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ABSTRACT 

In this paper, the Hirota-Satsuma coupled Korteweg-de Vries system is solved numerically by using 

radialbasis function-Pseudospectral method. The radial basis functions are used to approximate the space 

derivatives in the system. Moreover, the system has become a system of ordinary differential equations 

with independent variable  , and this system is solved by Runge-Kutta fourth order method, with the help 

of MATLAB R2020a. Also, a comparison has been made between approximate solutions obtained by the 

proposed method and exact solutions. 
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1- INTRODUCTION 

 

he nonlinear system of partial 

differential equations (PDEs) has variety 

of applications in different fields of mechanics, 

biology, hydro dynamics, and plasma physics. 

The Korteweg-de Vries (KdV) equations have 

been part of an important class of non-linear 

evolution equations with numerous applications 

in physics, plasma and engineering fields. In the 

theory of rogue waves, the KdV equation 

describes the effects in shallow water. In plasma 

physics, the KdV equations produce ion-acoustic 

solutions (Gao and Tian, 2021; Mahmoud et al., 

2020). Also, the Hirota-Satsuma coupled KdV 

system has many applications in many branches 

of nonlinear science. For example, this equation 

can be applied to the field of thermodynamics, 

where it can be used to exactly calculate 

partition and correlation functions. Describing 

generic properties of string dynamics for strings 

and multi-strings in constant curvature space can 

be thought as another application of the Hirota-

Satsuma coupled KdV system (Gao and Tian, 

2021; Yucel et al., 2017). 

There are many methods for approximating 

the solution of PDEs or the system of PDEs. 

Generally speaking, they fall into two classes: 

those in which the solution is approximated at 

some discrete points called grid or mesh points, 

and those in which the solution is approximated 

by a finite number of terms of infinite 

expansions concerning a sequence of functions 

(Ferreira et al., 2009; Jain, 1979). 
In this paper, we used we use radial basis 
function (RBF) to approximate the space 
derivatives, because RBFs are increasingly being 
applied in the numerical solution of PDEs, and 
are a viable alternative to more traditional 
methods (Buhmann, 2004). The simple idea of 
using RBFs to solve PDEs was first introduced 
by Kansa in 1990, he has used the multiquadric 
RBF to find the approximate solution of the 
different types of system of PDEs (Ferreira et 
al., 2009) 

Radial basis function-Pseudospectral method 
(RBF-PS method) is a well-known numerical 
technique for solving PDEs. This method was 
originally developed and used by 
mathematicians for solving problems in physics. 
RBF-PS method is a semi-discrete method 
which is convenient and quite reliable. In this 
method by discretizing the spatial derivatives 
only and leaving time variable continuous, the 
original PDE is converted into a system of 
ordinary differential equations (ODEs), which is 
then integrated in time (Eilbeck and Manoranjan, 
1986; Fasshauer, 2007). RBFs contain a free 
shape parameter we will see, which affects the 
accuracy of a solution and conditioning of RBF 
interpolation matrix (Platte and Driscoll, 2006; 
Sarra, 2006).  

Here, we consider the Hirota-Satsuma 

coupled KdV system, which is as follows (Fan, 

2001; Manaa and Azzo, 2022): 

T 
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𝑢𝑡 =
1

2
𝑢𝑥𝑥𝑥 − 3𝑢𝑢𝑥 + 3𝑣𝑤𝑥 + 3𝑤𝑣𝑥 

           𝑣𝑡 = −𝑣𝑥𝑥𝑥 + 3𝑢𝑣𝑥 (1)       

           𝑤𝑡 = −𝑤𝑥𝑥𝑥 + 3𝑢𝑤𝑥, 
 

where 𝑢 = 𝑢(𝑥, 𝑡), 𝑣 = 𝑣(𝑥, 𝑡) and 𝑤 = 𝑤(𝑥, 𝑡). 

 

Our aim in this paper is to extend the application 

of RBF-PS method for finding the approximate 

solutions of nonlinear Hirota Satsuma coupled 

KdV system, and we will solve the system on 

the domain 𝑎 ≤ 𝑥 ≤ 𝑏, and 0 ≤ 𝑡 ≤  𝑇.  We take 

𝑥𝑖 = 𝑎 + 𝑖Δ𝑥, for 𝑖 = 0, . . . , 𝑛, and 𝑡𝑞 = 𝑞Δ𝑡, 

𝑞 = 0, . . . , 𝑚, with 

Δ𝑥 = (𝑏 − 𝑎)/𝑛 and Δ𝑡 = 𝑇/𝑚.  

 

2- RBF-PSMETHOD 

The basic idea of the RBF-PS method is to use a 

set of smooth basis functions 𝐵𝑗  , 𝑗 =  0, . . . , 𝑛 , 

such as polynomials to represent the 

approximate solution of the PDEs (Fasshauer, 

2007;  Fornberg, 1998; Trefethen, 2000). Thus, 

the radial base function approximations for the 

system (1) are given by the following formulas: 

 

 

      𝑢(𝑥, 𝑡) ≈ 𝑢̂(𝑥, 𝑡) = ∑ 𝑐1𝑗 𝐵𝑗(𝑥)𝑛
𝑗=0   

      𝑣(𝑥, 𝑡) ≈ 𝑣(𝑥, 𝑡) = ∑ 𝑐2𝑗 𝐵𝑗(𝑥)𝑛
𝑗=0          (2)                                              

     𝑤(𝑥, 𝑡) ≈ 𝑤̂(𝑥, 𝑡) = ∑ 𝑐3𝑗 𝐵𝑗(𝑥)𝑛
𝑗=0 . 

Here, 

𝐵𝑗(𝑥) = 𝜑(‖𝑥 − 𝑥𝑗‖), 

 

where 𝜑 is one of the strictly positive definite 

RBF, and we adopt the Euclidean norm ‖. ‖ to 

denote the distance between the point 𝑥𝑗 and 𝑥. 

The time variable in the formulas (2) ignored 

(i.e. 𝑐𝑗 are unknown time-dependent functions). 

Thus, only the initial value variable, typically the 

time in a physical problem, remains. Some most 

commonly used RBFs are as follows (Buhmann, 

2004; Fasshauer, 2007): Multiquadric (MQ): 

𝜑(𝑟) = √1 + (𝜀𝑟)2;  and Gaussian (GA): 

𝜑(𝑟) = 𝑒−(𝜀𝑟)2
, where 𝑟 = ‖𝑥‖ is a radial 

variable and the positive parameter 𝜀 is well-

known shape parameter used to scale the basis 

functions. 

 

 

  

Now, evaluate (2) at the grid points 𝑥𝑖, for each 

𝑖 = 0, . . . , 𝑛, we get: 
 

𝑢̂(𝑥, 𝑡) = ∑ 𝑐1𝑗 𝜑(‖𝑥𝑖 − 𝑥𝑗‖)𝑛
𝑗=0   

𝑣(𝑥, 𝑡) = ∑ 𝑐2𝑗 𝜑(‖𝑥𝑖 − 𝑥𝑗‖)𝑛
𝑗=0   

𝑤̂(𝑥, 𝑡) = ∑ 𝑐3𝑗 𝜑(‖𝑥𝑖 − 𝑥𝑗‖)𝑛
𝑗=0 ,  

or, in the matrix-vector notation, we have: 
 

                             𝑈 = 𝐴𝐶1  

                             𝑉 = 𝐴𝐶2                                 (3)          

                            𝑊 = 𝐴𝐶3,                  

where 

𝐶𝑙 = [𝑐𝑙0, … , 𝑐𝑙𝑛]𝑇, 𝑙 = 1,2,3. 

and, 

𝑈 = [𝑢̂(𝑥0, 𝑡), … , 𝑢̂(𝑥0, 𝑡)]𝑇 

𝑉 = [𝑣(𝑥0, 𝑡), … , 𝑣(𝑥0, 𝑡)]𝑇 

 𝑊 = [𝑤̂(𝑥0, 𝑡), … , 𝑤̂(𝑥0, 𝑡)]𝑇 , 

 

and the evaluation matrix A has the form: 
 

(𝐴)𝑖𝑗 = 𝜑(‖𝑥 − 𝑥𝑗‖)|
𝑥=𝑥𝑖

.  
 

Now, computing the derivative of 𝑢̂, 𝑣, and 𝑤̂ in (2) by differentiating the basis functions, as 
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follows: 
 

𝜕

𝜕𝑥
𝑢̂(𝑥, 𝑡) = ∑ 𝑐1𝑗  

𝑑

𝑑𝑥
𝜑(‖𝑥 − 𝑥𝑗‖)

𝑛

𝑗=0

 

                
𝜕

𝜕𝑥
𝑣̂(𝑥, 𝑡) = ∑ 𝑐2𝑗  

𝑑

𝑑𝑥
𝜑(‖𝑥 − 𝑥𝑗‖)          

𝑛

𝑗=0

 (4) 

𝜕

𝜕𝑥
𝑤̂(𝑥, 𝑡) = ∑ 𝑐3𝑗  

𝑑

𝑑𝑥
𝜑(‖𝑥 − 𝑥𝑗‖)

𝑛

𝑗=0

. 

 

Evaluate (4) at the grid points 𝑥𝑖 , as follows: 
 

𝜕

𝜕𝑥
𝑢̂(𝑥, 𝑡)|

𝑥=𝑥𝑖

 = ∑ 𝑐1𝑗  
𝑑

𝑑𝑥
𝜑(‖𝑥 − 𝑥𝑗‖)|

𝑥=𝑥𝑖

𝑛

𝑗=0

 

 
𝜕

𝜕𝑥
𝑣̂(𝑥, 𝑡)|

𝑥=𝑥𝑖

= ∑ 𝑐2𝑗  
𝑑

𝑑𝑥
𝜑(‖𝑥 − 𝑥𝑗‖)|

𝑥=𝑥𝑖

𝑛

𝑗=0

 

𝜕

𝜕𝑥
𝑤̂(𝑥, 𝑡)|

𝑥=𝑥𝑖

= ∑ 𝑐3𝑗  
𝑑

𝑑𝑥
𝜑(‖𝑥 − 𝑥𝑗‖)|

𝑥=𝑥𝑖

𝑛

𝑗=0

. 

 

 In the matrix-vector notation, we have: 
 

 

                               𝑈𝑥 = 𝐴𝑥𝐶1 

                                𝑉𝑥 = 𝐴𝑥  𝐶2                              (5) 

                               𝑊𝑥 = 𝐴𝑥𝐶3,          
 

 

where, 𝑈, 𝑉, 𝑊, 𝐶1, 𝐶2 and 𝐶3 are as before, and the derivative matrix 𝐴𝑥 has the form: 
 

(𝐴𝑥)𝑖𝑗 =
𝑑

𝑑𝑥
𝜑(‖𝑥 − 𝑥𝑗‖)|

𝑥=𝑥𝑖
 . 

 

According to the discussion in (Fasshauer, 

2007, Trefethen, 2000), if we use strictly 

positive definite RBFs, then the evaluation 

matrix 𝐴 is invertible for any set of distinct 

collocation points. Also, the non-singularity of 

the evaluation matrix 𝐴 depends on the 

properties of RBFs used, according to 

(Fasshauer, 2007) the matrix 𝐴 is positive 

definite for some RBFs, this fact ensures the 

non-singularity of the matrix 𝐴 for distinct 

supporting points. For more details about the 

invertibility of the evaluation matrix 𝐴 see the 

following references (Fornberg, 1998; Micchelli, 

1986; Platte and Driscoll, 2005).  

Now, we can solve (3) for the coefficient vectors 

𝐶1, 𝐶2 and 𝐶3, as follows: 

 
 

                               𝐶1 = 𝐴−1𝑈  

                               𝐶2 = 𝐴−1𝑉                              (6) 

                               𝐶3 = 𝐴−1𝑊.            

 

Substitute (6) into (5), we get: 
 

                             𝑈𝑥 = 𝐴𝑥𝐴−1𝑈 

                              𝑉𝑥 = 𝐴𝑥𝐴−1𝑉 

                             𝑊𝑥 = 𝐴𝑥𝐴−1𝑊. 

 

Define the differentiation matrix 𝐷𝑥, as follows: 
 
 

                           𝐷𝑥 = 𝐴𝑥𝐴−1. 
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We can write the above equations in the following forms: 
 

                                𝑈𝑥 = 𝐷𝑥𝑈 

                                𝑉𝑥 = 𝐷𝑥𝑉                             (7) 

                               𝑊𝑥 = 𝐷𝑥𝑊.        

 

 Again, it is possible to find the differentiation matrix concerning the third derivatives, as follows: 
 

                                                         𝑈𝑥𝑥𝑥 = 𝐷𝑥𝑥𝑥𝑈 

                           𝑉𝑥𝑥𝑥 = 𝐷𝑥𝑥𝑥𝑉                              (8) 

                          𝑊𝑥𝑥𝑥 = 𝐷𝑥𝑥𝑥𝑊,  
 

where 

                        𝐷𝑥𝑥𝑥 = 𝐴𝑥𝑥𝑥𝐴−1 , 
 

and the matrix 𝐴𝑥𝑥𝑥 has the form: 

(𝐴𝑥𝑥𝑥)𝑖𝑗 =
𝑑3

𝑑𝑥3
𝜑(‖𝑥 − 𝑥𝑗‖)|

𝑥=𝑥𝑖
.  

 

In order to solve the model (1), we will discretize the spatial domain in the model with the 

collocation points 𝑥𝑖, for each 𝑖 = 0, . . . , 𝑛, to obtain: 

𝑢𝑡(𝑥𝑖, 𝑡) =
1

2
𝑢𝑥𝑥𝑥(𝑥𝑖, 𝑡) − 3𝑢(𝑥𝑖, 𝑡)𝑢𝑥(𝑥𝑖, 𝑡)  + 3𝑣(𝑥𝑖 , 𝑡)𝑤𝑥(𝑥𝑖, 𝑡) + 3𝑤(𝑥𝑖 , 𝑡)𝑣𝑥(𝑥𝑖, 𝑡)    

𝑣𝑡(𝑥𝑖, 𝑡) = −𝑣𝑥𝑥𝑥(𝑥𝑖, 𝑡) + 3𝑢(𝑥𝑖, 𝑡)𝑣𝑥(𝑥𝑖, 𝑡)                      𝑤𝑡(𝑥𝑖, 𝑡) = −𝑤𝑥𝑥𝑥(𝑥𝑖, 𝑡) +

3𝑢(𝑥𝑖, 𝑡)𝑤𝑥(𝑥𝑖, 𝑡).  
 

In more compact form, we have: 
 

𝑑𝑈

𝑑𝑡
=

1

2
𝑈𝑥𝑥𝑥 − 3𝑈 ∗ 𝑈𝑥 + 3𝑉 ∗ 𝑊𝑥 + 3𝑊 ∗ 𝑉𝑥 

𝑑𝑉

𝑑𝑡
= −𝑉𝑥𝑥𝑥 + 3𝑈 ∗ 𝑉𝑥                                              (9) 

𝑑𝑊

𝑑𝑡
= −𝑊𝑥𝑥𝑥 + 3𝑈 ∗ 𝑊𝑥 , 

 

where 𝑈, 𝑉, and 𝑊 are as before, and the symbol ∗ denotes component by component 

multiplication of two vectors. Substitute equations (7) and (8) into the equation (9), we get: 
  
𝑑𝑈

𝑑𝑡
=

1

2
𝐷𝑥𝑥𝑥𝑈 − 3𝑈 ∗ (𝐷𝑥𝑈) + 3𝑉 ∗ (𝐷𝑥𝑊) + 3𝑊 ∗ (𝐷𝑥𝑉) 

𝑑𝑉

𝑑𝑡
= −𝐷𝑥𝑥𝑥𝑉 + 3𝑈 ∗ (𝐷𝑥𝑉)                               (10) 

𝑑𝑊

𝑑𝑡
= −𝐷𝑥𝑥𝑥𝑊 + 3𝑈 ∗ (𝐷𝑥𝑊). 

 

For simplicity we can write (10) in the following forms:  
𝑑𝑈

𝑑𝑡
= 𝐹1(𝑡, 𝑈, 𝑉, 𝑊) 

                            
𝑑𝑉

𝑑𝑡
= 𝐹2(𝑡, 𝑈, 𝑉, 𝑊)                   (11) 

𝑑𝑊

𝑑𝑡
= 𝐹3(𝑡, 𝑈, 𝑉, 𝑊), 
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where,  

𝐹1(𝑡, 𝑈, 𝑉, 𝑊) =
1

2
𝐷𝑥𝑥𝑥𝑈 − 3𝑈 ∗ (𝐷𝑥𝑈) 

                           +3𝑉 ∗ (𝐷𝑥𝑊) + 3𝑊 ∗ (𝐷𝑥𝑉) 

𝐹2(𝑡, 𝑈, 𝑉, 𝑊) = −𝐷𝑥𝑥𝑥𝑉 + 3𝑈 ∗ (𝐷𝑥𝑉) 

𝐹3(𝑡, 𝑈, 𝑉, 𝑊) = −𝐷𝑥𝑥𝑥𝑊 + 3𝑈 ∗ (𝐷𝑥𝑊). 

The system (1) has become a system of 

ODEs given by (11) with independent variable 𝑡. 

In this paper, we will solve the system (11) by 

Runge-Kutta 4th order method (RK4M) (Burden 

and Faires, 2001). 

3. Runge-Kutta 4th Order Method (RK4M) 

The most widely used methods for solving 

ODEs are the series of methods called Runge-

Kutta method (Constantinides and Mostoufi, 

1999; Golub and Ortega, 1992; Haribaskaran, 

2009). The RK4M of (11) is given by: 

 

𝑈(𝑞+1) = 𝑈(𝑞) +
Δ𝑡

6
(𝐽1 + 2𝐽2 + 2𝐽3 + 𝐽4)                

      𝑉(𝑞+1) = 𝑉(𝑞) +
Δ𝑡

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4)       (12) 

𝑊(𝑞+1) = 𝑊(𝑞) +
Δ𝑡

6
(𝐿1 + 2𝐿2 + 2𝐿3 + 𝐿4),           

where, 

𝐽1 = 𝐹1(𝑡𝑞 , 𝑈(𝑞), 𝑉(𝑞), 𝑊(𝑞)) 

𝐾1 = 𝐹2(𝑡𝑞 , 𝑈(𝑞), 𝑉(𝑞), 𝑊(𝑞)) 

𝐿1 = 𝐹3(𝑡𝑞 , 𝑈(𝑞), 𝑉(𝑞), 𝑊(𝑞)) 

𝐽2 = 𝐹1 (𝑡𝑞 +
Δ𝑡

2
, 𝑈(𝑞) +

Δ𝑡𝐽1

2
, 𝑉(𝑞) +

Δ𝑡𝐾1

2
, 𝑊(𝑞) +

Δ𝑡𝐿1

2
) 

 𝐾2 = 𝐹2 (𝑡𝑞 +
Δ𝑡

2
, 𝑈(𝑞) +

Δ𝑡𝐽1

2
, 𝑉(𝑞) +

Δ𝑡𝐾1

2
, 𝑊(𝑞) +

Δ𝑡𝐿1

2
) 

𝐿2 = 𝐹3 (𝑡𝑞 +
Δ𝑡

2
, 𝑈(𝑞) +

Δ𝑡𝐽1

2
, 𝑉(𝑞) +

Δ𝑡𝐾1

2
, 𝑊(𝑞) +

Δ𝑡𝐿1

2
) 

𝐽3 = 𝐹1 (𝑡𝑞 +
Δ𝑡

2
, 𝑈(𝑞) +

Δ𝑡𝐽2

2
, 𝑉(𝑞) +

Δ𝑡𝐾2

2
, 𝑊(𝑞) +

Δ𝑡𝐿2

2
) 

 𝐾3 = 𝐹2 (𝑡𝑞 +
Δ𝑡

2
, 𝑈(𝑞) +

Δ𝑡𝐽2

2
, 𝑉(𝑞) +

Δ𝑡𝐾2

2
, 𝑊(𝑞) +

Δ𝑡𝐿2

2
) 

 𝐿3 = 𝐹3 (𝑡𝑞 +
Δ𝑡

2
, 𝑈(𝑞) +

Δ𝑡𝐽2

2
, 𝑉(𝑞) +

Δ𝑡𝐾2

2
, 𝑊(𝑞) +

Δ𝑡𝐿2

2
) 

𝐽4 = 𝐹1(𝑡𝑞 + Δ𝑡, 𝑈(𝑞) + Δ𝑡𝐽3 , 𝑉(𝑞) + Δ𝑡𝐾3, 𝑊(𝑞) + Δ𝑡𝐿3) 

𝐾4 = 𝐹2(𝑡𝑞 + Δ𝑡, 𝑈(𝑞) + Δ𝑡𝐽3, 𝑉(𝑞) + Δ𝑡𝐾3, 𝑊(𝑞) + Δ𝑡𝐿3) 

𝐿4 = 𝐹3(𝑡𝑞 + Δ𝑡, 𝑈(𝑞) + Δ𝑡𝐽3, 𝑉(𝑞) + Δ𝑡𝐾3, 𝑊(𝑞) + Δ𝑡𝐿3), 

and, 

𝑈(𝑞) = [𝑢̂(𝑥0, 𝑡𝑞), … , 𝑢̂(𝑥𝑛, 𝑡𝑞)]
𝑇

 

𝑉(𝑞) = [𝑣(𝑥0, 𝑡𝑞), … , 𝑣(𝑥𝑛, 𝑡𝑞)]
𝑇
 

𝑊(𝑞) = [𝑤̂(𝑥0, 𝑡𝑞), … , 𝑤̂(𝑥𝑛, 𝑡𝑞)]
𝑇

. 

 
 

Therefore, the numerical solution 𝑈, 𝑉 and 𝑊 at (𝑥𝑖 , 𝑡𝑞), can be obtained by computing 
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𝑈(𝑞+1),  𝑉(𝑞+1) and 𝑊(𝑞+1) in equation (12), 

successively for each 𝑞 = 0, . . . , 𝑚 − 1, while 

𝑈(0), 𝑉(0) and  𝑊(0) are known by initial 

conditions. 

 

4. NUMERICAL EXAMPLES 
 

In this section, we will solve the Hirota-

Satsuma coupled KdV system (1) over the 

domain −10 ≤ 𝑥 ≤  10 and in the time period 

0 ≤ 𝑡 ≤ 1, with 𝑛 = 𝑚 = 40. The domain and 

time period are discretized with values ∆𝑥 =
0.025 and ∆𝑡 = 0.5, respectively. The exact 

solutions are given in (Fan, 2001; Manaa and 

Azzo, 2022) as:  

 

𝑢(𝑥, 𝑡) =
1

3
(𝛽 − 2𝑘2) + 2𝑘2 tanh2[𝑘(𝑥 + 𝛽𝑡)] 

𝑣(𝑥, 𝑡) =
−4𝑘2𝑐0(𝛽 + 𝑘2)

3𝑐1
2 +

4𝑘2(𝛽 + 𝑘2)

3𝑐1
tanh[𝑘(𝑥 + 𝛽𝑡)] 

𝑤(𝑥, 𝑡) = 𝑐0 + 𝑐1 tanh[𝑘(𝑥 + 𝛽𝑡)]. 
 

The initial conditions are taken from the 

exact solutions at the value 𝑡 = 0. In this 

example, we will take 𝑐0 = 𝑐1 = 1, and the 

different values of 𝛽 and 𝑘, as we shall in the 

tables, also we chose Multiquadric radial base 

function with 𝜀 = 5. The accuracy of the 

methods is tested by computing the absolute 

error 𝐿𝑎𝑏𝑠, which is defined as in (Suarez and 

Morales, 2014; Yao et al., 2012) by the 

following formula: 
 

𝐿𝑎𝑏𝑠(𝑢) = |𝑢(𝑥𝑖, 𝑡) − 𝑢̂(𝑥𝑖 , 𝑡)|, for 𝑖 = 0,1, … , 𝑛. 
 

Similarly for 𝑣 and 𝑤. The results are listed in Tables (1-2), and plotted in in Figures (1-12). 

 
Table (1): 𝐿𝑎𝑏𝑠 errors of 𝑢, 𝑣 and 𝑤 with 𝑘 = 𝛽 = 0.3. 

RBF-PS method with RK4M when 𝒕 = 𝟎. 𝟏 

𝑥 𝐿𝑎𝑏𝑠(𝑢) 𝐿𝑎𝑏𝑠(𝑣) 𝐿𝑎𝑏𝑠(𝑤) 

−10 1.625803E-03 7.651306E-05 1.764379E-03 

−8 4.636744E-05 4.357988E-05 5.763666E-04 

−6 7.300943E-05 2.742393E-05 5.414266E-04 

−4 2.798492E-05 5.064319E-05 1.081821E-03 

−2 4.914614E-04 1.657978E-05 3.541536E-04 

0 1.726500E-05 1.510738E-04 3.228072E-03 

2 5.196478E-04 8.761770E-06 1.873414E-04 

4 2.638289E-05 4.924494E-05 1.051783E-03 

6 8.047541E-05 2.527336E-05 5.364964E-04 

8 8.706604E-05 5.414393E-06 2.547320E-04 

10 1.337813E-03 1.697510E-04 3.470836E-03 

RBF-PS method with RK4M when 𝑡 = 0.5 

𝑥 𝐿𝑎𝑏𝑠(𝑢) 𝐿𝑎𝑏𝑠(𝑣) 𝐿𝑎𝑏𝑠(𝑤) 

−10 1.291636E-02 7.416971E-04 1.719943E-02 

−8 7.597353E-04 2.892596E-04 4.336210E-03 

−6 4.874436E-04 4.378023E-04 3.498656E-03 

−4 2.256570E-04 3.775140E-04 3.252460E-03 

−2 2.149724E-03 1.549097E-04 4.132994E-03 

0 4.230617E-04 7.332216E-04 1.574830E-02 

2 2.856556E-03 2.330868E-05 4.905379E-04 

4 1.352488E-04 2.345842E-04 4.925054E-03 

6 7.445176E-04 1.663379E-04 1.398544E-03 

8 1.339635E-03 1.334669E-04 9.697029E-04 

10 6.111996E-03 1.940451E-03 3.960035E-02 



Journal of University of Duhok., Vol. 25, No.2 (Pure Engineering Sciences), Pp 164-175, 2022 

 
170 

Table (2):- 𝐿𝑎𝑏𝑠 errors of 𝑢, 𝑣 and 𝑤 with 𝑘 = 𝛽 = 0.01. 
 RBF-PS method with RK4M when 𝒕 = 𝟎. 𝟏 

𝑥 𝐿𝑎𝑏𝑠(𝑢) 𝐿𝑎𝑏𝑠(𝑣) 𝐿𝑎𝑏𝑠(𝑤) 

−10 1.146707E-06 4.120175E-09 3.738279E-03 

−8 1.213511E-07 7.017837E-10 6.373474E-04 

−6 1.701357E-09 1.833110E-11 1.689398E-05 

−4 3.671653E-10 1.345143E-13 1.299816E-07 

−2 1.008383E-10 2.242043E-13 4.646379E-08 

0 4.108094E-13 1.479061E-13 1.088444E-07 

2 1.025620E-10 6.211341E-14 1.667066E-07 

4 3.491234E-10 1.733129E-13 3.114441E-07 

6 2.607272E-09 2.454693E-12 1.697263E-06 

8 4.131832E-07 9.993427E-12 6.294991E-06 

10 4.164628E-06 2.604897E-10 1.563602E-04 

RBF-PS method with RK4M when 𝑡 = 0.5 

𝑥 𝐿𝑎𝑏𝑠(𝑢) 𝐿𝑎𝑏𝑠(𝑣) 𝐿𝑎𝑏𝑠(𝑤) 

−10 2.092035E-05 2.922510E-08 2.646321E-02 

−8 7.581248E-06 6.120103E-09 5.540144E-03 

−6 1.291634E-07 6.000083E-09 5.443532E-03 

−4 1.634263E-10 1.782701E-09 1.618999E-03 

−2 3.108116E-10 2.684503E-10 2.449023E-04 

0 1.115498E-10 2.481693E-11 2.374474E-05 

2 4.405236E-09 8.509362E-13 2.052510E-06 

4 1.215869E-07 3.727857E-12 1.215886E-06 

6 1.869543E-06 3.157298E-11 1.858072E-05 

8 1.233029E-05 1.020920E-08 6.212738E-03 

10 3.943915E-05 2.723420E-08 1.656146E-02 

 
  
 
 
 

 
 
 
 

 

 

 

 

 

Fig. (1): -Exact solution 𝑢 for KdV system when  −10 ≤ 𝑥 ≤  10 and 0 ≤ 𝑡 ≤ 1 with 𝑐0 = 𝑐1 = 1,  𝑘 = 𝛽 =
0.3, and 𝑛 = 𝑚 = 40. 
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Fig. (2):-  Exact solution 𝑣 for KdV system. The rest of the parameters and the domains are the same as in 

Figure 1. 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. (3):- Exact solution 𝑤 for KdV system. The rest of the parameters and the domains are the same as in Figure 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4):- Approximate solution 𝑢̂ for KdV system obtained by RBF-PS method with Multiquadric radial base 

function when 𝜀 = 5. The rest of the parameters and the domains are the same as in Figure 1. 
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Fig. (5): -Approximate solution v̂ for KdV system obtained by RBF-PS method with Multiquadric radial base 

function when ε = 5. The rest of the parameters and the domains are the same as in Figure 1 

 

 

 

 

 

 

 

 

 

 

Fig. (6):- Approximate solution 𝑤̂ for KdV system obtained by RBF-PS method with Multiquadric radial base 

function when 𝜀 = 5. The rest of the parameters and the domains are the same as in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7):- Comparison between approximate solution 𝑢̂  and the exact solution 𝑢 when 𝑡 = 0.1. The rest of the 

parameters and the 𝑥 −domain are the same as in Figure 1. 
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Fig. (8):- Comparison between approximate solution 𝑣̂  and the exact solution 𝑣 when 𝑡 = 0.1. The rest of the 

parameters and the 𝑥 −domain are the same as in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Fig. (9):- Comparison between approximate solution 𝑤̂  and the exact solution 𝑤 when 𝑡 = 0.1. The rest of the 

parameters and the 𝑥 −domain are the same as in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10):- Comparison between approximate solution 𝑢̂  and the exact solution 𝑢 when 𝑡 = 0.5. The rest of the 

parameters and the 𝑥 −domain are the same as in Figure 1. 
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Fig. (11):- Comparison between approximate solution 𝑣̂  and the exact solution 𝑣 when 𝑡 = 0.5. The rest of the 

parameters and the 𝑥 −domain are the same as in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12):- Comparison between approximate solution ŵ  and the exact solution w when t = 0.5. The rest of the 

parameters and the x −domain are the same as in Figure 1 

 

5. CONCLUSION 
 

We have solved the Hirota-Satsuma coupled 

KdV system (1) numerically, by using RBF-PS 

method. The numerical results show that this 

method is a powerful and efficient technique for 

finding the approximate solutions of the model. 

The results of the present method are in 

excellent agreement with the exact solutions. In 

general, this method solves the KdV system 

accurately. In particular, this method has optimal 

results for some values of parameters. 
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