A MODIFIED CONJUGATE GRADIENT METHOD WITH GLOBALCONVERGENCE FOR UNCONSTRIANED OPTIMIZATION PROBEMS

Asman M. Abdulrahman ${ }^{*}$ and Bayda G. Fathi***
*Dept. of mathematics, College of Science, University of Duhok, Kurdistan Region-Iraq
** Dept. of mathematics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq

(Received: July 10, 2021; Accepted for Publication: October 19, 2021)

Abstract

In this paper a new conjugate gradient method for unconstrained optimization is suggested, the new method is based on Conjugate Descent (CD) formula which is a modified of the CD formula and which is also sufficiently descent and globally convergent. Numerical evidence shows that this new conjugate gradient algorithm is considered as one of the competitive conjugate gradient methods.

1. INTRODUCTION

As it is shown in the following unconstrained optimization problem
$\min \left\{f(x): x \in R^{x}\right\}$
where f is a function of continuously differentiability of n real variables with gradient $g=\nabla f$. Methods of conjugate gradient are a

$$
d_{k}= \begin{cases}-g_{k} & k=1 \tag{2}\\ -g_{k}+\beta_{k} d_{k-1} & k>1\end{cases}
$$

class of significant ways for solving (1), particularly for problems with large scale, which have the following form:

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} d_{k} \tag{1}
\end{equation*}
$$

in the sense that α_{k} is the step size, d_{k} is the conjugate search direction. The direction of the search is usually defined by:
where $g(x)=\nabla f(x)$ and β_{k} is scalar parameter. Certain choices of the parameter β_{k} are given which are in chronological order.

$$
\begin{equation*}
\beta_{k}^{C D}=\frac{-\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} g_{k-1}} \tag{3}
\end{equation*}
$$

where $y_{k}=g_{k+1}-g_{k}$ and $\|$.$\| denoted$ the Euclidean norm. The step size α_{k} is obtained through the exact linear search or inexact linear

One of the formulae for β_{k} is Conjugate Descent (CD) of Fletcher [5, 6]:
search α_{k} should satisfy the conditions of strong Wolfe [1]:

$$
\begin{equation*}
f\left(x_{k}+\alpha_{k} d_{k}\right) \leq f\left(x_{k}\right)+\rho \alpha_{k} g_{k}^{T} d_{k} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(x_{k}+\alpha_{k} d_{k}\right)^{T} d_{k} \geq \sigma g_{k}^{T} d_{k} \tag{5}
\end{equation*}
$$

where $0<\rho<\sigma<1$.
Conjugate Descent ensures a descent direction for general functions if the line search satisfies the strong Wolfe conditions (4), (5) with $\sigma<1$. But the global convergence of the CD method is proved, see [2].

In 1999, Dai and Yuan [1] proposed the DY conjugate gradient method using β_{k} defined by
by (3). In 2001 [3], they proposed an updated form of β_{k} with three parameters, which may be regarded as a convex combination of several earlier choices of β_{k} listed in [7]; but the three parameters are restricted in small intervals.

In [4], Dai and Yuan proposed a family of globally convergent conjugate methods, in which β_{k} introduced by

$$
\begin{gathered}
\beta_{k}^{D Y}=\frac{\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} y_{k-1}} \\
\beta_{k}=\frac{\left\|g_{k}\right\|^{2}}{\lambda\left|g_{k-1}\right|^{2}+(1-\lambda) d_{k-1}^{T} y_{k-1}},
\end{gathered}
$$

where $\lambda \in[0,1]$ is a parameter.

$$
\beta_{k}^{\text {New }} \frac{\left\|g_{k}\right\|^{2}}{\mu\left|d_{k-1}^{T} g_{k}\right|-d_{k-1}^{T} g_{k-1}} .
$$

In this note, we present a new formula which is a modified of the CD method defined by

Note that if we use the exact line search, our new algorithm reduces to the standard CD algorithm. In this paper, however, we consider general nonlinear functions and an inexact line search.

The rest of the paper is organized as follows. In Section 2, the new suggested algorithm is presented. The sufficient descent and Global convergence properties of the proposed methods
are analysed in Section 3. Some numerical results are reported in Section 4. Finally, we draw a conclusion in Section 5.

1. ALGORITHM FOR NEW METHOD

In this section, we state the steps of our algorithm.
step 1: Set $k=1$, select initial point $X_{1} \in R^{n}$, a very small positive $\varepsilon>0$
step 2: $g_{k}=\nabla f\left(x_{k}\right)$, if $g_{k}=1$ then stop

$$
\text { else set } d_{1}=-g_{1}
$$

step 3: Compute step length α_{k} to minimize $f\left(x_{k}\right)$
step 4: $X_{k+1}=x_{k}+\alpha_{k} d_{k}$
step 5: $g_{k+1}=\nabla f\left(x_{k+1}\right)$
step 6: Compute the parameter β_{k} by (6).
step 7: $d_{k+1}=-g_{k+1}+\beta_{k} d_{k}$,
step 8: If $k=i$, or if $\left\|g_{k}\right\|<\varepsilon$ is satisfied then go to step 2
else $k=k+1$ then go to step 3

We use the same algorithm in [1] which is restated here for the sake of convenience.

The convergence properties of the new method are stated in the following theorem.

2. CONVERGENCE OF THE NEW METHOD

In this section, we give the search direction d_{k}^{T} satisfies the sufficient descent condition. We can notice by (5) that

$$
\begin{equation*}
d_{k-1}^{T}\left(g_{k}-g_{k-1}\right) \geq \sigma d_{k-1}^{T} g_{k-1}-d_{k-1}^{T} g_{k-1}=(\sigma-1) d_{k-1}^{T} g_{k-1} \tag{7}
\end{equation*}
$$

Lemma 1: If $\mu>1$, then

$$
g_{k}^{T} d_{k}<-\left(1-\frac{1}{\mu}\right)\left\|g_{k}\right\|^{2}<0 \text { for } k=1,2, \ldots .
$$

Proof: If $k=1$ then $d_{1}=-g_{1}$ and since $\mu>1$ we get

$$
g_{1}^{T} d_{1}=-\left\|g_{1}\right\|^{2}<-\left(1-\frac{1}{\mu}\right)\left\|g_{1}\right\|^{2}<0
$$

Assume by induction that $g_{k-1}^{T} d_{k-1}=-\left\|g_{k-1}\right\|^{2}<-\left(1-\frac{1}{\mu}\right)\left\|g_{k-1}\right\|^{2}<0$. By (2), (5), (6) and (7), we have

$$
\begin{aligned}
& g_{k}^{T} d_{k}=-\left\|g_{k}\right\|^{2}+\beta_{k}^{N e w} g_{k}^{T} d_{k-1} \\
& =-\left\|g_{k}\right\|^{2}+\frac{\left\|g_{k}\right\|^{2}}{\mu\left|d_{k-1}^{T} g_{k}\right|-d_{k-1}^{T} g_{k-1}} g_{k}^{T} d_{k-1} \\
& \leq\left\|g_{k}\right\|^{2}+\frac{\left\|g_{k}\right\|^{2}}{|\mu| d_{k-1}^{T} g_{k}\left|-d_{k-1}^{T} g_{k-1}\right|}\left|g_{k}^{T} d_{k-1}\right| \\
& \leq\left\|g_{k}\right\|^{2}+\frac{\left\|g_{k}\right\|^{2}}{\mu\left|d_{k-1}^{T} g_{k}\right|}\left|g_{k}^{T} d_{k-1}\right| \\
& =-\left(1-\frac{1}{\mu}\right)\left\|g_{k}\right\|^{2}
\end{aligned}
$$

we remark that our Lemma 1 implies that d_{k} is a sufficient descent direction in (6).
Lemma 2: Once the sequence $\left\{x^{k}\right\}$ is clearly generated by (1) and (2), the step size α_{k} satisfies
(5) and (6), and d_{k} is a direction that descents, f is bounded and $g(x)$ satisfies Lipschitz condition in the level set, then:

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}<\infty \tag{8}
\end{equation*}
$$

The proof of this Lemma is given in [1].
Global convergence of our method will be established and numerical evidence will be listed to support.
Theorem 1 (Global convergence): If $\mu>1$ in (6), f is bounded and $g(x)$ is

Lipschitz in the level set, thus our algorithm either terminates at a stationary point $\operatorname{orlim}_{k \rightarrow \infty}\left\|g_{k}\right\|=0$.
Proof: in case the conclusion never holds, then then a real number does exist $\varepsilon>0$ such that
$\left\|g_{k}\right\|>\varepsilon$, for all $k=1,2,3, \ldots$ since $d_{k}+g_{k}=\beta_{k} d_{k-1}$, we have :

$$
\begin{equation*}
\left\|d_{k}\right\|^{2}=\beta_{k}^{2}\left\|d_{k-1}\right\|^{2}-\left\|g_{k}\right\|^{2}-2 g_{k}^{T} d_{k} \tag{9}
\end{equation*}
$$

Now

$$
\begin{aligned}
& g_{k}^{T} d_{k}=-\left\|g_{k}\right\|^{2}+\beta_{k}^{N e w} g_{k}^{T} d_{k-1} \\
& =-\left\|g_{k}\right\|^{2}+\frac{\left\|g_{k}\right\|^{2}}{\mu\left|d_{k-1}^{T} g_{k}\right|-d_{k-1}^{T} g_{k-1}} g_{k}^{T} d_{k-1} \\
& \leq \frac{d_{k-1}^{T} g_{k-1}+g_{k}^{T} d_{k-1}}{\mu\left|d_{k-1}^{T} g_{k}\right|-d_{k-1}^{T} g_{k-1}}\left\|g_{k}\right\|^{2}
\end{aligned}
$$

There exist σ such that:
$\sigma g_{k-1}^{T} d_{k-1} \leq g_{k-1}^{T} d_{k-1} \leq-\sigma g_{k-1}^{T} d_{k-1}$
Then
$\sigma g_{k-1}^{T} d_{k-1} \leq \frac{d_{k-1}^{T} g_{k-1}-\sigma g_{k-1}^{T} d_{k-1}}{\mu\left|d_{k-1}^{T} g_{k}\right|}\left\|g_{k}\right\|^{2}$
$=\frac{(1-\sigma) d_{k-1}^{T} g_{k-1}}{\mu\left|d_{k-1}^{T} g_{k}\right|}\left\|g_{k}\right\|^{2}$
Since $d_{k-1}^{T} g_{k-1}<0$ and $d_{k}^{T} g_{k}<0$ we see that
$\left\|g_{k}\right\|^{2} \leq \frac{\mu\left|d_{k-1}^{T} g_{k}\right|}{(1-\sigma)\left|d_{k-1}^{T} g_{k-1}\right|} d_{k}^{T} g_{k}$
That is,
$\beta_{k}^{\text {New }}=\frac{\left\|g_{k}\right\|^{2}}{\mu\left|d_{k-1}^{T} g_{k}\right|-d_{k-1}^{T} g_{k-1}}$
$\leq \frac{\left\|g_{k}\right\|^{2}}{\mu\left|d_{k-1}^{T} g_{k}\right|} \leq \frac{\left|d_{k}^{T} g_{k}\right|}{(1-\sigma)\left|d_{k-1}^{T} g_{k-1}\right|}$
Replace β_{k} in (9) with $\beta_{k}^{\text {New }}$, we get
$\frac{\left\|d_{k}\right\|^{2}}{\left(g_{k}^{T} d_{k}\right)^{2}} \leq \frac{\left\|d_{k-1}\right\|^{2}}{\left(g_{k-1}^{T} d_{k-1}\right)^{2}}-\frac{\left\|g_{k}\right\|^{2}}{\left(g_{k}^{T} d_{k}\right)^{2}}-2 \frac{1}{g_{k}^{T} d_{k}}$
$=\frac{\left\|d_{k-1}\right\|^{2}}{\left(g_{k-1}^{T} d_{k-1}\right)^{2}}-\left(\frac{\left\|g_{k}\right\|}{g_{k}^{T} d_{k}}+\frac{1}{\left\|g_{k}\right\|}\right)^{2}+\frac{1}{\left\|g_{k}\right\|^{2}}$
$\leq \frac{\left\|d_{k-1}\right\|^{2}}{\left(g_{k-1}^{T} d_{k-1}\right)^{2}}+\frac{1}{\left\|g_{k}\right\|^{2}} \leq \frac{\left\|d_{k-1}\right\|^{2}}{\left(g_{k-1}^{T} d_{k-1}\right)^{2}}+\frac{1}{\varepsilon^{2}}$
Since $d_{1}=-g_{1}$, so that
$\frac{\left\|d_{k}\right\|^{2}}{\left(g_{k}^{T} d_{k}\right)^{2}}<\frac{\left\|d_{1}\right\|^{2}}{\left(g_{1}^{T} d_{1}\right)^{2}}+\frac{k-1}{\varepsilon^{2}}=\frac{1}{\left\|g_{1}\right\|^{2}}+\frac{k-1}{\varepsilon^{2}}<\frac{1}{\varepsilon^{2}}+\frac{k-1}{\varepsilon^{2}}=\frac{k}{\varepsilon^{2}}$
Thus
$\sum_{k=1}^{\infty} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}>\sum_{k=1}^{\infty} \frac{\varepsilon^{2}}{k}=+\infty$
which is contrary to Lemma 2 . Hence $\sum_{k=1}^{\infty} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}<\infty$

3. NUMERICAL RESULTS

As it is shown in Table (1), a comparison between the new introduced algorithm and the standard CD method will be done. Such the comparative tests consist of well-known nonlinear problems with 8 various functions for $n=4$, 100, 1000, 5000. Moreover, we wrote the code in Fortran 95 language and we take $\mu>1$, for all cases the stopping condition
$\left\|g_{k+1}\right\| \leq 1 \times 10^{-5}$. On the other hand, the comparative results demonstrated in Table (1) which contains number of iteration (NOI) and number function evaluations (NOF). The experimental results are given in Table (1) verifying that the new conjugate gradient algorithm $\left(\beta_{k}^{\text {New }}\right)$ is superior to standard (CD) with respect to (NOI) and (NOF).

Table (1):- Comparing the two algorithms standard (CD) New algorithm performance

In Table (2), the rate of improvement in the new algorithm with the standard CD method is demonstrated.

Table (2): -Comparison of the rate of improvement between the standard CD method and the new algorithm

Tools	Standard CD method	New algorithm
NOI	100%	84.5724%
NOF	100%	81.9808%

5. CONCLUSION

The numerical performance of the new algorithm is better than the standard algorithm, as it is noticed that (NOI), (NOF) of the standard method are around 100%, that reflects the new algorithm has improved as compared to standard with ($\mathbf{1 5 . 4 3 \%}$) in (NOI) and ($\mathbf{1 8 . 0 2 \%}$) in (NOF).

REFERENCES

Dai, Y. H. and Yuan, Y. (1999). A Nonlinear Conjugate Gradient with a Strong Global Convergence Property, SIAM Journal of Optimization, 10, 177-182.
Dai, Y. H. and Yuan, Y. (1996). Convergence Properties of the Conjugate Descent Method, Mathematical Advances, 25,552562.

Dai, Y. H. and Yuan, Y. (2001). A ThreeParameter Family of Nonlinear Conjugate

Gradient Methods, Math. Comp., 70, 11551167.

Dai, Y. H. and Yuan, Y. (1998). A Class of Globally Convergent Conjugate Gradient Methods, Research report ICM-98-030, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences.
Fletcher, R. (1989). Practical Method of Optimization, ($2^{\text {nd }}$ ed.), john Wiley, New York.
Fletcher, R. and Reeves (1964). Function Minimization by Conjugate Gradients. published in the computer journal, publisher (Oxford University Press), Colin M, 7, 149154.

Hager, W. W. and Zhang, H. C. (2006). A Survey of Nonlinear Conjugate Gradient Methods. Pac. J. Optim., 2, 35-58.

