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ABSTRACT 
Recent developments in high performance computer architecture have a significant effect on all fields of 

scientific computing. the solution of linear systems of equations lies at the heart of many applications in 

scientific computing. This paper describes, compare and analyzes the parallel LU factorization and QIF 

Factorization methods that are used in linear system solving on a multicore using OpenMP interface. In our 

work, illustrate that the QIF Algorithm performs better in performance compared to LU Factorization 

algorithm as it takes a small step to solve the problem. 

 

 

1. INTRODUCTION 

 

ower Upper factorization (LUF) and 

Quadrant Interlocking Factorization (QIF) 

are methods used to solve systems of linear 

equations. LU algorithm involves a back 

substitution process while QIF involve 

bidirectional substitution. The study of both 

methods using parallel algorithm is to gain the 

performance of parallelism. 

We are requested to solve linear equations for 

x given A and B where A is a (     ) nonsingular 

matrix, x is the unknown vector and B is the right-

hand side vector.  

 

1.1 LU Factorization 

Generally, LU Factorization can be described 

as follows: 

Step1: LU Decomposition 

Let A be a square matrix. An LU 

decomposition converts A into two matrices L and 

U where      A = LU, and where L and U are lower 

and upper triangular matrices (of the same size), 

respectively. This means that L has only zeros 

above the diagonal and U has only zeros below the 

diagonal. For a 3X3 matrix, this becomes: 

 

 

         

         

         

   

   
      
         

  

         

      

   

  

 

AX=B then becomes (LU)x = B, this equation can be rewritten as L(Ux) = B. 

 

Step2: Forward Substitution 

Next, solve lower triangular matrix Ly= B where  y = Ux, L  and B are known using 

forward substitution to obtain vector y. 

 

     
       
         

  

  

  

  

   

  

  

  

  

 

This process is so called because for lower 

triangular matrix, one first computes   , then 

substitutes that forward into the next equation to 

solve for   , and repeats through   . 

 

Step3: Backward Substitution 

Last, solve upper triangular matrix Ux = y 

where U and y are known using backward 

substitution 

to obtain solution x. 

L 
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In an upper triangular matrix, one works 

backwards, first computing     , then substituting 

that that back into the previous equation to solve 

for     , and repeating through    . 

1.2 Theorem QIF Factorization 

Generally, QIF Factorization can be described 

as follows: 

Step1: WZ Factorization 

Let A be a square matrix. W and Z is 

decomposes by matrix A into interlocking 

quadrant factors of butterfly 

form. For a     matrix, this becomes: 

 

 

      
    

          

      
    

   
  

          

  

  

      
    

    

      
    

  

 

This process will solve for the elements that do 

not contain value 0 or 1. It begin by solving which 

row   and row   in matrix Z in order to solve 

column    and column    in matrix W, then 

continues substitutes that inwards Z and inwards 

W until reach to the center. 

This solution represents a series of       ) 

linear systems and we used Cramers Rule(For 

more information on Cramers Rule see [6]) to 

solve it in order to reduce matrix     . 

     then becomes (WZ)x = B, this equation 

can be rewritten as W(Zx) = B. 

 

Step2:  Bi-directional Substitution 

Next, solve lower triangular matrix Wy = B 

where y = Zx, W and B are known using forward 

substitution to obtain vector y. 

 

 
 
 
 
 
 

       
    

 

 
      

 
    

 
      

 

 
 

 
 

 

 

 

 
 

 
 

 
      

 
        

 

    

 

 
      

        
 
 
 
 
 

 
 
 
 
 
 

  
  

 

 
    
   

 
 
 
 
 

 

 
 
 
 
 
 
 

  

  

 

 
    

   
 
 
 
 
 
 

 

 

This process begins from the top and bottom 

moving inwards   -directionally and each time 

substituting 

for two values simultaneously. 

 

Step3: Bi-directional Solution 

Last, solve upper triangular matrix    = y 

where Z and y are known using backward 

substitution 

to obtain solution x. 

 

 
 
 
 
 
 
 
                     

 
 
 
 
 

    
 
 
 

      

 
 

 

 

 

 

 

  

      

 
 
 

        

 
 
 
 
 

                      
 
 
 
 
 
 

 
 
 
 
 
 

  
  

 

 
    
   

 
 
 
 
 

 

 
 
 
 
 
 

  
  

 

 
    
   

 
 
 
 
 

 

 

This procedure continues outwards from center 

forwards and backwards 

1.3 Parallel Design 

In the LU, we only parallel some part of the 

equation that consist lots of loop. From the 

algorithm, the most loops will appear in 

calculation of the lower triangle and upper 
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triangle. The loops consist of three nested for 

loops as shown below (the program language used 

here is C++). 

 

 

for () //--most outer loops cannot be parallel 

{ 

//--parallel this section 

for() 

{ 

for() 

{ } 

} 

//--parallel this section 

for() 

{ 

for() 

{ } 

} 

} 

Fig. (1): -Loops fraction in sequential LU Factorization program 

 

From the figure 1 above, we can see two of the 

second for loops can be parallel without producing 

a incorrect answer (data are not dependable at this 

level), while for the most outer for loops cannot be 

parallel because the data becoming dependable 

with each other. There are others for loops in the 

algorithm but most of it is only one of two nested 

loops which do not give very much effect to the 

execution time. Furthermore, parallel the less 

nested loops can cost an overhead to the algorithm 

without given sufficient speed up. 

For the case of QIF method, we also parallel 

the same part of the algorithm that is the 

calculation to determine the W matrices and Z 

matrices and can be visual as figure above. The 

implantation is somewhat almost the same but 

only has less iteration of a factor 0.5 due to the 

algorithm use that can calculate two values at one 

loops. 

 

 2. DESIGNING USING OPENMP 

Designing with OpenMP API (application 

program interface) in the algorithm for LU and 

QIF will use the same implementation as discusses 

before. In this section we are going to see how the 

OpenMP is use to parallel LU and QIF algorithm. 

the coding of the algorithm are done using 

Microsoft Visual Studio 2010 Professional with 

personal laptop. 

 

2.1 LU 

Implement OpenMP in LU are easier than MPI 

(MPI is a message-passing application 

programmer interface) and Pthread due to well 

develop API that ease the parallel programming. 

By using the #pragmaomp parallel for at the 

parallel part of the programming, the portioning of 

the work are done automatically. Below shows 

how the OpenMP is written in the algorithm for 

LU. 

 

for (iterate for n times) 

{ 

#pragmaomp parallel forprivate (sum1) 

for() 

{ 

for() 

{ //--do summation sum1 here } 

//--update Upper Triangle here 

} 

#pragmaomp parallel forprivate (sum1) 

for() 
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{ 

for() 

{//--so summation sum1 here } 

//-- update Lower triangle here 

} 

} 

Fig.( 2):- LU algorithm with OpenMP 

 

As we can see from figure 2, there are two 

#pragmaomp parallel for used with the private 

attribute of sum1.The sum1 is variable declare 

globally that some of the thread created may refer 

to the same address. By set the sum1 to become 

private, each thread created will have its own 

sum1 address. The total iteration at most outer 

loops will be n times where n is the dimension of 

the matrix. 

 

2.2 QIF 

For QIF method, the coding of the algorithm 

will be look more than the same as LU which 

implement the #pragmaomp parallel for at the 

calculation to determine the matrix Z and matrix 

W. 

 

 

for (iterates for n/2 times) 

{ 

#pragmaomp parallel forprivate (sum1,sum2) 

for() 

{ 

for() 

{ //--do summation sum1,sum2 here } 

//--update Matrix Z here 

} 

#pragmaomp parallel forprivate (sum1,sum2) 

for() 

{ 

for() 

{//--so summation sum1,sum2 here } 

//-- update Matrix W here 

} 

} 

Fi.( 3):- QIF with OpenMP 
 

Figure 3 above shows that the each 

#pragmahad aprivate (sum1,sum2)which due the 

algorithm of QIF that can calculate the two matrix 

values at the same time. This lowers the iteration 

process for each calculation and produces more 

throughputs. The total iterations for the most outer 

loops will be only n/2 where n is the dimension of 

the matrix. 

 

3. Parallel Performance  

The purpose of parallelizing the algorithm is to 

enhance its performance. Methods of analysis for 

our parallel design are based on Amdahl’s law and 

Gustafson’s law. 

Amdahl’s Law:The existence of non-

parallelizable (sequential fraction) computations 

limits the potential benefit of parallelization. 

Gustafson-Barsis Law: Problems with large, 

repetitive data sets can be efficiently parallelized. 

It showed that Amdahl’s law is invalid for cases 

where the problem size could be increase and the 

regularity of the problem could be used to deploy 

as many processors as the problem needed. 

Speedup 

Speedup     is defined with formula: 

 

   
  
  

 



Journal of University of Duhok, Vol. 02, No.1 (Pure and Eng. Sciences), Pp 46-53, 0202 

DOI: https://doi.org/10.26682/sjuod.2018.20.1.5 

   

 

50 

Where    the execution time for sequential 

algorithm is,    is the execution time of the 

parallel 

algorithm with p processors. 

 

Efficiency 

Efficiency   is defined with: 

   
  

 
 

Where     is the speedup with two processors. 

Total Parallel Overhead 

Total parallel overhead    is defined with 

formula: 

          

Where    the execution time for sequential 

algorithm is,    is the execution time of the 

parallel 

algorithm with p processors. 

4. RESULT 

 

We performed testing for sequential program 

of both LU Factorization and QIF. The objective 

of this testing is to measure the execution time for 

sequential implementation. Theoretically, QIF can 

solve the problem faster than LU Factorization 

because it takes less computational steps for 

solving the linear equation. In testing sequential 

programs, we decided to measure the execution 

time versus the size of the linear system (n). The 

actual size of data set is    , a 2D matrix. The 

range of the linear system size is starting from 100 

to 1000 as we focus on the low bound of linear 

system size. We started with 100 size of linear 

system and then later increase the size in time and 

record the execution time was measured in second. 

 
Figure 4: Time Performance on Sequential Implementation of LU Factorization & QIF 
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Figure 5: QIF is half faster than LU 

 

 

 

Figure 4 and 5 show the time performance of 

sequential of LU Factorization and Quadrant 

Interlocking 

Factorization (QIF). As we expected, two 

different algorithms which are LU Factorization 

and Quadrant Interlocking Factorization (QIF) 

produced different result. In overall, sequential 

QIF executed faster than sequential LU 

Factorization as the size of the linear system 

increased. This occurred because of the 

complexity of the algorithms implemented on the 

programs. 

The complexity of the QIF algorithm is less 

complex thus produce larger throughput compare 

to LU Factorization. QIF algorithm was solved in 

factor of four within the loops. We can conclude 

that QIF Algorithm performs better in 

performance compared to LU Factorization 

algorithm as it takes a small step to solve the 

problem. In addition, the performance of 

execution time is depended on the algorithm 

implemented on the program. 

Time performance for OpenMP 

implementation of the algorithms while Figure 6 

below is the time performance graph plotted. As 

we expected, the OpenMP version of QIF has 

better execution time compared to LU 

Factorization as the number of thread (N) 

increases. 

When the number of thread increases in size, 

the execution time reduces. We can see that from 

the transition between thread 1 to 2, it shows a 

significant reduces in execution time. Then from 

the thread transition between 3 to 8 thread, the 

execution time reduces in time thus give better 

time performance. The increment of number of 

threads which means more workers will be 

available to execute the parallel thus 

accommodates tasks. For example if we have two 

threads available, the parallel fraction will be 

executed by both workers. As the number of 

workers increase, the workers can execute jobs in 

fraction of 1/N of the time of one worker. 
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Fig.( 6):- Time Performance between LU Factorization & QIF 

 

Performance degradation can be seen from the 

transition between thread 8 to 9. This occurred 

because the number of thread exceed number of 

logical processors.  As the number of thread 

increases (from thread 9 to 16), we can see a small 

improvement on execution time then the time 

performance refuses to improve and remain 

constant. 

 

 

 

 

 
Fig.( 7): -Speedup comparison on both LU and QIF 

 

Figure 7 shows the speedup comparison on 

OpenMP implementation of LU and QIF. From 

the result, all speedup of both algorithms shows 

slightly linear speedup and it performs under the 

ideal speedup. The ideal speedup is driven by 

Amdahl’s law. LU and QIF algorithms both have 

as high as 5.4 and 5.2 respectively, using 8 logical 

processors, which is far below ideal speedup. 
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Then the speedup started to reduce from thread 8 

to 9 as threads exceed number of logical 

processors. This is expected as one of the reasons 

is the logical processors limit the potential parallel 

speedup. Besides that, sequential fraction also 

limits the potential speedup. Ideal speedup is 

obtained when the parallel fraction is 100%, 

which means that the parallel fraction is the whole 

program. In another words, there is no sequential 

fraction in your program as it nearly impossible to 

do that. In order to fully benefit the parallel 

speedup, we need to increase the parallel fraction 

and reduce the sequential fraction so that we can 

get optimum value of parallel speedup. 

 

 
Fig( 8): - Efficiency comparison on both LU and QIF 

 

Figure 8  shows the efficiency comparison 

between both algorithms. From our observation, 

the efficiency reduces as the number of threads 

increase as no significant degradation seen from 

the graph. As the result, we can prove that our 

speedup result (on Figure 6) is relatively true to 

our efficiency result since there is no significant 

increase observed in our speedup graph. 

 

CONCLUSION 

 

In this paper, we implemented the LU 

decomposition method and QIF Factorization 

using OpenMp. We implemented openMP using 

Dell, Operating System: Windows 7 Home 

Premium 64-bit Processor: Intel core i7 ,(8 CPUs),  

memory: RAM 4 GB.  We conclude that the QIF 

has better execution time compared to LU 

Factorization as the number of thread (N) 

increases. When the number of thread increases in 

size, the execution time reduces and speedup is 

increased. 
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