
Journal of University of Duhok, Vol. 02, No.1 (Pure and Eng. Sciences), Pp 46-53, 0202

DOI: https://doi.org/10.26682/sjuod.2018.20.1.5

46

PARALLELIZE AND ANALYSIS LU FACTORIZATION AND QUADRANT

INTERLOCKING FACTORIZATION ALGORITHM IN OPENMP

 DELBRIN H. AHMED and NAEEM A. ASKAR

Dept. Of Mathematics, College Of Basic Education, University of Duhok, Kurdistan Region-Iraq

(Received: June 13, 2017; Accepted for publication: August 29, 2017)

ABSTRACT
Recent developments in high performance computer architecture have a significant effect on all fields of

scientific computing. the solution of linear systems of equations lies at the heart of many applications in

scientific computing. This paper describes, compare and analyzes the parallel LU factorization and QIF

Factorization methods that are used in linear system solving on a multicore using OpenMP interface. In our

work, illustrate that the QIF Algorithm performs better in performance compared to LU Factorization

algorithm as it takes a small step to solve the problem.

1. INTRODUCTION

ower Upper factorization (LUF) and

Quadrant Interlocking Factorization (QIF)

are methods used to solve systems of linear

equations. LU algorithm involves a back

substitution process while QIF involve

bidirectional substitution. The study of both

methods using parallel algorithm is to gain the

performance of parallelism.

We are requested to solve linear equations for

x given A and B where A is a () nonsingular

matrix, x is the unknown vector and B is the right-

hand side vector.

1.1 LU Factorization

Generally, LU Factorization can be described

as follows:

Step1: LU Decomposition

Let A be a square matrix. An LU

decomposition converts A into two matrices L and

U where A = LU, and where L and U are lower

and upper triangular matrices (of the same size),

respectively. This means that L has only zeros

above the diagonal and U has only zeros below the

diagonal. For a 3X3 matrix, this becomes:

AX=B then becomes (LU)x = B, this equation can be rewritten as L(Ux) = B.

Step2: Forward Substitution

Next, solve lower triangular matrix Ly= B where y = Ux, L and B are known using

forward substitution to obtain vector y.

This process is so called because for lower

triangular matrix, one first computes , then

substitutes that forward into the next equation to

solve for , and repeats through .

Step3: Backward Substitution

Last, solve upper triangular matrix Ux = y

where U and y are known using backward

substitution

to obtain solution x.

L

Journal of University of Duhok, Vol. 02, No.1 (Pure and Eng. Sciences), Pp 46-53, 0202

DOI: https://doi.org/10.26682/sjuod.2018.20.1.5

47

In an upper triangular matrix, one works

backwards, first computing , then substituting

that that back into the previous equation to solve

for , and repeating through .

1.2 Theorem QIF Factorization

Generally, QIF Factorization can be described

as follows:

Step1: WZ Factorization

Let A be a square matrix. W and Z is

decomposes by matrix A into interlocking

quadrant factors of butterfly

form. For a matrix, this becomes:

This process will solve for the elements that do

not contain value 0 or 1. It begin by solving which

row and row in matrix Z in order to solve

column and column in matrix W, then

continues substitutes that inwards Z and inwards

W until reach to the center.

This solution represents a series of)

linear systems and we used Cramers Rule(For

more information on Cramers Rule see [6]) to

solve it in order to reduce matrix .

 then becomes (WZ)x = B, this equation

can be rewritten as W(Zx) = B.

Step2: Bi-directional Substitution

Next, solve lower triangular matrix Wy = B

where y = Zx, W and B are known using forward

substitution to obtain vector y.

This process begins from the top and bottom

moving inwards -directionally and each time

substituting

for two values simultaneously.

Step3: Bi-directional Solution

Last, solve upper triangular matrix = y

where Z and y are known using backward

substitution

to obtain solution x.

This procedure continues outwards from center

forwards and backwards

1.3 Parallel Design

In the LU, we only parallel some part of the

equation that consist lots of loop. From the

algorithm, the most loops will appear in

calculation of the lower triangle and upper

Journal of University of Duhok, Vol. 02, No.1 (Pure and Eng. Sciences), Pp 46-53, 0202

DOI: https://doi.org/10.26682/sjuod.2018.20.1.5

48

triangle. The loops consist of three nested for

loops as shown below (the program language used

here is C++).

for () //--most outer loops cannot be parallel

{

//--parallel this section

for()

{

for()

{ }

}

//--parallel this section

for()

{

for()

{ }

}

}

Fig. (1): -Loops fraction in sequential LU Factorization program

From the figure 1 above, we can see two of the

second for loops can be parallel without producing

a incorrect answer (data are not dependable at this

level), while for the most outer for loops cannot be

parallel because the data becoming dependable

with each other. There are others for loops in the

algorithm but most of it is only one of two nested

loops which do not give very much effect to the

execution time. Furthermore, parallel the less

nested loops can cost an overhead to the algorithm

without given sufficient speed up.

For the case of QIF method, we also parallel

the same part of the algorithm that is the

calculation to determine the W matrices and Z

matrices and can be visual as figure above. The

implantation is somewhat almost the same but

only has less iteration of a factor 0.5 due to the

algorithm use that can calculate two values at one

loops.

 2. DESIGNING USING OPENMP

Designing with OpenMP API (application

program interface) in the algorithm for LU and

QIF will use the same implementation as discusses

before. In this section we are going to see how the

OpenMP is use to parallel LU and QIF algorithm.

the coding of the algorithm are done using

Microsoft Visual Studio 2010 Professional with

personal laptop.

2.1 LU

Implement OpenMP in LU are easier than MPI

(MPI is a message-passing application

programmer interface) and Pthread due to well

develop API that ease the parallel programming.

By using the #pragmaomp parallel for at the

parallel part of the programming, the portioning of

the work are done automatically. Below shows

how the OpenMP is written in the algorithm for

LU.

for (iterate for n times)

{

#pragmaomp parallel forprivate (sum1)

for()

{

for()

{ //--do summation sum1 here }

//--update Upper Triangle here

}

#pragmaomp parallel forprivate (sum1)

for()

Journal of University of Duhok, Vol. 02, No.1 (Pure and Eng. Sciences), Pp 46-53, 0202

DOI: https://doi.org/10.26682/sjuod.2018.20.1.5

49

{

for()

{//--so summation sum1 here }

//-- update Lower triangle here

}

}

Fig.(2):- LU algorithm with OpenMP

As we can see from figure 2, there are two

#pragmaomp parallel for used with the private

attribute of sum1.The sum1 is variable declare

globally that some of the thread created may refer

to the same address. By set the sum1 to become

private, each thread created will have its own

sum1 address. The total iteration at most outer

loops will be n times where n is the dimension of

the matrix.

2.2 QIF

For QIF method, the coding of the algorithm

will be look more than the same as LU which

implement the #pragmaomp parallel for at the

calculation to determine the matrix Z and matrix

W.

for (iterates for n/2 times)

{

#pragmaomp parallel forprivate (sum1,sum2)

for()

{

for()

{ //--do summation sum1,sum2 here }

//--update Matrix Z here

}

#pragmaomp parallel forprivate (sum1,sum2)

for()

{

for()

{//--so summation sum1,sum2 here }

//-- update Matrix W here

}

}

Fi.(3):- QIF with OpenMP

Figure 3 above shows that the each

#pragmahad aprivate (sum1,sum2)which due the

algorithm of QIF that can calculate the two matrix

values at the same time. This lowers the iteration

process for each calculation and produces more

throughputs. The total iterations for the most outer

loops will be only n/2 where n is the dimension of

the matrix.

3. Parallel Performance

The purpose of parallelizing the algorithm is to

enhance its performance. Methods of analysis for

our parallel design are based on Amdahl’s law and

Gustafson’s law.

Amdahl’s Law:The existence of non-

parallelizable (sequential fraction) computations

limits the potential benefit of parallelization.

Gustafson-Barsis Law: Problems with large,

repetitive data sets can be efficiently parallelized.

It showed that Amdahl’s law is invalid for cases

where the problem size could be increase and the

regularity of the problem could be used to deploy

as many processors as the problem needed.

Speedup

Speedup is defined with formula:

Journal of University of Duhok, Vol. 02, No.1 (Pure and Eng. Sciences), Pp 46-53, 0202

DOI: https://doi.org/10.26682/sjuod.2018.20.1.5

50

Where the execution time for sequential

algorithm is, is the execution time of the

parallel

algorithm with p processors.

Efficiency

Efficiency is defined with:

Where is the speedup with two processors.

Total Parallel Overhead

Total parallel overhead is defined with

formula:

Where the execution time for sequential

algorithm is, is the execution time of the

parallel

algorithm with p processors.

4. RESULT

We performed testing for sequential program

of both LU Factorization and QIF. The objective

of this testing is to measure the execution time for

sequential implementation. Theoretically, QIF can

solve the problem faster than LU Factorization

because it takes less computational steps for

solving the linear equation. In testing sequential

programs, we decided to measure the execution

time versus the size of the linear system (n). The

actual size of data set is , a 2D matrix. The

range of the linear system size is starting from 100

to 1000 as we focus on the low bound of linear

system size. We started with 100 size of linear

system and then later increase the size in time and

record the execution time was measured in second.

Figure 4: Time Performance on Sequential Implementation of LU Factorization & QIF

Journal of University of Duhok, Vol. 02, No.1 (Pure and Eng. Sciences), Pp 46-53, 0202

DOI: https://doi.org/10.26682/sjuod.2018.20.1.5

51

Figure 5: QIF is half faster than LU

Figure 4 and 5 show the time performance of

sequential of LU Factorization and Quadrant

Interlocking

Factorization (QIF). As we expected, two

different algorithms which are LU Factorization

and Quadrant Interlocking Factorization (QIF)

produced different result. In overall, sequential

QIF executed faster than sequential LU

Factorization as the size of the linear system

increased. This occurred because of the

complexity of the algorithms implemented on the

programs.

The complexity of the QIF algorithm is less

complex thus produce larger throughput compare

to LU Factorization. QIF algorithm was solved in

factor of four within the loops. We can conclude

that QIF Algorithm performs better in

performance compared to LU Factorization

algorithm as it takes a small step to solve the

problem. In addition, the performance of

execution time is depended on the algorithm

implemented on the program.

Time performance for OpenMP

implementation of the algorithms while Figure 6

below is the time performance graph plotted. As

we expected, the OpenMP version of QIF has

better execution time compared to LU

Factorization as the number of thread (N)

increases.

When the number of thread increases in size,

the execution time reduces. We can see that from

the transition between thread 1 to 2, it shows a

significant reduces in execution time. Then from

the thread transition between 3 to 8 thread, the

execution time reduces in time thus give better

time performance. The increment of number of

threads which means more workers will be

available to execute the parallel thus

accommodates tasks. For example if we have two

threads available, the parallel fraction will be

executed by both workers. As the number of

workers increase, the workers can execute jobs in

fraction of 1/N of the time of one worker.

Journal of University of Duhok, Vol. 02, No.1 (Pure and Eng. Sciences), Pp 46-53, 0202

DOI: https://doi.org/10.26682/sjuod.2018.20.1.5

52

Fig.(6):- Time Performance between LU Factorization & QIF

Performance degradation can be seen from the

transition between thread 8 to 9. This occurred

because the number of thread exceed number of

logical processors. As the number of thread

increases (from thread 9 to 16), we can see a small

improvement on execution time then the time

performance refuses to improve and remain

constant.

Fig.(7): -Speedup comparison on both LU and QIF

Figure 7 shows the speedup comparison on

OpenMP implementation of LU and QIF. From

the result, all speedup of both algorithms shows

slightly linear speedup and it performs under the

ideal speedup. The ideal speedup is driven by

Amdahl’s law. LU and QIF algorithms both have

as high as 5.4 and 5.2 respectively, using 8 logical

processors, which is far below ideal speedup.

Journal of University of Duhok, Vol. 02, No.1 (Pure and Eng. Sciences), Pp 46-53, 0202

DOI: https://doi.org/10.26682/sjuod.2018.20.1.5

53

Then the speedup started to reduce from thread 8

to 9 as threads exceed number of logical

processors. This is expected as one of the reasons

is the logical processors limit the potential parallel

speedup. Besides that, sequential fraction also

limits the potential speedup. Ideal speedup is

obtained when the parallel fraction is 100%,

which means that the parallel fraction is the whole

program. In another words, there is no sequential

fraction in your program as it nearly impossible to

do that. In order to fully benefit the parallel

speedup, we need to increase the parallel fraction

and reduce the sequential fraction so that we can

get optimum value of parallel speedup.

Fig(8): - Efficiency comparison on both LU and QIF

Figure 8 shows the efficiency comparison

between both algorithms. From our observation,

the efficiency reduces as the number of threads

increase as no significant degradation seen from

the graph. As the result, we can prove that our

speedup result (on Figure 6) is relatively true to

our efficiency result since there is no significant

increase observed in our speedup graph.

CONCLUSION

In this paper, we implemented the LU

decomposition method and QIF Factorization

using OpenMp. We implemented openMP using

Dell, Operating System: Windows 7 Home

Premium 64-bit Processor: Intel core i7 ,(8 CPUs),

memory: RAM 4 GB. We conclude that the QIF

has better execution time compared to LU

Factorization as the number of thread (N)

increases. When the number of thread increases in

size, the execution time reduces and speedup is

increased.

REFERENCE

 Abdullah, R. U. (2011). Benchmark of Parallel

Bipartite Graph Matching and Parallel Smith-

Waterman on the Intel® Manycore Testing Lab.

 Amdahl, G. (1967). The Validity of the Single

Processor Approach to Achieving Large Scale

Computing Capabilities. AFIPS Conf. Proc. ,

483-485.

 Asenjo, R., Ujaldon, M., & Zapata, E. (1993).

Parallel WZ factorization on mesh

multiprocessors. presented at Microprocessing

and Microprogramming , 319-326.

 Benaini, A., & Laiymani, D. (1994). Parallel Block

Generalized WZ Factorization. Proc. ICPADS ,

174-181.

 Evans, D. (2006). Parallel strategies for linear

systems of equations. International Journal of

Computer Mathematics , 81 (4), 417-416.

 Matrices and Determinants,(2017)

http://teachers.dadeschools.net/rvancol/BlitzerPr

ecalculusStudentBook/Chapter8/Ch8_Section5.

pdf

http://teachers.dadeschools.net/rvancol/BlitzerPrecalculusStudentBook/Chapter8/Ch8_Section5.pdf
http://teachers.dadeschools.net/rvancol/BlitzerPrecalculusStudentBook/Chapter8/Ch8_Section5.pdf
http://teachers.dadeschools.net/rvancol/BlitzerPrecalculusStudentBook/Chapter8/Ch8_Section5.pdf

