attention. The Zakho — Silopi region is
located in the north-eastern boundary of the
Arabian plate, between latitudes 36° 57° N - 37°
16" N and longitudes 42° 20" E - 42° 46" E, and
covers some parts of the Zagros fold-thrust belt as
well as the high folded and foothill zones of Iraq
(Fig. 1). The Dohuk region is characterized
generally by WNW-trending detachment folds that
involve about 8 - 9 km of Phanerozoic

stratigraphic section of the Zakho — Silopi region
consists of the Pila Spi, Lower Fars, Upper Fars
and Lower Bakhtiari formations with Quaternary
sediments (Fig. 2). The topography of this region
is characterized by anticlinal ridges and synclinal
valleys with an elevation ranges from 400 m to
over 1100 m above sea level (Fig. 3). The
objective of this study is to investigate the nature
and orientation of underlying Late Precambrian
basement structures and their relationships to the
seismicity alignments and surface linear structures
in order to evaluate the basement fault reactivation
in the Zakho — Silopi region.
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Fig.(1): Tectonic map showing the location of the Zakho - Silopi region (tectonic divisions from Alavi, 2004;
Jassim and Goff, 2006).
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Fig. (2): Geoloéical map of the Zakho — Silopi region (modified from Doski and McClay, 2011).

14



Journal of University of Duhok., Vol. 20, No.1 (Agri. and Vet. Sciences), Pp 13-30, 2017
DOI: https://doi.org/10.26682/avuod.2017.20.1.3

-

e S -

Fig. (3): Drainage network mép of the Zakho

There have been no specific studies done on
the neotectonics of this border region. Four
lineament sets, trending NW-SE, NE-SW, N-S
and E-W were visually interpreted from the
Landsat MSS images by Numan and Bakose
(1997) in the western and southern deserts of Iraq,
and the orientations of these lineaments were

controlled by the basement structures.  Al-
Daghastani and Daood (2005) studied the
relationship between seismic activities and

tectonic structures in the Nineveh governorate
(northern Iraq) using seismic data integrated with
the analysis of geological and geomorphological
features from Landsat TM images, and concluded
that most of the major lineaments are related to the
subsurface basement faults. Alridha et al. (2012)
studied the seismicity and seismotectonics of the
Altunkopri dam (northern Iraq), and the results
show a good match between earthquake epicentres
and the three predominant sets of lineaments (NE-
SW, NW-SE and E-W), as well as concluded that
surface lineaments are directly related to the
subsurface basement faults that re-activated due to
the continued northerly and north-easterly
movements of the Arabian plate.

Y N /
N v A/ CL=500m
(ZN h Q’/ e

STIE{)i reion (derived from ASTER 30 m GDEM).

Four major lineament sets, trending N-S, NE-
SW, NW-SE and E-W, were automatically
extracted from Landsat-7 images by Thannoun
(2013) in north-west of Mosul (northern Irag), and
interpreted that these four linear sets represent
subsurface fracture zones that reactivated under
the N-S compression, as well as field data
indicates that the orientations of NE- and NW-
trending sets coincide with shear fracture trends,
whereas the N- and E-trending sets represent
extension fractures in this region. Abdulnaby et
al. (2014a and 2014b) studied the seismotectonic
activity in northern Iraq and surrounding regions,
and calculated the present-day stress patterns
using formal inversion of fault plane solutions.
The results show that the area is characterized by
the dominance of strike-slip and thrust faulting
regimes, with fault planes mostly trending in the
N-S, NE-SW and E-W directions. Finally, active
W-striking thrust and NW-trending strike-slip
faults were documented in the Shaikhan area
(Kurdistan) by Doski and Mohammad (2016).

Tectonic setting and seismicity

The Zagros orogen is one of the biggest
regions of convergent deformation on Earth (Allen
et al., 2004). It is a doubly-vergent asymmetric
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orogenic belt that resulted from the closure of the
Neo-Tethys oceanic realm (Alavi, 1994). It was
subdivided into three major tectonic units (Fig. 1):
the Uremiah-Dokhtar magmatic assemblage, the
Zagros imbricate zone and the Zagros fold-thrust
belt (Alavi, 2004). The Zagros fold-thrust belt is
characterized mainly by asymmetrical, overturned,
doubly plunging, NW-trending anticlines, with
largely NE-dipping, SW-verging thrusts (Alavi,
2007). The structure of Kurdistan is developed
during the formation of the Zagros belt by the
continental collision of Arabia with Eurasia
followed the final Eocene closure of the Neo-
Tethys Ocean (Numan, 1997; Sharland et al. 2001,
Doski and McClay, 2011).

The Zagros belt in Irag was divided into 3
main tectonic zones (Fig. 2): stable shelf, unstable
shelf and suture zone (Jassim and Goff 2006). The
unstable shelf of Iraq is characterized mainly by
E-W “Taurus” and NW-SE “Zagros” trending fold
structures, with an increase in folding intensity
toward the north or northeast. The high folded
zone has an elevated basement topography (~ 8
km), and characterised by harmonic fold structures
with Mesozoic sequences in their cores, and
Cenozoic formations on their flanks (Jassim and
Buday, 2006b). The foothill zone has the deepest
Late Precambrian basement in Iraq (~ 13 km) with
very thick Neogene - Quaternary sediments (~ 3
km thick), and characterised by anticlines with
cores of Palaeogene or Cretaceous sequences and
synclines filled with Neogene - Quaternary
sediments (Jassim and Buday, 2006b).

The Arabian basement was formed by terrane
accretion along the continental margins in Late
Precambrian (Sharland et al., 2001; Jassim, 2006).
The basement depth ranges from zero on the
Arabian shield to nearly 15 km in the
Mesopotamian basin (Seber et al., 2000). The
Triassic-Jurassic rifting and extensional tectonic
regime was started at the opening of the Neo-
Tethys Ocean and with the separation of the
Iranian and Turkish plates from the Arabian plate,
followed by the Cretaceous compressive tectonic
regime due to the north and north-eastward
subduction of the Neo-Tethyan oceanic crust
beneath the Turkish and Iranian plates, leading to
the reactivation of both strike-slip (wrench
tectonic regimes) and dip-slip reverse (inversion)
movements along the pre-existing listric normal
faults in the basement, and continued until the

final closure of the Neo-Tethys Ocean and the
continental collision of the Arabian passive
margin with the active margins of the Turkish and
Iranian plates from the Late Eocene onwards
(Numan, 1997, 2000 and 2001). The strongest
orogenic movements and the most effective
folding and thrusting in the border folds of Turkey
occurred during the Late Miocene time (Ketin,
1966), and still active throughout the eastern
Turkey (Okay, 2008).

The Zagros is a seismically active orogen
(Jackson et al., 1981; Hessami, 2002). The
majority of earthquake events found near the
detachment surface between the Late Precambrian
basement and Phanerozoic sedimentary rocks, at a
depth range (5 - 15 km), with thrust and strike-slip
faulting focal mechanisms (Mostafazadeh et al.,
2000). Most of the earthquakes in the Zagros belt
are caused by the reactivation of basement faults
(Jackson et al. 1981). Iraq is characterized by
moderate- to strong-magnitude earthquakes with
relatively shallow focal depths, and most of the
fault plane solutions show thrust and strike-slip
faulting regimes (Alsinawi and Issa, 1986; Fahmi
et al., 1986; Jasim, 2013). However, the
seismicity and tectonic setting of the Kurdistan
region reflects the present-day reactivation of
steeply dipping basement faults (Alsinawi and
Issa, 1986; Alsinawi, 2002; Doski and
Mohammad, 2016).

MATERIALS AND METHODS

Datasets

There are some random and systematic
uncertainties associated with determining the
exact epicentre location, depth and magnitude of
earthquakes, such as the arrival time picks
(Bondar et al.,, 2004; Dawson and Tregoning,
2007; Husen and Hardebeck, 2010; Bernardi et al.,
2014; Gomez-Capera et al., 2015). Therefore; it’s
really important to use the best earthquake
catalogues based on the tectonic setting of the
research area. The earthquake data used for this
study were obtained from the Turkish AFAD-
DDA catalogue, the Turkish BOUN KOERI
Regional Earthquake (BKRE) - Tsunami
Monitoring Center (TMC), the European -
Mediterranean Seismological Centre (EMSC), and
the Iranian International Institute of Earthquake
Engineering and Seismology (IIEES) as listed in
Table 1.
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Table (1): List of earthquakes with magnitudes greater than 3.0 in the Zakho — Silopi region.

Date Time (UTC) Latitude Longitude Depth (Km) Magnitude Magnitude type  Date source
1950.11.25 17:18:55 37.07 4248 33 49 Mw BKRE-TMC
1982.01.01 19:30:24 37.24 42.61 10 4.8 Mb BKRE-TMC
1991.01.30  19:42:54 37.11 42.65 28 4.7 Mb BKRE-TMC
1991.02.02  6:54:43 372 42.56 26 4.7 Mb BKRE-TMC
1991.02.02  9:09:01 37.17 42.59 21 49 Mb BKRE-TMC
1997.04.20 21:17:31 37.011  42.646 33 43 Md IIEES
2000.10.24  10:52:52 37.11 4243 10 39 Md BKRE-TMC
2004.02.01 22:11:54 37.017  42.406 10 3.7 Md IEES
2004.05.10  20:51:46 37.11 42.56 15 33 Md BKRE-TMC
2006.02.02  5:12:33 37.0117 42.5045 323 3.8 Md BKRE-TMC
2006.03.31  6:55:54 372663 42671 8.3 34 Md BKRE-TMC
2007.01.16  0:59:35 37.22 42.39 5 3.3 Md EMSC
2007.05.08 18:40:17 37.2665 42.3928 5 35 Md BKRE-TMC
2007.07.26  12:11:00 37.2365 42.7577 7.16 34 Md AFAD-DDA
2007.09.22  8:12:34 3715 42.61 14 3.9 Ml IIEES
2008.01.19  4:46:42 37.2 42.75 7 34 Ml EMSC
2010.01.04  7:22:35 37.2655 42.7342 5.8 3.3 Md BKRE-TMC
2010.05.06  1:18:00 37.188  42.7183 13.64 3.1 Md AFAD-DDA
2011.05.29  2:02:29 37.2168 42.5602 11.25 4.6 Ml AFAD-DDA
2011.06.27 17:28:56 37.1393 42.4888 49 345 Md BKRE-TMC
2011.07.01  0:47:00 37.1898 424522 7.02 3.2 Md AFAD-DDA
2011.11.08  21:46:09 37.2803  42.4262 79 3.1 Md BKRE-TMC
2011.12.04  21:56:33 37.1355 423622 7.2 3.2 Md BKRE-TMC
2012.05.13  15:34:00 37257  42.7402 7 32 Ml AFAD-DDA
2012.06.09  15:16:00 372613 42.6638 5.28 3.2 Ml AFAD-DDA
2012.06.14  6:25:00 37.2422 425342 10.52 3.7 Ml AFAD-DDA
2012.06.14  6:38:50 37.2795 42.4408 6.2 3.1 Ml BKRE-TMC
2012.06.14  8:50:01 37.2242  42.4355 11.06 4 Ml AFAD-DDA
2012.06.14  8:52:51 37.1572  42.4437 11.68 55 Ml AFAD-DDA
2012.06.14  11:36:33 372703  42.3865 S 3.2 Ml BKRE-TMC
2012.06.14  17:17:00 372733 42.5633 13.2 34 Ml AFAD-DDA
2012.06.14  22:37:22 37.2797 42401 5 345 Ml BKRE-TMC
2012.06.15  0:20:00 37231  42.5283 16.94 3.3 Ml AFAD-DDA
2012.06.16  2:10:07 37.25 42417 5 3.9 Ml BKRE-TMC
2012.06.16  2:44:00 37.2473 42452 7.03 33 Ml AFAD-DDA
2012.06.16  2:48:14 37.2097 42.4585 8.69 42 Ml AFAD-DDA
2012.06.16  3:12:00 37.2475 424725 8.8 3.7 Ml AFAD-DDA
2012.06.16  3:22:00 37238 4246 5.06 3.8 Ml AFAD-DDA
2012.06.16  3:50:00 37.1648  42.4675 6.55 3.2 Ml AFAD-DDA
2012.06.19  16:13:00 37.2583 42.5268 13.48 3.2 Ml AFAD-DDA
2012.06.21  22:09:30 37.2852 42.363 5 3.2 Ml BKRE-TMC
2012.06.22  23:43:00 37.2487 42.5838 6.49 3:5 Ml AFAD-DDA
2012.07.08  7:18:22 372375 424412 8.5 3.1 Ml BKRE-TMC
2012.07.26  19:27:00 37.2522 425145 5.21 3.2 Ml AFAD-DDA
2012.11.20  7:19:23 37.2863 4261 10.3 3.6 Ml BKRE-TMC
2013.06.04  23:43:00 37.2028 42.4867 6.81 3.2 Ml AFAD-DDA
2013.07.08 22:55:04 37.0835 424707 16.5 3.3 Ml BKRE-TMC
2013.07.10  9:44:00 37.1438 424322 7.07 34 Ml AFAD-DDA
2013.07.10  12:25:34 37.1055 42.4203 5 34 Ml BKRE-TMC
2013.07.13  17:31:48 37.0747 42415 8.8 44 Mw BKRE-TMC
2013.07.13  18:02:35 37.2063 424617 7.8 37 MI BKRE-TMC
2013.07.13  18:39:00 37.1287 42.4308 9.89 33 Ml AFAD-DDA
2013.07.13  19:19:00 37.155 424293 12.73 32 Ml AFAD-DDA
2013.09.25 11:49:00 37.2555 42.5268 6.89 3.2 Ml AFAD-DDA
2014.07.18  16:24:00 37.1033  42.4346 6.68 3.2 Ml AFAD-DDA
2015.01.11  1:11:35 37.2372  42.4783 5.3 3.8 Ml BKRE-TMC
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In the last 65 years, nearly 11 earthquakes of
M4.0 to 5.5, and about 68 earthquakes of M3.0 to
4.0 have struck the Zakho — Silopi region (Table
1). In general, all earthquakes are shallow (depth
< 33 km) and of moderate magnitude (magnitude
< 5.5) (Fig. 4 and Table 1). Historically, there
have been no earthquakes in this region
(Ambraseys et al. 1994). The AFAD-DDA
catalogue provides fault plane solutions for the 4
biggest events in the Zakho — Silopi region, with
magnitudes of 4.0 — 5.5, and focal depths at 8.69 —
11.68 km (Fig. 5). These focal mechanisms were
created by the FOCMEC program using the P-
wave first motion data (Snoke et al., 1984). The
FOCMEC program provides more realistic
solutions even if there is a poor data or limited
number of stations (Sasaki and Kaieda, 2002;
Snoke 2003; Oros, 2013). The QuickBird images
with 0.6 m resolution, dated 22 June 2005, were
used for mapping of lineament patterns in the
Zakho — Silopi region using the ArcGIS software.
This data were provided by the Kurdistan Region
Statistics Office (KRSO).

Stress tensor inversion analysis

Focal mechanisms are the best kinematic
indicators for the active subsurface faults (Zoback,
2007; Yang et al., 2012). The moment tensor
inversion was applied to estimate the directions of
recent principal stresses from focal mechanisms of
major earthquakes in the Zakho — Silopi region
using the rotational optimization method of
Delvaux and Sperner (2003) (Win-Tensor
program, version 5.8.4). The state of stress is
defined by the directions of the main stresses (c1,
62, and 03), the horizontal stresses and the stress
ratio (R = (62 — 63)/(c1 — 53)).

Lineament analysis

The analysis of lineament patterns has
important implications for seismological and
neotectonic studies (Stefouli et al., 1996; La
Pointe et al., 1999). Lineaments can be defined as
natural linear to curvilinear features that extend
for 1 mile or more (Lattman, 1958). Lineaments
on satellite images may reflect a number of 2-
dimensional features, such as fault traces, fracture
zones, foliations, lithological boundaries and
drainage systems, with little or no information on
feature types, their dips or depths (Sander, 2007,
Holland, 2012). Lineaments probably represent
the surface expression of subsurface structures
(Singha and Gupta 2010). The methodology of
interpretation involves the identification and

mapping of lineaments, based on the field
experiences, from QuickBird images using the
ArcMap.

RESULTS
Stress inversion

The identification of fault and auxiliary planes
in the 4 earthquake focal mechanism solutions is
mainly dependent on the tectonic setting of the
Zakho — Silopi region (Fig. 5). Figure 6 and Table
2 show the directions of the principal stresses, the
horizontal stresses and the stress ratio were
inverted from the fault plane solutions of largest
earthquakes using the rotational optimization
method. The moment tensor solutions (no. 2 and
3) show thrust faults with two nodal planes,
dipping towards north-east and south-west (Fig.
5). In this case, earthquakes can be confidently
related to the NE-dipping planes, as this is
consistent with under-thrusting of Arabia beneath
the Eurasian plate (Allen et al. 2013). The focal
mechanisms (no. 1 and 4) correspond to strike -
slip faults, with orthogonal nodal planes that
oriented NE-SW and NW-SE (Fig. 5). The steeply
dipping planes with NW-SE strikes are considered
as the probable dextral strike-slip fault planes.
These NW-striking dextral strike-slip fault planes
are parallel to the Main Recent Fault that trending
NW-SE and forming the NE border of the Arabian
plate, as well as it accommodates the right-lateral
strike-slip motion of the N-S Arabia-Eurasia
convergence (Talebian and Jackson, 2002;
Authemayou et al. 2009).

The present-day orientation of stress calculated
from the inversion of fault plane solutions (no. 1
and 4) show dextral strike-slip faulting regime,
with ol plunging (06° towards 012°) and (16°
towards 341°) respectively, whereas the o3
trending 03°/282° and 07°/073° respectively (Fig.
6 and Table 2). The value of the stress ratio (R =
0.75) suggests that the magnitude of the
intermediate principle stress (c2) is close to the
minimum stress (o3) (Presti et al., 2013). On the
other hand, the state of stress orientation derived
from the mechanism solutions (no. 2 and 3) show
compressional  deformation  (thrust faulting
regime), with ol trending 11°/217° and 00°/232°
respectively, while the 63 plunging (79° towards
040°) and (89° towards 332°) respectively (Fig. 6
and Table 2). The stress ratio (R = 0.5) indicates
unequal magnitudes of the main stresses
(Witthuhn-Rolf, 1997).
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Fig.(4): Seismicity map of the Zakho — Silopi region showing the epicenter locations, magnitudes, focal depths, and
focal mechanisms of largest earthquakes (see Table 1 for data sources).

Focal mechanism no. 1

Date: 2011.05.29; Time (UTC): 02:02:29
Latitude: 37.2168° N; Longitude: 42.5602° E
Depth (Km): 11.25; Magnitude: MI=4.6

Faulting regime: Dextral strike -slip fault
Fault plane: Strike = 327°, Dip = 86°, Rake (slip) = 168°
Auxiliary plane: Strike = 058°; Dip = 78°; Rake (slip) =4 °

Focal mechanism no. 2

Date: 2012.06.14; Time (UTC): 08:50:01
Latitude: 37.2242° N: Longitude: 42.4355°E
Depth (Km): 11.06; Magnitude: MI=4.0

Faulting regime: Thrust
Fault plane: Strike = 310°; Dip = 34°; Rake (slip) = 82°
Auxiliary plane: Strike = 139°; Dip = 56°; Rake (slip) = 95°

N
N
N Focal mechanism no. 3
Date: 2012.06.14; Time (UTC): 08:52:51
Latitude: 37.1572° N; Longitude: 42.4437°E
Depth (Km): 11.68; Magnitude: MIl=5.5
Faulting regime: Thrust
Fault plane: Strike = 329°; Dip = 44°; Rake (slip) = 79°
Auxiliary plane: Strike = 165°; Dip =47°: Rake (slip) = 101°
lN

Focal mechanism no. 4

Date: 2012.06.16; Time (UTC): 02:48:14
Latitude: 37.2097° N: Longitude: 42.4585°E
Depth (Km): 8.69: Magnitude: MIl=4.2

Faulting regime: Dextral strike -slip fault
Fault plane: Strike = 1187; Dip = 80°; Rake (slip) = - 168°
Auxiliary plane: Strike = 026°; Dip = 78°; Rake (slip) = - 10°
- Compression [:’ Tensile FP: Fault plane AP: Auxiliary plane
Fig.(5): Focal mechanisms of largest earthquakes in the Zakho — Silopi region (from the Turkish AFAD-DDA
catalogue).
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Fig.(6): Formal stress inversion of strongest earthquakes in the Zakho — Silopi region by the rotational optimization
method (Win-Tensor program).

Table (2): Stress tensor inversion results of the rotational optimization method for the earthquake focal mechanisms
in the Zakho — Silopi region.

Moment stress axes

Map parameters

Maximum Minimum

Focal mechanism number A . Stress
horizontal horizontal : 2
ol a2 a3 : : ratio Stress regime
stress axis stress axis ®)
(SH) (Sh)
1 06°/012° 84°/169° 03°/282° 012° 102° 0.75  Dextral strike-slip
2 11°/217° 01°/307° 79°/040° 040° 130° 0.50 Thrust
3 00°/232° 00°/142° 89°/332° 059° 149° 0.50 Thrust
4 16°/341° 73°/187° 07°/073° 163° 073° 0.75  Dextral strike-slip
Average orientation 02°/005° 32°/274° 58°/099° - - 0.38 -




Journal of University of Duhok., Vol. 20, No.1 (Agri. and Vet. Sciences), Pp 13-30, 2017
DOI: https://doi.org/10.26682/avuod.2017.20.1.3

The average stress orientations obtained from
the fault plane solutions of the 4 major
earthquakes show that the present-day direction of
(o) in the Zakho — Silopi region is a nearly N-S
trend (NO5°E) with slightly horizontal (plunge =
2°), while the minimum compressive stress (63) is
a nearly E-W orientation (S81°E) and plunges at
(58°) (Fig. 6 and Table 2). These results are
consistent with the tectonic setting of this region.
However, the accuracy of the calculated stress
orientations at any region is strongly depends on
the appropriate choice of the available focal
mechanisms (Medina and EI Alami, 2006).
Lineament patterns

The visual interpreted map of lineaments from
0.6 m resolution QuickBird images of the Zakho —
Silopi region was presented in Figure 7.
Altogether 465 lineaments were mapped and
characterized on QuickBird images based on the
linear morphotectonic features, such as fracture
zone traces, fault escarpments, linear ridges and
valleys, linear cliff faces, linear rivers and
drainage networks, as well as linear traces of
vegetative covers. Lineaments range in length
from 1.8 km to 17.2 km. The lineament density
map shows that the distribution of lineaments is
not homogeneous within the study area because
the majority of lineaments occur within the
competent beds of the Eocene, Miocene and
Pliocene sequences (Figs. 2, 7 and 8).

The analysis of lineament orientations in the
Zakho — Silopi region reveals three distinct sets;
NO5°E, NE-SW, and NW-SE (Fig. 9). These three
dominant sets are consistent with previous
lineament studies, such as Numan and Bakose
(1997), Alridha et al. (2012), Thannoun (2013).
Fractures are the most common result of brittle
deformation of rocks that formed by the tectonic
stresses (Hancock, 1985; Pollard and Aydin, 1988;
Mandl, 2005). The stress fields and fracture types
at the time of fracturing can be determined from
the geometry of fracture surfaces and bedding
planes (Stearns, 1968; Hancock, 1985 and 1991;
Dunne and Hancock, 1994) (Fig. 10). Following
the neotectonic stress analysis of brittle tectonic
structures presented by Hancock (1985 and 1991),
the orientation of the three dominant lineament
sets suggests that the present-day direction of
(o1) in the Zakho - Silopi region is NO5°E (Fig.
9). The same stress direction was also inverted
from the earthquake focal mechanism solutions
(Fig. 6 and Table 2).

DISCUSSION

The seismicity of the Zagros belt is resulted
from the compressional reactivation of pre-
existing basement faults due to the active
continental collision between Arabia and Eurasia
(Berberian, 1981). The present-day rate of N-S
continental convergence between Arabia and
Eurasia is calculated from the GPS measurements
to be at 18 + 2 mm/year (McClusky et al. 2000).
The relative motion obtained from the GPS Euler
vectors along the North Anatolian fault and the
Zagros belt to the northeast are (24 + 1 mm/year)
and (19 — 23 + 1 mm/year), respectively; whereas
in the Gulf of Agaba and on the Dead Sea fault,
the relative motion increasing from 5.6 to 7.5
mm/year (x 1 mm/year) from south to north
(McClusky et al. 2003). Several areas of the
Kurdistan region are seismically active as
evidenced by historical and recent earthquakes, as
well as most of the major earthquakes were
sourced by the reactivation of thrust and strike-slip
basement faults (Alsinawi and Issa, 1986; Fahmi
et al., 1986; Ambraseys et al. 1994; Mohammad
1998; Alridha et al., 2012; Doski and Mohammad,
2016).

The location and trend of the subsurface
basement faults may be detected by a linear
distribution of earthquake epicentres; these
patterns are called seismic lineaments (Nowroozi,
1995). The alignment of earthquake epicentres
clearly indicates that there is a subsurface
seismically active basement fault and could be the
source of strong earthquakes in the future (Jacobi,
2002; Almeida-Filho et al., 2009; Talukdar and
Barman, 2012; Saravanavel and Ramasamy, 2014;
Phelps et al., 2015). Some of the seismic
lineaments were interpreted along the south-
eastern region of the United States based on
epicentral alignments of earthquakes (Nowroozi,
1995). The locations of these lineaments were
interpreted as the intersection of pre-existing,
weak planar zones with the earth's surface.
Vlastos et al. (2002) identified active seismic
lineaments in the Aegean area based on the linear
clusters of strong earthquakes, and concluded that
there is a good agreement between the seismically
active linear structures and the seismotectonic
setting of the Aegean area.
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Fig.(7): Map showing the probable locations of lineaments that delineated by visual interpretation from 0.6 m
resolution QuickBird images of the Zakho — Silopi region.
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Fig.(8): Density map created from the total number of lineaments per square km area in the Zakho — Silopi region.
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Fig. (9): Frequency rose diagrams showing the main orientation classes of lineaments within the Zakho — Silopi
region.
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Fig. (10): Relationships between fracture types and principal stress axes during the compressive failure of brittle
materials (from Hancock, 1985 and 1991).
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Four potentially active NE- and NW-trending
seismic lineaments were inferred in the Zakho -
Silopi region based on the linear distribution of
earthquake epicentres with magnitudes greater
than (3.0) (Fig. 11). These linear structures extend
from 22 km to 42 km. There is a good agreement
between the orientation of nodal fault planes and
the trend of seismic lineaments, except in the case
of focal mechanism (no. 3) and seismic lineament
(no. B) (Figs. 5 and 11). This suggests a fifth
seismic lineament with NW-trending, passes
through the epicentral location of earthquake focal
mechanism (no. 3) and intersects with the seismic
lineament (no. B). The fifth seismic lineament is
considered as “uncertain” due to a few number of
its earthquake epicentres. The seismic lineaments
in the Zakho — Silopi region may represent
reactivated basement faults that cause major
earthquakes over this region (Fig. 11). Therefore,
the area along or around these active seismic
lineaments has the potential to produce major
earthquakes in the future.

It is inferred from the trend analysis of
lineament patterns and seismic lineaments that the
basement faults in the Zakho - Silopi region are

characterized by three linear tectonic trends:
roughly N-S, NE-SW and NW-SE (Figs. 9 and
11). Many of the basement faults were exposed at
the surface as lineaments or faults (Plafker, 1964;
Henden, 1981; Numan and Al-Azzawi, 1993;
Singh and Singh, 2005; Wilson et al., 2010;
Saravanavel and Ramasamy, 2014; Sissakian et
al., 2014; Abdunaser, 2015). The Zagros basement
in Iran consists of seismically “active” and
“inactive” faults with dominant N-S, NE-SW and
NW-SE trends (Bahroudi, 2003). The same
basement fault trends were also recognized by
Burberry (2015) within the Kirkuk Embayment
(Kurdistan) using the gravity data, fault maps of
Jassim and Buday (2006a) and lineament
analyses: the NW-SE ‘Najd system’ trend, N-S
‘Nabitah system’ trend, and the NE-SW
‘Transverse system’ trend. Kent (2010) identified
three tectonic inversion trends in northern Iraq and
Syria: the NW Erythrean ‘Zagros’ trend, the E-W
Tethyan ‘Taurus’ trend, and the NE Aualitic
‘Palmyra’ trend, as well as concluded that these
regional trends are related to the basement fault
systems that probably originated in Paleozoic as
normal faults, and inverted into thrust faults.
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Ali et al. (2013) studied the basement structure
in the United Arab Emirates using the gravity
anomaly data, and concluded that the basement of
the Arabian plate is characterized by N-, NE- and
NW-trending lineaments. Four major fault trends
were also recognized in the Arabian basement: N-
S “Arabian trend”, NE-SW “Aualitic trend”, NW-
SE “Erythraean trend” and E-W “Tethyan trend”
(von Wissmann et al.,, 1943; Henson, 1951;
Edgell, 1992). The N-S “Arabian trend”
lineaments associated with the extensional
basement structures (horsts and grabens) that were
periodically reactivated throughout the time,
whereas the NE- and NW-trending lineaments are
represented by the left-lateral and right-lateral
strike-slip basement faults, respectively (Henson,
1951; Edgell, 1992).

The basement faults in the Zakho - Silopi
region were probably formed in Late Precambrian
as normal faults, and subsequently inverted into
thrust faults as well as reactivated continuously
from the Late Cretaceous to the continental
collision between Arabia and Eurasia from the
Late Eocene onwards (Numan, 1997; Jassim and
Goff 2006; Kent, 2010).

CONCLUSION

1- The present-day direction of (c1) in the Zakho
— Silopi region as inferred from the inversion of
fault plane solutions and lineament analysis is
NO5°E. This direction is entirely consistent with
the active N-S shortening across the Kurdistan
region due to the Mid-Miocene collision of Arabia
with the Turkish and Iranian plates.

2- The seismic activity in the Zakho — Silopi
region is mainly related to the neotectonic
reactivation of pre-existing thrust and strike-slip
basement faults by a nearly N-S compression that
resulted from the on-going convergence of Arabia
and Eurasia.//lll/3- Four active seismic lineaments
were detected in the Zakho - Silopi region by the
linear distribution of earthquake epicentres. These
reactivated basement faults have the potential to
produce large earthquakes in the future. Therefore,
a more detailed earthquake risk assessment is
necessary.

4- Three distinct basement fault trends were identified

from the orientation analysis of lineament patterns
and seismic lineaments in the Zakho - Silopi
region; nearly N-S, NE-SW and NW-SE. These
basement faults were periodically reactivated from
Late Cretaceous onwards.
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