
 

ayad.ali@staff.uoz.edu.krd;       Bayda.fathi@uoz.edu.krd 

14 

HYBRIDIZATION GRADIENT BASED METHODS WITH GENETIC 

ALGORITHM FOR SOLVING SYSTEMS OF LINEAR EQUATIONS  
 

AYAD RAMADHAN ALI and BAYDA GHANIM FATHI 
 

Dept. of Mathematics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq 

 

(Received: April 24, 2022; Accepted for Publication: July 4, 2022) 

 

ABSTRACT 
In this paper, we propose two hybrid gradient based methods and genetic algorithm for solving 

systems of linear equations with fast convergence. The first proposed hybrid method is obtained by using 

the steepest descent method and the second one by the Cauchy-Barzilai-Borwein method. These 

algorithms are based on minimizing the residual of solution which has genetic characteristics. They are 

compared with the normal genetic algorithm and standard gradient based methods in order to show the 

accuracy and the convergence speed of them. Since the conjugate gradient method is recommended for 

solving large sparse and symmetric positive definite matrices, we also compare the numerical results of 

our proposed algorithms with this method. The numerical results demonstrate the robustness and 

efficiency of the proposed algorithms. Moreover, we observe that our hybridization of the CBB method 

and genetic algorithm gives more accurate results with faster convergence than other mentioned methods 

in all given cases.  

 

KEYWORDS: Genetic Algorithm, Hybrid Genetic Algorithm, Steepest Descent Method, Cauchy-

Barzilai-Borwein Method, Systems of Linear Equations. 
 

 
 

 

 
 

 

 

 

 

 

1. INTRODUCTION 

 

here are various known iterative 

methods for solving a system of linear 

equations 

    ,              (1.1) 

where   is an     real matrix and  ,   are 

  ×  real vectors. Genetic algorithm is a new 

developing research field of interest in finding 

solutions to these sets of equations. 

A Genetic Algorithm is an evolutionary 

process based on Artificial Intelligence. It is a 

stochastic process or algorithm for solving 

optimization problems that are non-deterministic 

and non-mathematical. John Holland first 

proposed the concept of the genetic algorithm in 

1975, with the goal of making computers mimic 

nature. He was fascinated with algorithms that 

manipulate binary digit strings to solve a 

problem that resembled natural evolution, i.e., 

designing an algorithm that is an abstract of 

natural development. Holland got the idea for 

the genetic algorithm from Charles Darwin's 

evolutionary theory (1859) called Darwinian 

evolution. The Darwinian evolutionary concept 

of "survival of the fittest" declared that only 

species that are fitted to survive may reproduce 

their kind. The evolutionary process is the 

computer matching of Charles Darwin that 

yields a genetic algorithm (Holland, 1975). 

In a variety of fields, such as science, social 

sciences, and engineering, systems of linear 

equations are used to solve problems. Several 

well-known traditional techniques for solving 

systems of linear equations based on theoretical 

principles occur. The use of genetic algorithm to 

find a solution to this set of equations is a new 

and emerging study subject of interest. This 

algorithm is based on the notion of solution 

evolution, in which generations of solutions are 

produced stochastically using a specified fitness 

function to find the best fit solution to the 

situation. The genetic algorithm has been used to 

solve a range of scientific problems, including 

scheduling, timetabling, and the problems of 

traveling salesmen. It has been effectively used 

in many optimization problems, but its 

application for solving systems of equations is 

still being researched (Ikotun Abiodun, Lawal 

Olawale, & Adelokun Adebowale, 2011).  

In this paper, two-hybrid genetic algorithms 

have been proposed for solving symmetric linear 

systems with positive definite coefficient 

matrices and nonlinear systems of equations. 

Some of their matrices are ill-conditioned and 

high dimensions. The proposed hybrid 

algorithms are based on a normal evolutionary 

T 

 https://doi.org/10.26682/sjuod.2022.25.2.4
Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 41-49, 2022 



Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 41-49, 2022 
 

 

14 

algorithm and gradient search techniques. The 

best individual of the population propagates to 

the next generation using gradient information. 

We use the best individual to accelerate the 

convergence of the SD (Cauchy, 1847) and the 

CBB methods (Raydan & Svaiter, 2002). 

This paper has the following structure: In 

section two, the problem statement for our work 

is stated, in section three, some related works are 

presented. In section four, the fundamental steps 

of the genetic algorithm are shown. We 

introduce two suggestion optimization 

techniques for solving systems of linear 

equations in section five. In section six, we 

propose two hybrid genetic algorithms. In 

section seven the numerical results and 

discussions are given. Finally, we conclude in 

section eight. 

 

2. PROBLEM STATEMENT 

 

Systems of linear equations are used to solve 

linear problems in a variety of topics, including 

science, the social sciences, and engineering. 

There are a number of well-known conventional 

methods for solving systems of linear equations 

that are founded on theoretical ideas. A novel 

and developing area of research that is of interest 

is the use of genetic algorithms to solve this 

system of equations. This algorithm is based on 

the idea of solution evolution, where successive 

generations of solutions are generated 

stochastically while using a designated fitness 

function to discover the solution that best fits the 

circumstance. Scheduling, timetabling, and 

issues with traveling salespeople are just a few 

of the scientific issues that the genetic algorithm 

has been used to solve. Although many 

optimization problems have successfully been 

solved using it, its applicability in solving 

systems of equations is currently under 

investigation [39]. 

This research focuses on investigating how 

quickly gradient algorithms can solve generic 

linear systems of equations. Additionally, we try 

to suggest methods to combine the continuous 

method (numerical optimization) with the 

discrete technique (genetic algorithm) to obtain 

the overall solution. In short, our aim is to 

provide some general-purpose algorithms for 

solving linear systems of equations. 

We will use two known gradient-type 

approaches to solve a linear system of equations 

in our study. Numerous applications, such as 

mechanical structure design, medical imaging, 

difficult combinatorial problems, etc., might 

include these kinds of problem. 

This feature denotes quick convergence in 

terms of the number of iterations (computations 

of the approximate solutions). This makes it 

possible to obtain high-accuracy solutions. All 

known polynomial time techniques, however, 

have a common drawback: the computing cost 

each iteration rises nonlinearly with the 

problem's design dimension. 

 

3. RELATED WORKS 

 

M. Ikotun Abiodun et al. examined the 

origins of the Genetic Algorithm and its 

usefulness in solving systems of simultaneous 

equations in 2011. To solve seven distinct 

systems of simultaneous linear equations, they 

used the Genetic Algorithm on the one hand and 

the Gaussian elimination approach on the other. 

They then compared the results of the two 

approaches. The Genetic Algorithm was shown 

to be extremely successful in discovering all 

feasible sets of solutions for any given system of 

simultaneous linear equations.(Ikotun Abiodun 

et al., 2011). 

A general introduction to the Genetic 

Algorithm is given, as well as its application in 

solving Systems of Linear Equations and the 

implications of changing the Population Size and 

Number of Generations. The genetic algorithm 

simultaneous linear equation solver software was 

ran numerous times with different sets of 

simultaneous linear equations and varied 

population sizes and generations to see how they 

affected solution creation. It was discovered that 

a small population size does not provide perfect 

answers as quickly as a big population size does, 

and that the number of generations, whether 

small or large, had no influence on the 

achievement of a perfect solution(Ikotun, 

Akinwale, & Arogundade, 2016). 

To identify the Fittest Chromosomes, an 

efficient genetic method was used to a linear 

programming issue. The experimental results 

identify the best chromosomes for a constraint 

linear programming problem, resulting in a 

better solution(Datta, 2012). 

Punam S Mhetre used the Genetic Algorithm 

as a nonlinear approach to solve linear and 

nonlinear equation systems in 2012, with the 

goal of determining the key benefits received as 

a consequence of employing GA(Mhetre, 2012). 



Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 41-49, 2022 
 

 

14 

Lubna Zaghlul Bashir solved a linear 

equation problem using genetic algorithms in 

2015(Bashir, 2015). 

Some hybrid genetic algorithms have been 

developed by combining genetic algorithms with 

gradient-based heuristic search strategies, such 

as conjugate gradient, and have recently been 

used to solve hard scientific problems(Sun & 

Zhang, 2006). 

In 2007, Tahk et al. introduced a hybrid 

optimization approach for optimization with 

continuous parameters that combines 

evolutionary algorithms with gradient search 

techniques(Tahk, Woo, & Park, 2007). 

Okamoto et al. introduced a hybrid genetic 

algorithm for non-linear numerical optimization 

in 1998, which included the modified Powell 

technique(Okamoto, Nonaka, Ochiai, & 

Tominaga, 1998). 

Chelouah and Patrick introduced a 

continuous new hybrid approach for continuous 

multimodal optimization problems in 2003, 

integrating genetic algorithm with Nelder-Mead 

simplex algorithm(Chelouah & Siarry, 2003) . 

In computer-aided design, genetic algorithms 

are used. Design is a difficult technical process 

that is becoming more computer-aided. The 

design task is frequently viewed as an 

optimization problem, with parameters or 

structures characterizing the highest-quality 

design algorithms and several methods in which 

they might tackle tough design challenges. They 

addressed a number of sophisticated genetic 

algorithms that have been shown to be effective 

in tackling complex design issues(El-Emary & 

Abd El-Kareem, 2008; Renner, 2004). 

For all works mentioned above, some 

researchers used hybrid genetic algorithms with 

gradient optimization techniques to solve 

nonlinear equations, and others used only 

genetic algorithms to solve linear systems. 

However, these techniques do not work well for 

ill-conditioned systems or solving systems with 

large dimensions. The solution of a linear system 

is equivalent to the minimization of a nonlinear 

quadratic function, but what if the system is 

large and ill-conditioned? In this case, we aim to 

propose two hybrid genetic algorithms with 

common gradient optimization methods that can 

solve systems for large dimensions and ill-

conditioned systems with fast convergence. 

 

 

 

4. GENETIC ALGORITHM (GA) 

 

In most cases, a genetic algorithm is made up 

of two processes. The first process is the 

selection of suitable parents for the next 

generation(Karakatič & Podgorelec, 2015; 

Saragih & Nababan, 2019) The second step is 

reproduction, which involves modifying the 

fitness value of the new generation of children 

by using crossover and mutation operators on the 

selected parents(Razali & Geraghty, 2011). 

The flowchart of the GA is presented  in Fig.1 as 

was shown by Pal & Parashar in 2014, where its 

steps are written in the following: 

4.1 Genetic Algorithm  (Hossain et al., 2019) 

The typical steps to be followed in designing 

genetic algorithm are: 

Step 1: [Start][initialization] Randomly create 

an initial population of    chromosomes (i.e. 

appropriate solutions to the problem) 

Step 2: [Fitness] For each chromosome, the 

fitness function is calculated. 

Step 3: [New population] To make a new 

population, repeat the instructions below. 

 [Selection] The present population is utilized 

to determine which chromosome pairs should be 

mated. The fitness probability of parent 

chromosomes is used to choose them. Highly 

fitting chromosomes are more likely to be 

selected for mating.  

 [Crossover] The parents will crossover to 

create new offspring if their crossover chance is 

high. If there is no crossover, the offspring will 

be the same as the parents 

  [Mutation] Create new offspring with a 

probability of a mutation at each chromosome 

position. 

 [Acceptance] The chromosomes of the 

generated offspring are placed in the new 

population. 

Step 4: [Replacement] Use the generated 

population for a subsequent run of the program. 

Step 5: [Test] If the end condition is reached, 

stop and return the best solution in the current 

population. 

Step 7: [Loop] Continue to the second step. 

 

 

 

 

 

 

 

 



Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 41-49, 2022 
 

 

11 

 

Fig( 1):- Flowchart of the genetic algorithm (Pal & Parashar, 2014). 

 
5. GRADIENT BASED METHODS 

 

5.1 The Steepest Descent (SD) Method 

The steepest descent (SD) method is the 

analog of finding the minima of a function by 

following the derivative in higher dimensions. In 

1847, this method was first proposed by Cauchy 

(Cauchy, 1847). The solution of        is the 

point in    where the quadratic form  ( )  

 
 

 
     –          achieves the minimum 

value. This can be verified by expanding  ( ) 
and setting the partial derivatives to be 0. The 

positive semidefinite constraint ensures that the 

solution of        is a local minimum for 

 ( ) and not a saddle point. 

The steepest descent method is an iterative 

method that starts at an arbitrary point    and 

obtains      from    by moving in the direction 

   reverse to the gradient. The gradient is the 

direction of steepest increase for the value of 

 ( ) locally, the goal is to minimize  ( ) so we 

move in a direction opposite to the gradient. The 

update rule is, 

 

                                                                                           (5.1) 

 

Here            is the direction opposite 

to the gradient and we choose     such that    
  

       . The geometric intuition for the choice 

of   is the following: As we move in the 

direction    opposite to the gradient, the gradient 

starts changing, as long as the projection of the 

gradient onto the direction    is negative the 

value of the objective function decreases. The 

transition point occurs when the new gradient is 

orthogonal to the current direction. 

The value of   corresponding to the 

orthogonality condition can be calculated easily 

with some algebra(Fathi, 2013), 

 

                                                                                        (5.2) 

 

  
            

  
   

  
    

                                                                     (5.3) 

 

 

5.2 Outline of the SD Method (Cauchy, 1847): 

Step1: Given a matrix      (   )        

and an initial approximation       
  to 

compute the solution          of        . 
Step 2: Set             . 
Step 3: for              , where   is the 

maximum number of iterations. 

Step 4: Set the step size     
  
   

  
    

 . 

Step 5: Compute                 . 

Step 6: Compute the new residual defined 

by                .  
Step 7: Until ‖     ‖

  is zero or small enough. 

 



Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 41-49, 2022 
 

 

14 

5.3 The Cauchy-Barzilai-Borwein (CBB) 

Method 

Barzilai-Borwein-like methods have been 

applied in a wide range of applications due to 

their efficiency, simplicity, and minimal memory 

needs. The Cauchy-Barzilai-Borwein (CBB) 

algorithm is a modification of the Barzilai-

Borwein (BB) algorithm (Raydan & Svaiter, 

2002). Each iteration of this algorithm can be 

thought of as two iterations of the steepest 

descent method, where the step size only needs 

to be computed once but is used twice(Fathi, 

2013). The algorithm has been defined as 

follows: 

 

Let        
  and 

        
(     )

(      )
                                                                             (5.4) 

where            If 

          
(     )

(      )
                                                                             (5.5) 

Then by using 

           
(     )

(      )
                                                                         (5.6) 

it can obtain 

         
(     )

(      )
   (

(     )

(      )
)
 
                                                         (5.7) 

 

 

5.4 Outline of the CBB Method (Raydan & 

Svaiter, 2002): 

Step1: Given a matrix      (   )        

and an initial approximation       
  to 

solve       . 

Step 2: Set the initial residual             . 
Step 3: for              , where   is the 

maximum number of iterations. 

Step 4: Set the step size     
  
   

  
    

 . 

Step 5: Compute                    
     

. 

Step 6: Compute the new residual        
         . 

Step 7: Stop as ‖     ‖
  is zero or small enough. 

Raydan and Svaiter demonstrated that in the 

elliptic norm, this approach converges Q-

linearly. Furthermore, they discovered a unique 

property of this algorithm: increasing the 

condition number reduced the average number 

of iterations required by CBB(Raydan & Svaiter, 

2002). 

For solving systems of linear equations, the CBB 

approach has been shown to be clearly superior 

than the SD and BB methods in several 

numerical studies(Fathi, 2013). 
 

6. TWO PROPOSED HYBRID GENETIC 

ALGORITHMS 
 

This section contains two hybrid genetic 

algorithms for solving systems of linear 

equations. 

6.1  First Proposed Hybrid Genetic (HGASD) 

Algorithm 

The first proposed algorithm is a hybrid genetic 

algorithm with the steepest descent method and 

the steps of the first proposed hybrid genetic 

algorithm are: 

1-Parameters: 

Given a matrix       (   )        , 

determine the number of individuals, generation 

(iteration), mutation rate, crossover rate value, 

and minimum fitness value (tolerance). 

2-Create Initial Population: 

The process begins with a population, which 

is a set of individuals. Each individual is a 

solution to the problem under consideration. In 

this work, the population number is equal to 100 

which are decimals. 

3- Fitness Evaluation: 

The fitness function specifies how an 

individual should be fitted (i.e. the ability of an 

individual to compete with other individuals). It 

assigns a fitness value to each individual. The 

fitness value decides whether or not an 

individual will be selected for reproduction. The 

fitness function in this work is  ( )  
 ‖    ‖ . 

4- Selection Operator:  

The purpose of the selection phase is to 

choose the fittest individuals (parents) and let 

them pass on their genes to the next generation. 

In this work we use tournament selection 

method, Tournament selection involves running 

several "tournaments" among a few individuals 

(chromosomes) chosen at random from the 



Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 41-49, 2022 
 

 

14 

population. The winner of each tournament (the 

one with the best fitness) is selected for 

crossover. 

5 - Crossover Operator: 

Crossover is usually applied to selected pairs 

of parents. Single point crossover is the most 

simple crossover operator, where a crossover 

point is selected randomly, and two-parent 

chromosomes are exchanged at this point. The 

crossover rate (CR) is the parameter that 

determines how many chromosomes are 

expected to undergo the crossover operation and 

it is taken equal to 0.98 in this work. All 

chromosomes in the population will be included 

in the crossover procedure when the crossover 

rate is set to 1. 

6 – Mutation Operator: 

The most common way of implementing 

mutation is the uniform mutation (which is used 

in this work); in uniform mutation one position 

is chosen randomly in the chromosome and 

changes its value with a probability. 

7 - Hybridization step: 

After mutation, a new population has been 

created. Each chromosome in the new 

population is considered as the initial point for 

the steepest descent method. The equations (5.1) 

and (5.3) are executed to generate a new 

population to start the genetic algorithm again 

until the stopping criterion is satisfied. 

8 - Stop Criterion: 

The stopping criterion decides whether the 

algorithm continues in searching or stops. In this 

work, the stop criterion depends on two 

approaches: either the number of generations 

reached or the fitness value found to be less 

than     . 

6.2  Outlines of Our HGASD Algorithm: 

Step1: Given a matrix      (   )        

and                  
Step2: Create the initial population randomly, 

and              where   is the maximum 

number of generations (iterations). 

Step3: Calculate fitness function for each 

chromosome in the population. 

Step4: [New population] Create a new 

population by repeating the following steps until 

a new population is complete. 

 [Selection] Select two parent chromosomes 

from a population according to their fitness. 

 [(Crossover) (recombination)] Crossover the 

parents to form a new offspring (children). 

 [Mutation] Mutate new offspring by using 

order change at a random position. 

Step5: Let                  . 

Step6: Set the residual vector          –  . 

Step7: Evaluate the step size    by (5.3). 

Step8: Compute      by (5.1). 

Step9: Calculate fitness function for each 

chromosome in the population, and then find 

minimum fitness value. 

Step10: If     or minimum fitness value is 

zero or less than the tolerance then stop; print 

minimum fitness value and solution      , 

otherwise, continue.  

Step11: Set         , go to step 3. 

6.3 Second Proposed Hybrid Genetic 

(HGACBB) Algorithm 

The Cauchy-Barzilai-Borwein (CBB) method 

is used in the second proposed hybrid algorithm 

and its steps as the first proposed algorithm 

except for the hybridization steps. In the 

hybridization step for this algorithm is after 

mutation, a new population has been created. 

Each chromosome in the new population is the 

initial point for the Cauchy-Barzilai-Borwein 

(CBB), and then the hybridization with CBB 

starts. The two main steps of the CBB method, 

(5.3) and (5.7), are executed to generate a new 

population to restart the genetic algorithm until 

the stopping criterion is satisfied. 

The outline of our HGACBB algorithm is the 

same as the HGASD algorithm except for step 8 

in which      is computed by using the equation 

(5.7). 
 

7. NUMERICAL RESULTS AND 

DISCUSSION 
 

In this work, the overall efficiency of the 

proposed methods is tested with numerical 

examples. The programs of all algorithms under 

consideration are written in MATLAB 2014 

with double precision to introduce the 

computational performance of them. In all 

programs, the parameters of the GA and the 

proposed hybrid algorithms are: population 

numbers = 100, crossover rate = 0.98 and, 

mutation rate = 0.01. Stopping criterion for the 

gradient based methods is ‖  ‖
       and it 

is the minimum fitness value (tolerance) ≤ 10
-6

 

for the normal GA and our hybrid algorithms 

(HGASD and HGACBB). 

To investigate the applicability of the two 

proposed hybrid algorithms to solving system of 

linear equations,    several systems of linear 

equations (positive integer only) of two different 

dimensions,      and     , most of these 

systems are taken from (Ikotun Abiodun et al., 



Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 41-49, 2022 
 

 

14 

2011), are used and their results are illustrated in 

Tables 1 and 2. 

Table 1 gives the solutions of three systems 

of linear equations throw 20 iterations by using 

the methods of SD, CBB, GA,  CG (H/S), 

HGASD and HGACBB. These solutions are 

compared with the exact solution to see the 

accuracy of the performance of all the 

considering algorithms in this work. 

 

Table (1): Comparison of the standard SD method, CBB method, CG (H/S) method and GA with two 

proposed hybrid genetic algorithms (HGASD and HGACBB) for solving some given examples 
Test 
No. 

Equations ρ 
 

SD CBB CG(H/S) GA HGASD HGACBB Exact 

1 x1+ 2x2 +3x3 = 3 
x1+2x2 + x3 = 6 
x1+ x2 + 3x3 = 7 

20.457     

       
  
        
  
        

  
      
  
    
  
      

  
         
  
        
  
        

  
         
  
         
  
         

         
      
         

         
      
         

         
      
         

2 -10x1+ 7x2 - 5x3 = 
60 
x1 + x3 = 26 
-3x1 +7x2 +5x3 = 
14 

73.146 Fail Fail Fail   
         
  
         
  
        

  
          
  
          
  
          

  
           
  
          
  
          

        
       
         

3 -
x1+2x2+3x3+16x4= 
-33 
x1 +2x2 + x3 - 
8x4= 0 
10x1 +x2+3 
x3+5x4= -7 
x1 - 2 x2 + 4x3 -
9x4= 1 

6.9815 Fail Fail Fail   
         
  
          
  
         
  
          

  
         
  
         
  
          
  
          

  
         
  
          
  
          
  
          

  
         
  
         
  
           
  
          

 

Table2 shows the convergence speed of all 

algorithms for seven examples (Ikotun Abiodun 

et al., 2011). The speed of the convergence is 

based on generation (iteration) numbers.  In this 

table, the convergence speed of the HGASD and 

HGACBB is compared with the normal GA, the 

SD method, the CBB method and the CG (H/S) 

method.  

 

Table (2): Comparison of the standard SD method, the CBB method, the CG (H/S) method and GA 

with the two proposed hybrid algorithms (HGASD and HGACBB) for some tested systems of linear 

equations (Ikotun Abiodun et al., 2011). 
Test 
No. 

Equations ρ Number of generations(iterations) 

SD CBB CG (H/S) HGASD HGACBB Original GA 

1 x1 + 2x2 + 3x3 = 14 
x1 + x2 + x3 = 6 
3x1 + 2x2 + x3 = 10 

2.8416e+016 
 

8 3 2 3 3 54 

2 2x1 + 4x2 + x3 = 5 
4x1 + 4x2 + 3x3 = 8 
4x1 + 8x2 + x3 = 9 

42.8811 
 

Fail 12 79 11 7 24 

3 10x1 + x2 + x3 = 12 
2x1 + 10x2 + x3 = 13 
2x1 + 2x2 + 10x3 = 14 

1.5322 
 

6 3 5 4 2 33 

4 x1 + 2x2 + 3x3 = 6 
2x1 + 4x2 + x3 = 7 
3x1 + 2x2 + 9x3 = 14 

21.9933 
 

Fail 8 102 4 4 25 

5 2x1 + x2 + 3x3 = 13 
x1 + 5x2 + x3 = 14 
3x1 + x2 + 4x3 = 17 

41.0554 
 

Fail 6 3 12 3 2194 

6 2x1 + 4x2 + 8x3 = 44 
4x1 + 6x2 + 10x3 = 66 
6x1 + 8x2 + 10x3 = 84 

128.4097 
 

Fail 15 Fail 104 18 3500 

7 4x1 + 3x2 + 2x3 + x4 = 10 
3x1 + 2x2 + x3 + 4x4 = 9 
2x1 + x2 + 4x3 + 3x4 = 14 
x1 + 4x2 + 3x3 + 2x4 = 10 

5.0000 
 

Fail 17 4 11 7 1471 



Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 41-49, 2022 
 

ayad.ali@staff.uoz.edu.krd;       Bayda.fathi@uoz.edu.krd 

14 

In order to test the convergence speed of our 

proposed algorithms, we compare their 

performance with other related algorithms using 

systems of linear equations with random positive 

definite matrices      and random vectors     , 

with different sizes (               ) and 

condition number, ρ=40. All methods were run 

500 times each. The results are demonstrated as 

in Tables 3 and 4. 

Table 3 observes shows the convergence 

speed of the HGASD, HGACBB, the normal 

GA, the SD method, the CBB method and the 

CG (H/S) method based on generation numbers 

of the linear systems with symmetric positive 

definitive matrices (SPDM) (Fathi, 2013). 

Table 4 tests the convergence speed based on 

generation(iteration) numbers of the random 

linear systems of equations with slightly non-

symmetric positive definitive matrix (SNSPDM) 

(Fathi, 2013). 

 

Table (3): Comparison of the standard SD method, CBB method, CG (H/S) method and GA with two 

proposed hybrid genetic algorithms (HGASD and HGACBB) for linear systems with SPDM 
Test 
No. 

Matrix 
Dimension 

Number of generations(iterations) 

SD CBB CG(H/S) HGASD HGACBB Original GA 

1        133 17 10 10 8 Over 2000 

2        139 18 21 125 13 Over 2000 

3          137 19 20 51 16 Over 2000 

4          129 18 21 49 13 Over 2000 

 

Tables 3 and 4 are shown that the 

convergence speed for our hybrid algorithms is 

better than for the standard gradient methods and 

the genetic algorithm without a hybrid. 

Moreover, the HGACBB for solving both types 

of systems, i.e.  SPDM and NSPDM, is faster 

than all the other mentioned algorithms.  

 

Table (4): Comparison of the standard SD method, CBB method, CG (H/S) method and GA with two 

proposed hybrid genetic algorithms (HGASD and HGACBB) for linear systems with SNSPDM 
Test 
No. 

Matrix 
Dimension 

Number of generations(iterations) 

SD CBB CG(H/S) HGASD HGACBB Original GA 

1        133 16 20 18 8 1500 

2        107 20 27 26 11 Over 2000 

3          141 21 31 51 21 Over 2000 

4          125 24 32 62 17 Over 2000 

 

Form the tables; it observes that our hybrid 

methods show better performance than the one 

without hybrid for all presented test problems. 

For linear systems with symmetric positive 

definite matrices, the best result we can obtain 

by using the CG-H/S method which is 

competitive to the results of the HGACBB when 

the condition numbers are small enough. If the 

condition number of the matrices are increased 

(ill- problems), then our proposed hybrid 

algorithms give superior results than the 

methods of SD, CBB, GA and even CG-H/S. 

In general, for non-symmetric positive 

definite matrices, the HGASD and HGACBB are 

preferable to use rather than the GA and the 

standard gradient based methods. 

By this, we can conclude that hybrid genetic 

algorithms are effective and more efficient than 

the normal genetic algorithm of solving 

symmetric systems of equations with positive 

definite coefficient matrices. The HGACBB is 

outperformance than all other algorithms for 

each case as reported in every table.  
 

8. CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER WORK 
 

In this paper, we proposed two hybrid genetic 

algorithms for solving systems of linear 

equations where their matrices are square and 

real. The numerical experiments showed that the 

hybrid genetic algorithm is more effective and 

efficient than the standard algorithms and the 

original genetic algorithm for solving all given 

problems. Although the CG method is better 

than HGASD for some cases, it gets worse than 

HGACBB for all cases. Therefore, we can notice 

that the idea of hybridization of the gradient 

method and genetic algorithm give faster and 



Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 41-49, 2022 
 

 

14 

more accurate results than CG method even for 

systems of linear equations with symmetric 

positive definite matrix when the condition 

number increases.  

This work gives motivation to use the idea of 

the hybridization the gradient type methods and 

genetic algorithm to solve more complicated 

problems such as the systems of linear equations 

with higher dimensions and non-square matrices 

moreover for general systems of nonlinear 

equations. 
 

REFERENCES 
Bashir, L. Z. (2015). Solve simple linear equation 

using evolutionary algorithm. World Scientific 

News, No. 19, 148–167.[1]       

Cauchy, A. (1847). Méthode générale pour la 

résolution des systèms d’équations 

simultanées. Comput. Rend. Sci. Paris, vol. 25 

, 536–538.[2]       

Chelouah, R., & Siarry, P. (2003). Genetic and 

Nelder–Mead algorithms hybridized for a 

more accurate global optimization of 

continuous multiminima functions. European 

Journal of Operational Research, vol. 148 ,No. 

2, 335–348. https://doi.org/10.1016/S0377-

2217(02)00401-0[3]       

Datta, S. (2012). Efficient genetic algorithm on linear 

programming problem for fittest 

chromosomes. Journal of Global Research in 

Computer Science, vol. 3 ,No. 6, 1–7.[4]       

El-Emary, I. M. M., & Abd El-Kareem, M. M. 

(2008). Towards using genetic algorithm for 

solving nonlinear equation systems. World 

Applied Sciences Journal, vol. 5 ,No. 3, 282–

289.[5]       

Fathi, G. B. (2013). Gradient Optimization 

Algorithms with Fast Convergence. Cardiff 

University, UK.[6]       

Holland, J. H. (1975). Adaptation in natural and 

artificial systems, univ. of mich. press. Ann 

Arbor.[7]       

Hossain, M., Tanim, A., Choudhury, S., Hayat, S., 

Kabir, M. N., & Islam, M. M. (2019). An 

Efficient Solution to Travelling Salesman 

Problem using Genetic Algorithm with 

Modified Crossover Operator. EMITTER 

International Journal of Engineering 

Technology, vol. 7 ,.[8]       

Ikotun, A. M., Akinwale, A. T., & Arogundade, O. T. 

(2016). Parameter Variation For Linear 

Equation Solver Using Genetic Algorithm. 

Journal of Natural Sciences Engineering and 

Technology, vol. 15 ,No. 2, 42–50.[9]       

Ikotun Abiodun, M., Lawal Olawale, N., & Adelokun 

Adebowale, P. (2011). The effectiveness of 

genetic algorithm in solving simultaneous 

equations. International Journal of Computer 

Applications, vol. 975 , 8887.[10]       

Karakatič, S., & Podgorelec, V. (2015). A Survey of 

Genetic Algorithms for Solving Multi Depot 

Vehicle Routing Problem. Appl. Soft 

Comput., vol. 27 ,No. C, 519–532.[11]       

Mhetre, P. S. (2012). Genetic algorithm for linear and 

nonlinear equation. International Journal of 

Advanced Engineering Technology, vol. 3 

,No. 2, 114–118.[12]       

Okamoto, M., Nonaka, T., Ochiai, S., & Tominaga, 

D. (1998). Nonlinear numerical optimization 

with use of a hybrid genetic algorithm 

incorporating the modified Powell method. 

Applied Mathematics and Computation, vol. 

91 ,No. 1, 63–72.[13]       

Pal, D., & Parashar, A. (2014). Improved genetic 

algorithm for intrusion detection system. In 

2014 International Conference on 

Computational Intelligence and 

Communication Networks (pp. 835–839). 

IEEE.[14]       

Raydan, M., & Svaiter, B. F. (2002). Relaxed steepest 

descent and Cauchy-Barzilai-Borwein method. 

Computational Optimization and Applications, 

vol. 21 ,No. 2, 155–167.[15]       

Razali, N. M., & Geraghty, J. (2011). Genetic 

algorithm performance with different selection 

strategies in solving TSP. In Proceedings of 

the world congress on engineering (Vol. 2, pp. 

1–6). International Association of Engineers 

Hong Kong, China.[16]       

Renner, G. (2004). Genetic algorithms in computer-

aided design. Computer-Aided Design and 

Applications, vol. 1 ,No. 1–4, 691–700.[17]       

Saragih, R. I. E., & Nababan, D. (2019). Increase 

Performance Genetic Algorithm In Matching 

System By Setting GA Parameter. In Journal 

of Physics: Conference Series (Vol. 1175, p. 

12100). IOP Publishing.[18]       

Sun, L., & Zhang, W. (2006). An accelerated micro 

genetic algorithm for numerical optimization. 

In Asia-Pacific Conference on Simulated 

Evolution and Learning (pp. 277–283). 

Springer.[19]       

Tahk, M., Woo, H., & Park, M. (2007). A Hybrid 

Optimization Algorithm of Evolutionary 

Algorithm and Gradient Search. Engineering 

Optimization, vol. 39 ,No. 1.[20]       

 


