MULTIPLE CO-PRIME DIVISORS AND MULTIPLE DIVISORS GRAPHS

HARIWAN FADHIL M.SALIH and NECHIRVAN BADAL IBRAHIM Dept. of Mathematics, College of Science University of Duhok, Kurdistan Region-Iraq.

(Received: November 15, 2017; Accepted for publication: December 28, 2017)

ABSTRACT

In this paper we introduce two new concepts of graphs. Let R be a commutative ring with identity and $Z(R)\setminus\{0\}$ be the set of elements in R divided it into two sets $Z_1(R)$ and $Z_2(R)$, where $Z_1(R)$ be the set of coprime divisor elements satisfies the Euler's function and $Z_2(R)$ be the set of non-co-prime divisor elements, a simple graph MC(R) is associated to Z(R) it is called multiple co-prime divisors graph. Moreover, Let R be a commutative ring with identity and $Z^*(R)=Z(R)\setminus\{0\}$ be the set of all non-zero divisor elements in R, a simple graph M(R) is associated to R for distinct elements a and b in $Z^*(R)$ is an edge in M(R) if and only if aba=a(mod n) for all n in N. Also, diameter, girth, chromatic number and nullity of multiple co-prime divisor and multiple divisor graphs will be determined.

KEYWORDS: zero divisor graph, multiple co-prime divisor graphs and multiple divisor graphs.

1. INTRODUCTION

graph is an ordered pair G=(V, E), where V is a nonempty set of vertices and E the set of edges of G. we shall consider G is undirected and finite. A path in G is a sequence v_1, v_2, \dots, v_n of vertices where v_i is adjacent to v_{i+1} . A graph G is connected if every two vertices can be joined by a path. The distance between two vertices u and v is the minimum of the lengths of all u-v paths in G, and is denoted by $d_G(u, v)$. If no u-v path exists, we set $d_G(u, v) = \infty$. The girth of G is the length of a shortest cycle and is denoted by gir(G), and the circumference is the length of a longest cycle. Let G be a simple undirected graph with vertex set V = V(G) and edge set E = E(G). A graph G is said to be a **singular graph** provided that its adjacency matrix A(G) is a singular matrix. Let $\lambda_1, \lambda_2, \ldots, \lambda_p$ be the eigenvalues of a graph G, which they form the spectrum of G. The algebraic multiplicity of the number zero in the spectrum of the graph G is called its nullity (degree of **singularity**) and denoted by $\eta(G)$ which was studied by Gutman in [2]. The concept of zero divisor graphs $\Gamma(R)$ was introduced by I. Beck in [4] but his motive was in coloring of graphs. In [3], Anderson and Livingston studied the diameter of a graph $\Gamma(R)$ of a commutative ring R with

identity. For undefined terms in graph theory, we refer to [7].

Two vertices u and v in a graph G are said to be coneighbor vertices if and only if $N_G(u)=N_G(v)$.

Lemma 1.1:[6] (**Coneighbor Lemma**) For any pair of coneighbor vertices u and v in a graph G, $\eta(G)=\eta(G-u)+1=\eta(G-v)+1$.

Corollary 1.2: [1, p.234] (End Vertex Corollary) If G is a bipartite graph with an end vertex, and H is an induced subgraph of G obtained by deleting this vertex together with the vertex adjacent to it, then $\eta(G)=\eta(H)$.

2. THE MULTIPLE CO-PRIME DIVISORS GRAPH OF THE RING R

In this section, we introduce a new concept of graph and study the properties.

Definition 2.1: Let R be a commutative ring with identity and $Z(R)\setminus\{0\}$ be the set of elements in R divided it in to two sets $Z_1(R)$ and $Z_2(R)$, where $Z_1(R)$ be the set of co-prime divisor elements satisfies the Euler's function and $Z_2(R)$ be the set of non-co-prime divisor elements, a simple graph MC(R) is associated to Z(R) where every element in $Z_1(R)$ is adjacent to every element in $Z_2(R)$ this graph is called **multiple co-prime divisors graph**. **The multiple co-prime divisors graph of the ring R=Z_n, n=pq where p<q.** Notice

that, in this paper, we assume that p<q and p, q be prime numbers.

The multiple co-prime divisors set has two sets of vertices $Z_1(Z_{pq})$ and $Z_2(Z_{pq})$ the vertices in $Z_1(Z_{pq})$ of order (p-1)(q-1) are non-adjacent and the vertices in $Z_2(Z_{pq})$ of order p+q-2 are non-adjacent, but each vertex in $Z_1(Z_{pq})$ is adjacent to all vertices in $Z_2(Z_{pq})$.

Each vertex in $Z_1(Z_{pq})$ are of degree (p+q-2) and they are non-adjacent with all other vertices of the same set $Z_1(Z_{pq})$ and each vertex in $Z_2(Z_{pq})$ are of degree ((p-1)(q-1)) and they are non-adjacent with all other vertices of the same set $Z_2(Z_{pq})$.

Theorem 2.2: Let $R = Z_{pq}$, then $MC(Z_{pq})$ is isomorphic to complete bipartite graph $K_{(p-1)(q-1), q+p-2}$.

Proof: According to the two sets of the multiple co-prime divisors graph, Z_1 and Z_2 , where $Z_1 \,.\, Z_2 \neq 0$, means that are non-adjacent together but Z_1 and Z_2 are adjacent with all other vertices u_i , i=1, 2, 3,..., (p-1)(q-1) (u_i represented the first type of vertices in Z_1) and v_j , $j = 1, 2, 3, ..., (p+q-2) (v_j$ represented the second type of vertices in Z_2) they are also non adjacent together, u_i . $v_j \neq 0$, implies that the multiple co-prime divisors graph MC(Z_{pq}) is complete bipartite graph $K_{(p-1)(q-1), q+p-2}$.

Proposition 2.3: The diameter of $MC(Z_{pq})$ is less than or equal to 2.

Proof: The multiple co-prime divisors set has two sets of vertices $Z_1(Z_{pq})$ and $Z_2(Z_{pq})$, each vertices in Z_1 (Z_{pq}) is adjacent to all vertices in $Z_2(Z_{pq})$, then the shortest path between u and v is of length one, so diam(u, v)=1, but the vertices in Z_1 (Z_{pq}) are non-adjacent, then the shortest path between any two vertices u and v is of length two, so diam(u, v)=2, and the vertices in $Z_2(Z_{pq})$ are nonadjacent, then the shortest path between any two vertices u and v is of length two, so diam(u, v)=2. Hence diam(MC(Z_{pq})) ≤ 2 .

Proposition 2.4: The girth of $MC(Z_{pq})$ is equal to 4.

Proof: The set of the multiple co-prime divisors graph $MC(Z_{pq})$ is $Z_1(Z_{pq})$ Let $u_1, u_2, u_3, ..., u_i$, i=1, 2, 3,..., (p-1)(q-1) (u_i represented the first type of vertices in Z_1) and $v_1, v_2, v_3, ..., v_j, j = 1, 2, 3, ...,$ (p+q-2) (v_j represented the second type of vertices in Z_2) respectively. Then all the cycles in the graph $MC(Z_{pq})$ are of length 4 , they are the

smallest and they are of the form $u_1 \rightarrow v_1 \rightarrow u_2 \rightarrow v_2 \rightarrow u_1$. Then the girth is equal to 4.

Proposition 2.5: The chromatic number of $MC(Z_{pq})$ is equal to (p-1)(q-1).

Proof: Since no two adjacent vertices take the same color in coloring vertices in any graph, then each vertex in Z_1 have the different color and all other vertices u_i , i=1, 2, ..., (p-1)(q-1) which represent the vertices in Z_1 has another color. Therefore the total number of colors used in the coloration of this graph is (p-1)(q-1), implies that the chromatic number is (p-1)(q-1).

Proposition 2.6: The multiple co-prime divisors graph of Z_{qp} is star graph $S_{1, p+q-2}$, by removing the (pq-p-q) from vertices of $Z_1(Z_{pq})$.

Proof: The vertices in the multiple co-prime divisors graph are two sets of vertices $Z_1(Z_{pq})$ and $Z_1(Z_{pq})$ the first set from 1 to (p-1)(q-1) and the second set from 1 to p+q-2, where each vertices in $Z_1(Z_{pq})$ are of degree (p+q-2) and they are non-adjacent with all other vertices of the same set $Z_1(Z_{pq})$, therefore, when we remove all the vertices in $Z_1(Z_{pq})$ except a vertex, say u_1 , then we get the star graph of the form $S_{1, p+q-2}$.

Theorem 2.7: The nullity of $MC(Z_{pq})$ is equal to pq-4.

Proof: In the MC(Z_{pq})), we have two sets of coneighbor vertices, by using Lemma 1.1, we get: $\eta(MC(Z_{pq}))=$ (p-1)(q-1)-1+q+p-2-1+ $\eta(MC(K_2))=$ pq-4+ $\eta(MC(K_2))$ and $\eta(MC(K_2))=$ 0. Hence, $\eta(MC(Z_{pq}))=$ pq-4.

The multiple co-prime divisors graph of the ring Z_n , $n=p^2q$ where p=2 < q.

The multiple co-prime divisors set has two sets of vertices $Z_1(R)$ and $Z_2(R)$ the vertices in Z_1 ($Z_{p\,q}^2$) of order pq+5 are non-adjacent and the vertices in $Z_2(Z_{p\,q}^2)$ of order 2p(q-1) are non-adjacent, but each vertex in Z_1 ($Z_{p\,q}^2$) is adjacent to all vertices in $Z_2(Z_{p\,q}^2)$, each vertex in $Z_1(Z_{p\,q}^2)$ are of degree 2p(q-1) and they are non-adjacent with all other vertices of the same set $Z_1(Z_{p\,q}^2)$ and each vertex in $Z_2(Z_{p\,q}^2)$ are of degree (pq+5) and they are non-adjacent with all other vertices of the same set $Z_2(Z_{p\,q}^2)$.

Theorem 2.8: Let $R = Z_{p q}^{2}$, where p=2 < q, then $MC(Z_{p q}^{2})$ is isomorphic to complete bipartite graph $K_{pq+5, 2p(q-1)}$.

Proof: According to the two sets of the multiple co-prime divisors graph, Z_1 and Z_2 , where $Z_1 \, . \, Z_2 \neq 0$, means that are non-adjacent together but Z_1 and Z_2 are adjacent with all other vertices u_i , i=1, 2, 3,..., pq+5 (u_i represented the first type of vertices in Z_1) and v_j , j = 1, 2, 3, ..., 2p(q-1) (v_j represented the second type of vertices in Z_2) they are also non adjacent together, u_i . $v_j \neq 0$, implies that the multiple co-prime divisors graph $MC(Z_p^2)$ is complete bipartite graph $K_{pq+5, 2p(q-1)}$.

Proposition 2.9: The diameter of $MC(Z_{pq}^{2})$ is less than or equal to 2.

Proof: The multiple co-prime divisors set has two sets of vertices $Z_1(Z_{pq})$ and $Z_2(Z_{pq})$, each vertices in $Z_1(Z_{pq})$ is adjacent to all vertices in $Z_2(Z_{pq})$, then the shortest path between u and v is of length one, so diam(u, v)=1, but the vertices in $Z_1(Z_{pq})$ are non-adjacent, then the shortest path between any two vertices u and v is of length two, so diam(u, v)=2, and the vertices in $Z_2(Z_{pq})$ are non-adjacent, then the shortest path between any two vertices u and v is of length two, so diam(u, v)=2, and the vertices in $Z_2(Z_{pq})$ are non-adjacent, then the shortest path between any two vertices u and v is of length two, so diam(u, v)=2. Hence, diam(MC(Z_{pq})) \le 2.

Proposition 2.10: The girth of $MC(Z_{p q}^{2})$ is equal to 4.

Proof: The set of the multiple co-prime divisors graph $MC(Z_{p\ q}^2)$ is $Z_1(Z_{p\ q}^2)$ Let $u_1, u_2, u_3, ..., u_i$, i=1, 2, 3, ..., pq+5 (u_i represented the first type of vertices in Z_1) and $v_1, v_2, v_3, ..., v_j$, j = 1, 2, 3, ..., 2p(q-1) (v_j represented the second type of vertices in Z_2) respectively. Then all the cycles in the graph $MC(Z_{p\ q}^2)$ are of length 4, they are the smallest and they are of the form $u_1 \rightarrow v_1 \rightarrow u_2 \rightarrow v_2 \rightarrow u_1$. Then the girth is equal to 4.

Proposition 2.11: The chromatic number of $MC(Z_p^{2})$ is equal to 2.

Proof: Since no two adjacent vertices take the same color in coloring vertices in any graph, then each vertex in Z_1 have the same color and each vertex in Z_2 have the same color. Therefore the total number of colors used in the coloration of this graph is 2, implies that the chromatic number of MC($Z_{p,q}^2$) is equal to 2.

Proposition 2.12: The multiple co-prime divisors graph of $Z_{p q}^{2}$ is star graph $S_{1, 2p(q-1)}$, by removing the pq+4 vertices from $Z_{1}(Z_{p q}^{2})$.

Proof: The vertices in the multiple co-prime divisors graph are two sets of vertices $Z_1(Z_{p\,q}^2)$ and $Z_1(Z_{p\,q}^2)$ the first set from 1 to pq+5and the second set from 1 to p+q-2, where each vertex in $Z_1(Z_{p\,q}^2)$ are of degree 2p(q-1) and they are non-adjacent with all other vertices of the same set $Z_1(Z_{p\,q}^2)$, therefore when we remove all the vertices in $Z_1(Z_{p\,q}^2)$ except a vertex, say u_1 , then we get the star graph $S_{1,2p(q-1)}$.

Theorem 2.13: The nullity of $MC(Z_{pq})^{2}$ is equal to 6q-1, where p=2 < q.

to 6q-1, where p=2 <q. **Proof:** In the $MC(Z_{p\ q}^2)$, we have two sets of coneighbor vertices, by using Lemma 1.1, we get: $\eta(MC(Z_{p\ q}^2)) = pq+5+2p(q-1)-2+\eta(K_2)=3pq-2p+3+\eta(K_2)$ and $\eta(K_2)=0$. Hence, $\eta(MC(Z_{2\ q}^2))=6q-1$.

The multiple co-prime divisors graph of the ring Z_n , n=pqr where p=2<q=3<r.

The multiple co-prime divisors set has two sets of vertices $Z_1(R)$ and $Z_2(R)$ the vertices in $Z_1(Z_{pqr})$ of order 2r-2 are non-adjacent and the vertices in $Z_2(Z_{pqr})$ of order r(q+1)+1 are non-adjacent, but each vertex in $Z_1(Z_{pqr})$ is adjacent to all vertices in $Z_2(Z_{pqr})$, each vertex in $Z_1(Z_{pqr})$ are of degree (p+q-2) and they are non-adjacent with all other vertices of the same set $Z_1(Z_{pqr})$ and they are non-adjacent with all other vertices of the same set $Z_2(Z_{pqr})$ and they are non-adjacent with all other vertices of the same set $Z_2(Z_{pqr})$.

Theorem 2.14: Let $R=Z_{pqr}$, where p < q, then $MC(Z_{pqr})$ is isomorphic to complete bipartite graph $K_{2r-2, r(q+1)+1}$.

Proof: According to the two sets of the multiple co-prime divisors graph, Z_1 and Z_2 , where $Z_1 \cdot Z_2 \neq 0$, means that are non-adjacent together but Z_1 and Z_2 are adjacent with all other vertices u_i , i=1, 2, 3,..., 2r-2 (u_i represented the first type of vertices in Z_1) and v_j , j = 1, 2, 3, ..., r(q+1)+1 (v_j represented the second type of vertices in Z_2) they are also non adjacent together, u_i . $v_j \neq 0$, implies that the multiple co-prime divisors graph MC(Z_{pqr}) is complete bipartite graph $K_{2r-2, r(q+1)+1}$.

Proposition 2.15: The girth of $MC(Z_{pqr})$ is equal to 4.

Proof: The set of the multiple co-prime divisors graph MC(Z_{pqr}) is $Z_1(Z_{pqr})$ Let $u_1, u_2, u_3, ..., u_i$, i=1, 2, 3,..., 2r-2 (u_i represented the first type of vertices in Z_1) and $v_1, v_2, v_3, ..., v_j, j = 1, 2, 3, ..., r(q+1)+1$ (v_j represented the second type of vertices in Z_2) respectively. Then all the cycles in the graph MC(Z_{pqr}) are of length 4, they are the smallest and they are of the form $u_1 \rightarrow v_1 \rightarrow u_2 \rightarrow v_2 \rightarrow u_1$. Then the girth is equal to 4.

Proposition 2.16: The chromatic number of $MC(Z_{pqr})$ is equal to 2.

Proof: The multiple co-prime divisors graph $MC(Z_{pqr})$ is isomorphic to complete bipartite graph $K_{2r-2, r(q+1)+1}$. Then the chromatic number of $MC(Z_{pqr})$ is equal to 2.

Proposition 2.17: The diameter of $MC(Z_{pqr})$) is less than or equal to 2.

Proof: The multiple co-prime divisors set has two sets of vertices $Z_1(Z_{pqr})$ and $Z_2(Z_{pqr})$, each vertices in Z_1 (Z_{pqr}) is adjacent to all vertices in $Z_2(Z_{pqr})$, then the shortest path between u and v is of length one, so diam(u, v)=1, but the vertices in Z_1 (Z_{pqr}) are non-adjacent, then the shortest path between any two vertices u and v is of length two, so diam(u, v)=2, and the vertices in $Z_2(Z_{pqr})$ are nonadjacent, then the shortest path between any two vertices u and v is of length two, so diam(u, v)=2. Hence, diam(MC(Z_{pqr})) ≤ 2 .

Proposition 2.18: The multiple co-prime divisors graph of Z_{pqr} is star graph $S_{1, r(q+1)+1}$, by removing the (2r-3) vertices from the vertices of $Z_1(Z_{pqr})$.

Proof: The vertices in the multiple co-prime divisors graph are two sets of vertices $Z_1(Z_{pqr})$ and $Z_1(Z_{pqr})$ the first set from 1 to 2r-2 and the second set from 1 to r(q+1)+1, where each vertices in $Z_1(Z_{pqr})$ are of degree r(q+1)+1 and they are non-adjacent with all other vertices of the same set $Z_1(Z_{pqr})$, therefore, when we remove all the vertices in $Z_1(Z_{pqr})$ except a vertex, say u_1 , then we get the star graph $S_{1, r(q+1)+1}$.

Theorem 2.19: The nullity of $MC(Z_{pqr})$ is equal to r(q+3)-3, where p=2 < q=3 < r.

Proof: In the MC(Z_{pqr}), we have two sets of coneighbor vertices, by using Lemma 1.1, we get: $\eta(MC(Z_{pqr}))=2r-2+rq+r+1-2+\eta(K_2)=3r+rq-3+\eta(K_2)$ and $\eta(K_2)=0$. Hence, $\eta(MC(Z_{pqr}))=r(q+3)-3$.

3. THE MULTIPLE DIVISORS GRAPH OF THE RING R

In this section, we introduce the new concept of graph and study the properties.

Definition 3.1: Let R be a commutative ring with identity and $Z^*(R)=Z(R)/\{0\}$ be the set of all non-zero zero divisor elements in R, a simple graph M(R) is associated to R for distinct elements a and b in $Z^*(R)$ is an edge in M(R) if and only if aba=a(mod n) for all n in N, this graph is called **multiple divisor graphs**.

The multiple divisors graph of the ring Z_n , n=pq where p=2<q.

The multiple divisor graph of Z_{pq} , where p=2 < q has the following properties:

1- The vertex set of multiple divisor graph of Z_{pq}

is $V(M(Z_{pq})) = \{v_i, i=1, 2, ..., pq-1\}.$

2- The order and size of the multiple divisor graph of Z_{pq} are (pq-1) and ((2pq+3q-11)/2),

respectively. **3-** The vertex v_1 adjacent to all vertices in $M(Z_{pq})$ and deg (v_1) =pq-2.

4- The vertex v_q adjacent to q-3/2 odd vertices less than v_{q-1} and deg(v_q)=q-1/2.

5- The vertex v_{q-1} adjacent to even vertices greater than v_q and deg (v_{q-1}) =q+1/2.

6- The vertex v_{q+1} adjacent to even vertices greater than v_{q+1} and deg $(v_{q+1})=q+1/2$.

7- The multiple divisors graph of Z_{pq} have q-2 coneighbor vertices of degree one (q-2 end vertices).

8- The even vertices less than v_{q-1} are non-adjacent and of degree one.

9- The odd vertices greater than v_{q+1} are non-adjacent and of degree one.

10- The vertices in (8) and (9) are non-adjacent vertices.

Theorem 3.2: Let $R=Z_{pq}$, where p < q, then $M(Z_{pq})$ is 3-partite.

Proof: The vertex set of multiple divisor graph of Z_{pq} can be partitioned into three sets $V_1 = \{v_1\}$, $V_2 = \{v_q, v_{q+1} \text{ and all other vertices of degree one}\}$ and $V_3 = \{v_{q-1} \text{ and the vertices adjacent to } v_q\}$. The vertices in each vertex set are non-adjacent. Clearly the multiple divisor graph of Z_{pq} is 3-partite graphs.

Proposition 3.3: The diameter of $M(Z_{pq})$ is less than or equal to 2.

Proof: The vertex set of multiple divisor graph of Z_{pq} can be partitioned into three sets $V_1 = \{v_1\},$ $V_2 = \{ v_q, v_{q+1} \text{ and all other vertices of degree one} \}$ and $V_3 = \{ v_{q-1} \text{ and the vertices adjacent to } v_q \}$, then the shortest path between vertex V_1 with V_2 and V_3 is of length one, but the distance between vertices in set V_2 with vertices in set V_3 is of length two, then diam(M (Z_{pq})) ≤ 2 .

Proposition 3.4: The girth of $M(Z_{pq})$ is equal to 3.

Proof: The set of the multiple divisors graph $M(Z_{pq})$ is $V(M(Z_{pq})) = \{v_i, i=1, 2, ..., pq-1\}$. Then all the cycles in the graph $M(Z_{pq})$ are of length 3 or 4, they are the smallest and they are of the form $v_1 \rightarrow v_{q-1} \rightarrow v_{q+1} \rightarrow v_1$. Then the girth is 3.

Proposition 3.5: The chromatic number of $M(Z_{pq})$ is equal to 3.

Proof: The vertex set of multiple divisor graph of Z_{pq} is 3-partite sets, then each set have different color. Hence the chromatic number of $M(Z_{pq})$ is equal to 3.

Proposition 3.6: The multiple divisors graph of Z_{qp} is star graph $S_{1, pq-5}$, by removing the vertices v_{q-1} , v_q and v_{q+1} of $M(Z_{pq})$.

Proof: The proof is similar to the proof of Proposition 2.18.

Theorem 3.7: The nullity of $M(Z_{pq})$ is equal to 2q-2, where p=2 < q.

Proof: In the $M(Z_{2.3})$, we have 2 coneighbor vertices adjacent with v₁, by using Lemma 1.1 and Corollary 1.2, then $\eta(M(Z_6)) = 1 + \eta(K_2) = 1$ and in the $M(Z_{2,5})$, we have 3 coneighbor vertices adjacent with v₁, by using Coneighbor Lemma and end vertex corollary , then $\eta(M (Z_{10})) =$ $2+\eta(K_2)+\eta(K_3)=2$. If q>5, in the M(Z_{pq}), we have q-2 coneighbor vertices adjacent with v_1 , ((q-3)/2)

coneighbor vertices adjacent with v_1 and v_q , and ((q-3)/2) coneighbor vertices adjacent with v₁and v_{q-1} and v_{q+1} , by using Lemmas 1.1 and Corollary 1.2, we get: $\eta(M (Z_{pq})) = q-3 + ((q-3)/2) + ((q-3)/2)$ $-2+\eta(K_2)+\eta(K_3)=2q-2+$ and $\eta(K_2)=\eta(K_3)=0$. Hence, $\eta(M(Z_{pq}))=2q-2$.

Question:

- 1- Construct $MC(Z_{pq}^{2})$ and find properties. 2- Construct $M(Z_{pq}^{2})$ and find properties.
- **3-** Construct M(Z_{par}) and find properties.

REFERENCES

- Cvetkovic', D.M., Doob, M. and Sachs, H.; (1979), Spectra of Graphs-Theory and Application, Academic Press, New York.
- Dragoš M. Cvetkovič and Ivan M. Gutman (1972), The algebraic multiplicity of the number zero in the spectrum of a bipartite graph. Matematički Vesnik (Beograd), vol. 9, pp. 141-150.
- D.D. Andersen and P. S. Livingston "The zero divisor graph of a commutative ring". J. Algebra 217 (1999), pp. 434-447.
- I. Beck, "Coloring of commutative ring". J. Algebra 116 (1988), pp. 208-226.
- Nazar H. Shuker and Husam Q. Mohammad, The Zero Divisor Graph of Zpⁿq, International Journal of Algebra, Vol. 6, 2012, no. 22, 1049 -1055.
- Nazar H. Shuker, Payman A. Rashed, The zero divisor graph of the ring Z_{par} , International Journal of Scientific & Engineering Research, ISSN 2229-5518, Volume 6, Issue 2, February-2015.
- N. B. Ibrahim, On the nullity of some sequential element identified, element introduced graphs, MSc thesis, University of Zakho.
- R. Balakrishnan, and K. Ranganathan; (2012), A Textbook of Graph Theory, Springer, New York.