USING ROSETTA PROGRAM IN DETERMINING HYDRAULIC PROPERTIES OF THREE DIFFERENT MOUNTAINOUS TEXTURED SOILS UNDER SEMIARID CONDITIONS OF DUHOK IRAQI – KURDISTAN

AKRAM ABBAS KHALAF

Dept. of Soil & Water Sciences, College of Agricultural Engineering Sciences, University of Dohuk, Kurdistan Region-Iraq

(Received: June 7, 2022; Accepted for Publication, 2022)

ABSTRACT

This study was carried out in three mountainous different soil textures and two depths. Field measurements of soil texture and bulk density, and laboratory measurements of soil water retention at field capacity (-33 kPa) and permanent wilting point (-1500 kPa), were taken to implement Rosetta. Calculated values of van Genuchten parameters were then compared to measured values. Results showed that Rosetta could be used to obtain values of van Genuchten parameters for a field with different soil textures. The determination coefficient (\mathbf{R}^2) of It shows that 50% of determination coefficients (\mathbf{R}^2) gave more than 0.99 and 30% gave more than 0.98 and the others gave between (0.91-0.97) at applying the (PTFs) at two depths for the studied soils. The Root Mean Square Difference (RMSD) indicated that the lowest values of RMSE were exhibit by all soils (Zawita, Swaratoka and Koradare) and two depths D1 and D2 except D1 of Swaratoka Clay loam soil and at different textures.NSE elevation indicator revealed that the maximum values more than (0.99) were found in Zawita loamy soil and at depth two, D2 whereas the minimum values were noticed in Koradare Silty Loam and at depth two,D2. We conclude that Rosetta is a tool that can be used to calculate van Genuchten parameters the absence of measured values, for the studied soils(Zawita, Swaratoka and Koradare) Rosetta Levels yielded the best results as following: Level 5 gave highest (R²) at applying in (Zawita,D1-Swaratuka and KoradareD2), lowest RMSE and maximum in (Koradare,D2) using the measured input data and thus calculated values of van Genuchten parameters can be used as input in simulation models.

KEYWORDS: Rosetta; van Genuchten parameter; Pedotransfer Function

INTRODUCTION

Solution of the set of

Soil saturated hydraulic conductivity (K_S) is one of the most important hydraulic parameters for simulating water movement and solute transportation across soil profile, which is a highly variable in space. The changes in soil and vegetation properties induced by vegetation restoration (converting the steep farmland to woodland, shrub land, or grassland via artificial vegetation or natural succession) likely affect K_S greatly(Pingzong Zhu et al,2022) The soil water characteristic curve is an important soil hydraulic property that governs soil water storage, availability, and has potential influences of hydrological and ecological processes in whole ecosystems. (Springer Nature Switzerland AG. 2021)

In arid regions, the rational management of available scare water resources depends mainly on soil hydraulic properties (i.e., water retentionand hydraulic conductivity). knowledge of soil water content at field capacity (FC) and permanent wilting point (PWP) are very important parameters in biophysical modelling. direct measurement of However, these parameters are time consuming and expensive Soil moisture plays a key role in the Earth's hydrological cycle and meteorological and climatic processes. The information on soil moisture content is required for irrigation scheduling, crop yield prediction, studies on weather and climate change, monitoring and forecasting extreme weather events like floods and drought, and estimation of runoff and soil erosion

(ABDELHAFID, Youcef, 2021)

The soil water retention curve (SWRC) is one of the principal soil hydraulic properties that is needed as input data in modeling water and solute transport through unsaturated soils. Field or laboratory measurement of SWRC is laborintensive, expensive and time-consuming. Pedotransfer functions (PTFs) have been developed as an indirect method to predict soil hydraulic properties (*e.g.* SWRC) from more easily measured soil data (M. Rastgou et al,2021)

Current pedotransfer functions (PTFs) for estimating soil hydraulic curves are mostly developed to predict parameters of the Mualemvan Genuchten hydraulic functions. The Mualem-van Genuchten functions are recognised to be inadequate in representing soil water retention hydraulic conductivity curves at low pressure head ranges (Rudiyanto et al,2021)

Simulation models are tools that can be used to explore, for example, effects of cultural practices on soil erosion and irrigation on crop yield. However, often these models require many soils related input data of which are van Genuchten parameters which are (θ s, θ r, α , n and m). These data are usually not available and experimental determination is both expensive and time consuming. Therefore, pedotransfer functions are often used, which make use of simple and often readily available soil information to calculate required input values for models, such as soil hydraulic values. Our objective was to evaluate the Rosetta pedotransfer function to calculate van Genuchten parameter which are (θ s, θ r, α , n and m)

The forests soils of Iraqi- Kurdistan region is included different types of immature soils which could be represented partially bythe following studied soils which are Zaweta, Swaratoka and Koradare. Hydraulic properties are the key parameters in any quantitative description of water flow into and through the unsaturated soil layers. Van Genuchten etal. (1992) used the theoretical methods for predicting unsaturated soil hydraulic conductivity in which the more easily measured soil properties and water retention data. These methods are, based on statistical pore size distribution, Mualem (1976).

Rosetta is a computer program used for analyzing soil retention functions of unsaturated soils (van Genuchten et al.1992).

The purpose of this work is to estimate the soil hydraulic parameters of the studied soils from easily measured soil properties by using high precision computer program.

Materials and Methods:

Surface and subsurface of three different mountains soils which are Zaweta, Swaratoka and Koradare were selected to represent three texture classes in Duhok semiarid of Iraqi-Kurdistan region.

Some physical properties of the investigated soils samples were determined according to standard method described by Klute (1986) and presented in Table (1).

Study Area:

The study area is in the region known as Iraqi Kurdistan Region (IKR) at Duhok governorate and the locations of investigated soils hold names of three small villages Zawita, Swaratoka and Koradare. The coordinates are 36°54 237 N; 43 8 29 E; and an elevation of 878 m above sea level for Zawita; 37 0 44N; 43 13 49 E and elevation of 1343m for Swaratoka; 36 52 21N; 43 10 42E and elevation 666m for Koradare with a semi-arid climate. The soils of investigation region lying on mountains with different steep slopes as cleared in Fig. (1) and has an average slope of 5-10%, although parts of the field have slopes more than 5%. In this region, the Sampling sites in Geographic coordinates systems are demonstrated in table (1).

Fig.(1) :-Locations of study area of mountainous forest soils

Location	Geograp	hic system	Elevation	Slope
Soil	Latitude	Longitude	m	%
Zawita	36°54 237	43° 8 29	878	5-10
Swaratoka	37° 0 44	43° 13 49	1343	5-10
Koradare	36° 52 21	43° 10 42	666	5-10

Table (1):- Sampling sites in Geographic coordinate system

Using hierarchical PTFs based on five levels of input dat. It is of great practical use, allowing flexibility for the user towards the required input data The first level (H1) consists of a lookup table that provides average parameters for each of the USDA textural classes.

The second level (H2) uses values from H1 plus sand, silt, and clay fractions as inputs, and provides a hydraulic parameter that varies continuously with texture. The third level (H3) includes the predictors used in level H2 and the soil dry-bulk density (ρ d). The fourth level (H4) uses H3 and soil volumetric water content (θ m) at a water suction of -33 kPa. The last level (H5) consists of all the other parameters, H4, plus the (ϵ m) at a water suction of -1500 kPa.

While H1 is a simple table with average hydraulic parameters for each textural class, all other models involve a combination of neural networks and thebootstrap method The first model is based on a lookup table. This provides class average hydraulic parameters for each USDA soil textural class. The others models are based on neural network analyses and provide more accurate predictions when the first model is based on a lookup table.

This provides class average hydraulic parameters for each USDA soil textural class. The other models are based on neural network analyses and provide more accurate predictions when more input variables are used.

(www.cals.arizona.edu/research/rosetta/downl oad)

Soil Sampling

To determine the water retention curve, (6) disturbed soil samples were collected using a gouge auger; from two different depths depend on the nature of certain mountainously soils from the surface and subsurface the locations shown in Figure 2. Sampling was done on 15

July 2019. representative samples were taken at each depth of the three locations; to determine the textural classes, of taken samples were done by using hydrometer method for studied locations which were geo-referenced using a Global Positioning System (Model 4700 Dual Channel RTK system).

Rosetta Description

Rosetta is an algorithm that calculates soil water retention parameters, VG parameter (h), i.e., water retention $[\theta$ (h)], as well as the saturated and unsaturated hydraulic conductivity, are described with the well-known Mualem-Van Genuchten equation (Mualem, 1976) and (van Genuchten, 1980) and is given by:

$$\theta(h) = \theta_r + \frac{(\theta_s - \theta_r)}{\left[1 + (\alpha \times h)^n\right]^m}$$
(1)

where θ (h) is the soil volumetric water content (m³·m-3) at suction h (cm). θ s and θ r are the saturated and the residual water content (m³·m⁻³) at h = 0 cm and -15,000 cm, respectively; α (> 0 in cm-1) is related to the inverse of the air entry suction; and n (> 1) is a measure of the pore-size distribution and m = 1 – 1/n.(In summary, the parameters calculated with the Rosetta PTF (Equations (1)-(4)) are: θ r, θ s, α ,n and m.

Model Performance Evaluation

Calculated values of van Genuchten parameters obtained with Rosetta were compared to corresponding measured values and evaluated using two statistical parameters. The first parameter was Root Mean Squared Difference (RMSD) and the secondparameter was the Nash Sutcliffe Efficiency (NSE). The RMSD gives the mean difference between measured and calculated values ofparameters and is calculated as (Kobayashi, et al., 2000).

$$RMSD = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2}$$

where xi is the measured value of VG1 parameter and yi is the corresponding calculated value of VG1 parameter obtained with Rosetta.

The NSE compares measured and calculated values of VG1 parameter and is given by (Moriasi, etal,2007).

NSE = 1 -
$$\left[\frac{\sum_{i=1}^{n} (Y_{i}^{m} - Y_{i}^{c})^{2}}{\sum_{i=1}^{n} (Y_{i}^{m} - Y_{i}^{mean})^{2}}\right]$$
 (3)

where

yi^mis measured value of VG parameters and yi^cis the corresponding calculated value of VGparameters, is the average of measured values of VG parameters and *n* is number of measurements. Values of NSE may range from -0 to 1. A value of NSE = 1, corresponds to a perfect match of calculated compared to the measured values of *K*. Conversely, an efficiency of 0 (NSE =0) indicates that the Rosetta calculations of a VG1 parameter are as accurate as the mean of the measured data; whereas, an efficiency <0 (NSE <0) occurs when the measured mean is a better predictor than the model or, in other words, when the residual variance, described by the nominator in Equation (3), is larger than the data variance, described by the denominator (Moriasi, et al,2007).

Measurements

Textural Analysis. Clay, silt and sand fraction of all6-soil samples were determined using the hydrometermethod (Bouyoucos, 1962). This method uses the Navier-Stokes equationto calculate soil particles in suspension in an infinitesoil column and is adequate for textural class identification but cannot be used to accurately define the particlesize (Klut,1986). Nevertheless, it provides a reasonable input to Rosetta (Schaap, et al,2001).

In Water Retention Determination, the relation betweensoil volumetric water content (θ) and water suction (h) atsaturation (h = 0) and field capacity (h = -33 kPa) was measured using

a sand/kaolin box (pF-Determination, Eijkelkamp, Giesbeek, The Netherlands).

RESULTS AND DISCUSSION Measurements

There were five textural classes corresponding to the (6) layers where disturbed soil samples were taken (Table 2) and these are:2 clay loam, loam, clay, silty clay and silty loam. The total number of soil samples was six.

Table (2) :-some physical properties of two depths of studied soils							
Soil Property	Zawita		Swaratoka		Koradare		
	L1	L2	L1	L2	L1	L2	
Sand %	21.30	44.98	24.7	21.23	20.27	33.28	
Silt %	42.80	34.3	35.3	36.53	39.5	52.34	
Clay %	35.90	20.72	39.5	42.24	40.23	14.38	
TXT Class	clay loam	loam	clay loam	clay	silty clay	silty loam	
Bulk density(g/cc)	1.34	1.43	1.32	1.30	1.23	1.41	
θ33 kpa (cm³/cm³)	0.373	0.277	0.382	0.40	0.395	0.277	
θ1500 kpa(cm³/cm³)	0.222	0.137	0.279	0.25	0.243	0.104	

"Rosetta program" was used to obtain the closed expressions of van Genuchten parameters from the values of particle size distribution, soil bulk density and soil water content on volume basis at 33 kpa and 1500 kpa, Schaap, et al (1998).

Table (3):- contains the output data of Rosetta program of surface and subsurface for each location soil samples.

	samples.								
Soil Property	Zaweta	Swaratoka			Koradare				
	11	12	l1	12	l1	12			
Theta-r (θr)	0.0759	0.0474	0.0906	0.0592	0.1125	0.0369			
Theta-s (θs)	0.4155	0.3449	0.4384	0.4078	0.4115	0.3559			
log10 (Alpha)	-1.8280	-1.5676	-1.5116	-2.1977	-1.3177	-2.3152			
log10(N)	0.0788	0.1151	0.0705	0.0763	0.0797	0.1888			
log10(ks)	0.5466	1.0982	0.6876	-0.147	0.6383	0.8579			
log10 (ko)	0.5568	1.0021	0.8294	0.1807	0.9157	0.2619			
L	-2.1208	-1.6147	-4.0662	-1.0387	-4.1632	0.345			

 Table (3): the output data of Rosetta program of surface and sub-surface for each location soil

· · ·	<u> </u>		
Soil Depth	Hydraulic Pi	roperties	
(cm)	0	-33	-1500
	(k	ilopascal)kpa	
L1	0.686	0.373	0.264
L2	0.376	0.277	0.123
L1	0.6004	0.382	0.271
L2	0.6004	0.400	0.081
L1	0.6725	0.395	0.276
L2	0.7004	0.277	0.280
	Soil Depth (cm) L1 L2 L1 L2 L1 L2 L1 L2	Soil Hydraulic Pi Depth 0 (cm) 0 L1 0.686 L2 0.376 L1 0.6004 L2 0.6004 L1 0.6725 L2 0.7004	Soil Hydraulic Properties Depth 0 -33 (cm) 0 -33 L1 0.686 0.373 L2 0.376 0.277 L1 0.6004 0.382 L2 0.6004 0.382 L2 0.6004 0.400 L2 0.6725 0.395 L2 0.7004 0.277

Table (4):- shows	some hydraulic	properties of	f studied soils.

 Table(5):- shows the calculated and measured values of VG parameters by using PTFs based on five levels of input data for Zawita Clay Loam soil,D1.

Zawita	Depth 1 Clay Loam					
Soil Property	H1	H2 %	H3 % +	H4 % +	H5 % + BD +	Measured
	T.C	S,Si.C	BD g/cc	BD+ 33kpa	33kpa +1500kpa	
Theta-r (θr)	0.0792	0.0884	0.0892	0.088	0.0786	0.2640
Theta-s (θs)	0.4418	0.4619	0.4648	0.4673	0.4737	0.6860
Alpha (□)	0.0158	0.0105	0.0105	0.0075	0.0095	0.0101
(n)	1.4145	1.4318	1.4575	1.4162	1.3114	1.4714
(m)	0.2930	0.3015	0.3138	0.2938	0.2374	0.3204

• Marks:

VG= van Genuchten model.

H1= Soil catalog for initial estimate.

H2= Neural network prediction.

H3= H2+Bulk density in g/cc.

H4=H3+Bulk density in g/cc.+ θ m at 33 kpa.

H5=H3+ Bulk density in g/cc.+ θ m at 33 kpa.+ θ m at 1500 kpa.

Fig. (2):- The relationships between measured and calculated VG parameters by using five pedotransfer for Zawita, D1 soil

Fig.(2) illustrates the relationships between measured and calculated values by using hierarchical PTFs based on five levels of input data for Zawita,D1soil,that the all hierarchical PTFs performance very well for prediction through using coefficient of determination (\mathbb{R}^2) as indicator for comparison, and also the five PETs gave high coefficient of determination for depth one, D1ofZawita Clay Loam soil and ranged between (0.9644, 0.9687, 0.9668, 0.9718 and 0.9808) for PTFs (H1,H2,H3,H4 and H5) respectively and the best performance was for H5 and the others gave (R²) more than 0.96.(Table 5).

Zawita	Depth 2 Loam					
Soil Property	H1	H2 %	H3 % +	H4 % +	H5 % + BD +	Measured
	T.C	S,Si.C	BD g/cc	BD+ 33kpa	33kpa +1500kpa	
Theta-r (θr)	0.0609	0.0633	0.0626	0.0583	0.0497	0.1230
Theta-s (θs)	0.3971	0.4026	0.407	0.4186	0.4108	0.3760
Alpha (□)	0.0111	0.0136	0.0118	0.0123	0.0128	0.0070
(n)	1.4737	1.4423	1.4653	1.4096	1.3578	1.4845
(m)	0.3214	0.3066	0.3267	0.2905	0.2635	0.3264

The above table demonstrate the calculated VG parameters values applying by using five PTFs to measured values for depth two of

Zawita loamy soil and best calculation were for(θ s, n and m) compared to the measured values.

Fig. (3):- The relationships between measured and calculated VG parameters by using five pedotransfer for Zawita, D2 soil

Fig.(3) revealed the relationships between measured and calculated values by using hierarchical PTFs based on five levels of input data for Zawita,D2 soil, that the all hierarchical PTFs performance were very well for prediction through using coefficient of determination (R^2) as indicator for comparison, and also the five PETs gave high coefficient of determination for depth one, D2 of Zawita Loamy soil and ranged between (0.9973,0.9967,0.9967,0.9942 and 0.9923) for PTFs (H1,H2,H3,H4 and H5) respectively and the best performance was for H1(0.9973)and the others gave (R^2) more than 0.99(Table 6).

Table (7):- shows van Genuchten parameter values depth one,D1 for Swaratoka Clay loam soil.

Swaratoka	Depth 1 Clay Loam					
Soil Property	H1	H2 %	H3 % +	H4 % +	H5 % + BD +	Measured
	T.C	S,Si.C	BD g/cc	BD+ 33kpa	33kpa +1500kpa	
Theta-r (θr)	0.0792	0.0892	0.0923	0.0895	0.081	0.2760
Theta-s (θs)	0.4418	0.4588	0.4757	0.4784	0.485	0.6725
Alpha (🗆)	0.0158	0.0133	0.0128	0.0095	0.0117	0.0171
(n)	1.4145	1.3652	1.4073	1.3462	1.2747	2.1530
(m)	0.2930	0.2675	0.2894	0.2571	0.2155	0.3485

The above table shows the VG parameters values calculated by using five PTFs and measured values for depth one, D1for Swaratoka

Clay Loam soil and best calculation were for $(\alpha$ and m) compared to the measured values.

Fig. (4):- the relationships between measured and calculated VG parameters by using five pedotransfer for Swaratoka, D1 soil

Fig.(4) revealed the relationships between measured and calculated values by using hierarchical PTFs based on five levels of input Swaratoka.D1soil.that the data for all hierarchical PTFs performance very well for prediction through coefficient using of determination (\mathbf{R}^2) as indicator for comparison, and also the five PETs gave high coefficient of determination for depth one, D1 of Swaratoka Clay Loam soil and ranged between(0.9889, 0.9912, 0.9899, 0.99 and 0.9867)for PTFs (H1,H2,H3,H4 and H5) respectively and the best performance was for H2(0.9912)and the others gave (R²) more than 0.98(Table 7).

Swaratoka	Depth 2	Clay				
Soil Property	H1	H2 %	H3 % +	H4 % +	H5 % + BD +	Measured
	T.C	S,Si.C	BD g/cc	BD+ 33kpa	33kpa +1500kpa	
Theta-r (θr)	0.0982	0.0922	0.0954	0.094	0.0839	0.2800
Theta-s (θs)	0.4588	0.4687	0.4878	0.4912	0.4979	0.7004
Alpha (□)	0.0150	0.0135	0.136	0.0094	0.011	0.0061
(n)	1.2529	1.3513	1.3899	1.335	1.2675	1.4190
(m)	0.2018	0.2599	0.2805	0.2509	0.211	0.2935

The table (8) demonstrates the VG parameters values calculated by using five PTFs and measured vales for depth one,D1 for

Swaratoka Clay soil and best calculation were for (n and m) compared to the measured values.

Fig. (5):- the relationships between measured and calculated VG parameters by using five pedotransfer for Swaratoka, D2 soil

Fig.(5) illustrates the relationships between measured and calculated values by using hierarchical PTFs based on five levels of input data for Swaratoka,D2 soil ,that the all hierarchical PTFs performance very well for prediction through using coefficient of determination (\mathbb{R}^2) as indicator for comparison, and also the five PETs gave high coefficient of determination for depth one, D1 of Swaratoka Clay soil and ranged between (0.975, 0.9653, 0.9356, 0.9726 and 0.9784) for PTFs (H1,H2,H3,H4 and H5) respectively and the best performance was for H1 H5 (0.97845) and the others gave (R²) more than 0.93(Table8).

 Table (9) :-shows calculated and measured van Genuchten parameter values for Koradare Silty Clay soil depth one, D1.

Koradare	Depth 1 Silty					
Soil Property	H1	H2 %	H3 % +	H4 % +	H5 % + BD +	Measured
	T.C	S,Si.C	BD g/cc	BD+ 33kpa	33kpa +1500kpa	
Theta-r (θr)	0.1108	0.0917	0.0959	0.0926	0.0867	0.2710
Theta-s (θs)	0.4808	0.469	0.5047	0.5053	0.5116	0.6004
Alpha (□)	0.0162	0.0123	0.0127	0.0098	0.0113	0.0207
(n)	1.3207	1.3811	1.4141	1.347	1.2407	1.6444
(m)	0.2428	0.2759	0.2928	0.2579	0.2252	0.3919

Table (9) demonstrates the VG parameters values calculated by using five PTFs and measured vales for depth one,D1 for Koradare

Silty Clay soil and good calculation were for $(\alpha, n, and m)$ compared to the measured values

Fig(6):- the relationships between measured and calculated VG parameters by using five pedotransfer for Koradare, D1 soil

Fig.(6) revealed the relationships between measured and calculated values by using hierarchical PTFs based on five levels of input data for Koradare,D1 soil,that the all hierarchical PTFs performance very well for prediction through using coefficient of determination (\mathbb{R}^2) as indicator for comparison, and also the five PETs gave high coefficient of determination for depth one, D1 of Koradare Silty Clay soil and ranged between (0.9922, 0.9917, 0.9912, 0.9897 and 0.9831) for PTFs (H1,H2,H3,H4 and H5) respectively and the best performance was for H1 (0.9922) and the others gave (\mathbb{R}^2) more than 0.98(Table 9).

Koradare	Depth 2 Silty Loar	m				
Soil Property	H1	H2 %	H3 % +	H4 % +	H5 % + BD +	Measured
	T.C	S,Si.C	BD g/cc	BD+ 33kpa	33kpa +1500kpa	
Theta-r (θr)	0.0645	0.0551	0.053	0.0495	0.039	0.0810
Theta-s (θs)	0.4387	0.4095	0.3804	0.8864	0.3889	0.6004
Alpha (□)	0.0051	0.0054	0.0065	0.0067	0.0065	0.2914
(n)	1.6620	1.626	1.611	1.534	1.488	1.4320
(m)	0.3985	0.385	0.3795	0.3482	0.3283	0.3107

 Table (10) :-shows van Genuchten parameter values Van Genuchten depth two, D2 for Koradare Silty Loam soil.

Table (10) demonstrates the VG parameters values calculated by using five PTFs and measured values for depth one,D2 for Koradare

Silty Loam soil and good calculation were for (n and m) compared to the measured values.

Fig. (7):- The relationships between measured and calculated VG parameters by using five pedotransfer for Koradare, D2 soil.

Fig.(5) revealed the relationships between measured and calculated values by using hierarchical PTFs based on five levels of input data for Koradare,D2soil, that the all hierarchical PTFs performance very well for prediction through using coefficient of determination (R²) as indicator for comparison, and also the five PETs gave high coefficient of determination for depth one, D1 of Koradare Silty Loam soil and ranged between (0.9404, 0.9395, 0.9357, 0.9142and 0.9493) for PTFs (H1,H2,H3,H4 and H5) respectively and the best performance was for H5 (0.9493) and the others gave (R²) more than 0.91(Tabl10).

EVOLUTION OF PEDOTRANSFER, PTFS: 1- Determination coefficient (R²):

 Table (11) :-Determination coefficient of measured and predicted parameters of van Genuchten by using five pedotransfer for studied soils.

Location	Soil Depth	R ²				
	(cm)	H1	H2	H3	H4	H5
Zaweta						
CL	L1	0.9644	0.9686	0.9668	0.9718	0.9808
L	L2	0.9973	0.9967	0.9967	0.9942	0.9923
Swaratoka						
CL	L1	0.9889	0.9912	0.9899	0.9900	0.9867
С	L2	0.9750	0.9653	0.9356	0.9726	0.9784
Koradare						
SiC	L1	0.9922	0.9917	0.9912	0.9897	0.9831
SiL	L2	0.9404	0.9395	0.9357	0.9142	0.9493

The values of determination coefficients (\mathbb{R}^2) between measured and calculated values are exhibit in table(9), It shows that 30% determination coefficients (\mathbb{R}^2) gave more than 0.99 and 50% gave more than 0.98 and the

others gave between (0.91-0.97) at applying the PTFs at two depths for the studied soils of(Zawita, Swaratoka Koradare), and the highest values were for Zawita loamy soil, depth two at applying PTFs (H1,H2,H3,H4 and H5).

2.RMSE:

 Table (12):- Root Mean Square Error (RMSE) of measured and calculated parameters of van Genuchten by using Five PTFs for studied soils.

Location	Soil Depth	RMSE				
	(cm)	H1	H2	H3	H4	H5
Zawita						
CL	L1	0.1399	0.1560	0.1263	0.1285	0.1496
L	L2	0.0299	0.0299	0.0316	0.0508	0.0730
Swaratoka						
CL	L1	0.3579	0.3762	0.3555	0.3826	0.4153
С	L2	0.1597	0.1376	0.1394	0.1321	0.1478
Koradare						
SiC	L1	0.1828	0.1626	0.1433	0.1717	0.2157
SiL	L2	0.1838	0.1800	0.1828	0.1874	0.1619

The values of RMSE of VG parameters for five PTFs are listed in table (12), and noticed that lowest values of RMSE were exhibit by all soils (Zawita, Swaratoka and Koradare and two depths D1 and D2 exceptD1 of Swaratoka Clay loam soil and at different textures, and the minimum value was (0.099) at using H2 PedotransferforD2,Zawita loamy soil, whereas the maximum value was(0.4153) for Swaratoka Clay Loam,D1 and at using H5 pedotransfer

3-NSE

Table (13):- Nash Sutcliffe Efficiency of measured and predicted parameters of van Genucht	en by using five
pedotransfer for studied soils.	

Location	Soil Depth	NSE					
	(cm)	H1	H2	H3	H4	H5	
Zaweta							
CL	L1	0.9244	0.9729	0.9653	0.9527	0.9634	
L	L2	0.9968	0.9953	0.9964	0.9907	0.9809	
Swaratoka							
CL	L1	0.8128	0.8686	0.9653	0.7805	0.8523	
С	L2	0.8948	0.9218	0.9198	0.9280	0.9098	
Koradare							
SiC	L1	0.9526	0.9624	0.8511	0.9239	0.9339	
SiL	L2	0.8497	0.8559	0.8514	0.8438	0.8834	

Values of NSE of calculated VG parameters to measured parameters are illustrated in table (13) and revealed that the maximum values more than (0.99)were found in Zawita loamy soil and at depth two,D2 whereas the minimum values were noticed in Koradare Silty Loam and at depth two,D2and the highest value was(0.9968) for Zawita loamy soil,D2 at applying H1 whereas the lowest value was (0.7805) for Swaratoka Clay loam soil at using H4 PTFs.

DISCUSSION

It could be dividing the discussion to two parts:

Part 1

Related to the closed expressions of van Genuchten parameters(φ s, φ r, α ,n,m)the results appeared high values of volumetric moisture content at saturation, os, for soils of Zawita, Swaratoka and Koradare because of high percent of clay which high specific area and large ratio of capillary pore space specially in D1 for three mentioned soil and same found for,or I and these finding in line of investigations of Klute,1986;Boma,1989 Arya and et **a**1 1999. While The values of α have illustrations as concerned to a values high limits found in soils of Zawita, Swaratoka for D1 and D2 and low limits appeared in Koradare soil and for same depths(D1 and D2), as related to to values of n and m which has same trend ,the large values noticed in light soil which contain less percent of clay comparing to heavy soil which poses high clay percent It is worthy to mention here that one of the most important explanation is that related to the texture of soil in Zawita loamy soil and at depth two,D2 is considered as light comparing to D2 Koradare Silty Loam, which has heavy texture .many researchers confirmed that increasing of clay present cause decreasing of value of n parameter and this finding in

agreement of (VG,1980;Vogel et al;2001, Schaap and Van Genuchten,2006) **Part 2**

The second part of discussion concerned to evaluation of pedotransfer which include tree indices are Coefficient of Determination, R², Root Mean Square od Difference, RMSD, and Sutcliffe Efficiency as related Nash to coefficient of determination (R2) describe the degree of collinearity between simulated and measured data. The correlation coefficient, which ranges from -1 to 1, is an index of the degree of linear relationship between observed and simulated dataR2 describes the proportion of the variance in measured data explained by the model. R2 ranges from 0 to 1, with higher values indicating less error variance, and typically values greater than 0.5 are considered acceptable (Santhi et al., 2001, Van Liew et al., 2003). All R^2 values are much than 0.s for three different textures and for depth one, D1 and depth two,D2(Table11)

RMSE is one of the commonly used error index statistics (Chu and Shirmohammadi, 2004; Singh et al., 2004; Vasquez-Amábile and Engel, 2005).

Although it is commonly accepted that the lower the RMSE the better the model performance. minimum RMSE value was 0.0299 for Zawita soil at D2 and applying PET H2 whereas maximum RMSE value was 0.4153 for Swaratoka soil at applying PET H5 for D1 (Table 12)

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative magnitude of the residual variance ("noise") compared to the measured data variance ("information") (Nash and Sutcliffe, 1970). NSE indicates how well the plot of observed versus simulated data fits the 1:1 line. NSE is computed as shown in equation 3: NSE was recommended for two major reasons:

(1) it is recommended for use by ASCE (1993) and Legates and McCabe (1999), and

(2) it is very commonly used, which provides extensive information on reported values.

Sevat and Dezetter (1991). According to the results of Table 13 the values of NSE ranged between minimum of 0.8128 for Swaratoka soil at depth,D1 and applying PTF H1 to maximum of 0.9964 for Zawita soil at applying PTF H1 for depth,D2

CONCLUSIONS

1- There are noticeable variations in water

behavior among the studied soil samples

which means that the different water management is required.

2-This study tested the application of the pedotransfer function Rosetta to identify the level of input needed in order to use Rosetta as a tool to calculate the VG parameters.

3- Based on the conducted results we conclude that Rosetta PTF is a useful tool that can be used to calculate Ks in the absence of measured values and that for this particular soil, the hierarchical level 5 of Rosetta yielded the best results with the measured input data. The better prediction of VG parameters by using the hierarchical level 5 of the PTF Rosetta confirms the findings of Gülser et al. (2008) and Acosta-Carlos Alvarez et al. (2012).

Recommendations:

To conduct more investigation related to the soil hydraulic properties of different types of soils our region in order to put proper plans for water and soil management.

REFERENCES:

- ABDELHAFID, Youcef; CHEBBAH, Mohamed; RECHACHI, Milad Zohra. 2021.
- Comparison of regression methods for predicting soil water contents at field capacity and wilting point in Bas Sahara of Algeria. International Journal of Forest, Soi & Erosion. 2021, Issue 2, p45-62

- Acosta- Carlos Alvarez, Robert J. Lascano1, and Leo Stroosnijder 2012.Test of the
- Rosetta Pedotransfer Function for Saturated Hydraulic Open Journal of Soil Science, 2, 203-212

http://dx.doi.org/10.4236/ojss.2012.23025 Published Online September 2012 http://www.SciRP.org/journal/ojss)203

- ASCE. 1993. Criteria for evaluation of watershed models. J. Irrigation Drainage Eng. 119(3): 429-442
- Bouyoucos,G.J.1962. "Hydrometer Method Improved for Making Particle Size Analyses of Soils, "Agronomy Journal, Vol. 54, No. 5, 1962, pp. 464doi:10.2134/agronj1962.00021962005400050 028x
- Chu, T. W., and A. Shirmohammadi. 2004. Evaluation of the SWAT model's hydrology
- component in the piedmont physiographic region of Maryland. Trans. ASAE 47(4): 1057-1073.
- Eijkelkamp, "Pressure Membrane Apparatus," 2005.
- http://www.eijkelkamp.com/Portals/2/Eijkelkamp/Fil es/Manuals/M10803e%20Pressure%20membr ane.pdf
- Estimating parameters for the Van Genuchten model from soil physical-chemical properties of undisturbed loess-soil (Springer Nature Switzerland AG. 2021).__Earth Science Informatics volume 14 pages1563–1570 (2021)
- Gülser, C, and F. Candemir,2008. "Prediction of Saturated Hydraulic Conductivity Using Some Moisture Constants and Soil Physical Properties," Proceeding BalwoisOhrid.
- Klute, A. (1986). Methods of soil Analysis .part 1. Physical and Mineralogical Methods,
- 2nd ed. Agronomy Monograph No .9 Madison, WI,ASA-SSSA
- Kobayashi.K, and M. U. Salam,2000. "Comparing Simulated and Measured Values
- Using Mean Squared Deviatio and Its Components," Agronomy Journal, Vol. 92 No. 2, pp. 345-352. doi:10.2134/agronj2000.922345x
- Legates, D. R., and G. J. McCabe. 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Res. 35(1): 233-241..
- Moriasi.D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmeland T. L.
- Veith, 2007."Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations," Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900.
- Mualem, Y.(1976).A new model predicting the hydraulic of Unsaturated porous media. Water Resou.Res.12(3):513-522.
- Pingzong Zhu; GuanghuiZhang BaojunZhang^c.2022.Soil saturated hydraulic
- conductivity of typical revegetated plants on steep gully slopes of Chinese Loess Plateau
- https://doi.org/10.1016/j.geoderma.2022.115717
- Rudiyanto;[;] Budiman Minasny ;Nathaniel W.Chaney ;Federico Maggi ;SunnyGoh Giap [;]; Ramisah M.Shah[;] ; Dian Fiantis BudI.Setiawang **2021.** Pedotransfer functions for estimating soil

¹⁸p.

hydraulic from saturation to dryness. Geoderma, Volume 403, 115194

- Schaap, M. G. and F. J. Leij, "1998Using Neural Networks t Predict Soil Water Retention
- and Soil Hydra Conductivity," Soil and Tillage Research, Vol. No. 1-2, pp. 37-42. doi:10.1016/S0167-1987 (98)00070-1.
- Schaap, M. G., F. J. Leij and M. T. van Genuchten,2001 "Rosetta: A Computer Program
- for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions," Journal of Hydrology, Vol. 251, No. 3- 4, pp. 163-176. doi:10.1016/S0022-1694 (01) 00466-8.
- Sevat, E., and A. Dezetter. 1991. Selection of calibration objective functions in the
- context of rainfall-runoff modeling in a Sudanese savannah area. Hydrological Sci. J. 36(4): 307-330.
- Schaap, M.G. and M.Th. Van Genuchten (2006). A Modified MualemVan
- Genuchten formulation for Improved Description of the Hydraulic Conductivity Near Saturation . Vadose zone journal vol.5:27-34.
- Singh, J., H. V. Knapp, and M. Demissie. 2004. Hydrologic modeling of the Iroquois
- River watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State Water Survey. Available at:www.swsuiuc.edu/pubdoc/CR/ ISWSCR2004-08.pdf. Accessed 8 September 2005.
- Stumpp, C; S. Engelhardt, M. Hofmann and B. Huwe,2009 "Evaluation of Pedotransfer
- Functions for Estimating Soil Hydraulic Properties of Prevalent Soils in a Catchment of the Bavarian Alps," European Journal of Forest Research, Vol. 128, No. 6, pp. 609. 620. doi:10.1007/s10.008-0241-7.
- Van, Gneuchten, 1992. Van Genuchten, M.Th., F.J. Leij and S.R Yates (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. Rep. EPA/600/2-91/065.
 R.S. Kerr Environmental Research Laboratory, USEPA, Ada, OK.
- Van Genuchten, M.Th. 1980.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Am. J. 44:892-898.
- Vazquez-Amábile, G. G., and B. A. Engel. 2005. Use of SWAT to compute groundwater
- table depth and streamflow in the Muscatatuck River watershed. *Trans. ASAE* 48(3): 991-1003.
- Vogel, T., M. Th. Van Genuchten and M. Cislerova (2001). Effect of the shape of the soil hydraulic functions near saturation on variably- saturated flow predictions Advances in water Resources 24 (2001) 133-144
- Wang, X., and A. M. Melesse. 2005. Evaluation of the SWAT model's snowmelt

- hydrology in a northwestern Minnesota watershed. Trans. ASAE 48(4): 1359-1376.
- YunqiangWang; Shao, Ming 'an; Liu, Zhipeng,2012 Pedotransfer Functions for
- Predicting Soil Hydraulic Properties of the Chinese Loess Plateau Soil Science. Volume 177 . Issue 7. p 424- 432. doi: 10.1097/SS.0b013e318255a449