MOLECULAR DIAGNOSIS AND GENETIC VARIABILITY OF NEW ISOLATES OF ROOT – KNOT NEMATODES *MELOIDOGYNE* SPP.ON CUCUMBER PLANTS

SHIREEN GHAEIB ALI AL- SINJARY and SULAIMAN NAIF AMI Dept. of Plant Protection, College of Agricultural Engineering Sciences, University of Duhok, Duhok, Kurdistan Region–Iraq

(Received: September 11, 2022; Accepted for Publication: November 27, 2022)

ABSTARACT

Results of the amplified DNA products of the ITS revealed the presence of two bands among the six amplified products, in position at about 500 bp as illustrated by agarose gel electrophoresis, then sequencing of the amplification products showed the presence of two species out of a total of six nematode isolates including *Meloidogyne incognita* and *M. javanica* which displayed some nucleotide differences through comparing the DNA sequence alignment of their ITS and emphasized by a DNA Dot plot for each species against the other, where a genetic similarity was 98.84%. Phylogenetic tree analysis for *M.incognita* showed that the closest species to it is *M.incognita* isolate CN 36 from China with 99.55% genetic similarity whilst more nucleotide differences were observed by two isolates (A-1and B-2) of *M.incognita* from Iraq with a genetic similarity of 97.99%%. As for *M.javanica*, the closest species to it is a group of three nematode species including: *M.javaniac* voucher M J- 21, *M.incognita* isolate Nem Mi TG2 and *Meloidogyne* sp.Mj – c3b from Brazil, India and New Zealand respectively, after which nucleotide differences increased more, as it reached its maximum level with *M. incognita* isolate C N 36 with a genetic similarity of 98.84%.

KEYWORDS: Meloidogyne spp. Molecular diagnosis, Phylogenetic analysis, Cucumber

INTRODUCTION

oot-knot disease is severe disease on family of cucurbitaceae including cucumber plant that are affected by *Meloidogyne* for example M.incognita and M.javanica important (Nickle,1984).The species are M.javanica, M.hapla M.arenaria, and M.incognita which cause high damages in various plants (Khalil,2013). Root-knot nematodes cause formation of galls on plant root known as root-knot disease. They are invisible enemy for farmer and the most commonly encountered parasitic nematode of vegetables (Kumar et al., 2014). Meloidogyne pecies can be depending on morphological recognized properties (Eisenback and Triataphyllou, 1991), (Hartman response of host-plants and Sasser, 1985), analysis of Isozyme (Esbenshade and Triataphyllou, 1990) also methods of molecular (Ziljistra et al., 1995).

There are several reasons that confirms why molecular information is more reliable phylogenetic study than morphological features. DNA sequence is more accurate than morphological characters.In addition, molecular features are generated in shorter time as compared to the morphological characteristics (Subbotin and Moens, 2006 and Karajeh et al. (2010).Molecular technique that used in nematode diagnosis are generally depends on nucleic acid. Most of these techniques are known to be reliable, sensitive, robust, and distinguishing specific in and detecting numerous Meloidogyne species as compared with* morphological or biochemical techniques (Powers et al., 2005 and Berry et al., 2007).DNA extraction using various nematode stage including many or single J2s,eggs and females (Karajeh et al., 2010). The purpose of this study was to diagnose new isolates of Meloidogyne species on cucumber plants using molecular technique in addition to determine the genetic variability between the diagnosed species.that were extracted from infected cucumber collected from plastic greenhouses in Duhok province, Kurdistan Region-Iraq.

Materials and Methods

1-Extraction of root-knot nematode females:Mature females (Figure 1A) of rootknot nematodes extracted from roots of infected cucumber (Figure1 B) collected during a field survey of plastic greenhouses in six locations (6 isolates) in Duhok province, Kurdistan Region-Iraq.

Fig. (1): Mature females of *Meloidogyne* spp. (A).Galling of cucumber roots infected with *Meloidogyne* spp. (B).

2- DNA extraction and purification: Several females of *Meloidogyne* spp.for each of the six isolates were extracted separately from infected cucumber roots and placed on a slide that contained 15μ l of WLB (worm lysis buffer) which consisted of 50 mM KCl, 10 mM Tris pH

8.2, 2.5 mM MgCl2, 60µg mL1proteinase K (Roche), 0.45% NP4O (Fisher scientific), 0.45% Tween 20 (Sigma) and 0.01% gelatin as described by (Castagnone-Sereno *et al.*, 1995) and then they were cut into pieces under stereomicroscope.10µl of WLB was added to

female pieces then another 10µl of WLB was added to female pieces after being transferred to a special tube, Female pieces were placed in the block heater at 60°C for one hr. followed by 90 °C for 10 minutes. Then kept in the frozen at -20°C as used by Onkendi and Moleleki (2013).

3-Amplification of the target DNA: Two universal primers were used for the amplification of the *ITS-rRNA* gene included:TW81-F(5'-

GTTTCCGTAGGTGAACCTGC-3') and AB28 Actin-R(5'-ATATGCTTAAGTTCAGCGGGT-

3') provided by Germany company (Jena Bioscience). The amplification was done in 25 µl reactions containing PCR Mater Mix 2x Red Load Taq Master/high yield (12.5 µl), Distilled water DNA-free, RNA-free (8.5µl) ,Forward primer: TW81-F (1 µl) ,Reverse primer: AB28Actin-R (1µl), DNA template(2 µl). The PCR reaction conditions enclosed Initial denaturation 94 °C for 3min., tailed by 30 cycles of Denaturation 94 °C for 30 sec., Annealing 53 °C (30 sec.), Elongation 72°C (1min.), then a final elongation 72 °C for 5min. The amplified products wee separated on a 1.5% agarose gel stained with Gel Red in $1 \times$ TBE and then examined under UV light.

sequencing: This 4. DNA process was performed by preparation of samples to be sent Macrogene (Korea), where samples to of products amplified DNA were sent for determination of the order of the four nitrogenous base. including: Adenine(A),),Cytosine (C), Guanine (G and

Thymine (T) in the strand of DNA. The BioEdit and NCBI programs were used for sequence scanner and alignment to check the sequence quality.Sequences of amplified product for each nematode isolate was submitted to GenBank in NCBI to determine their accession number. 5genetic Extraction of variability and phylogenic tree: Genetic variability amoung nematode species that have been diagnosed in this study and Phylogenetic tree for each one was constracted using the NCBI BLAST (https://www.ncbi.nlm. program nih.gov/BLAST/),in addition, percent identity and genetic affinity was rxtracted between each nematode species with some of the other species that are themselves species of the same genus..

RESULTS AND DISCUSSION

1- Diagnosis of root – knot nematode species : Amplification results of DNA products for the Internal Transcribed Spacer ITS via Polymerase Chain Reaction (P C R) revealed the presence of two bands among the six amplification products, which were isolate 3 and 6, where they Visualized in position at ~500 bp as agarose gel electrophoresis illustrated by lane 3 and 6 (Figure.2) through the use of two universal primers TW81-F and AB28 Actin-R.This result is out of a total of six nematode isolates on infected cucumber roots in Duhok province This result is agreement with what has been found by AL-Sinjary (2017) for M. javanica using the same universal primer pairs.

500 bp

Fig. (2): Agarose gel electrophoresis of the P C R products, Lane 1 is a Marker ladder, Lane 3 and 6 are positive products for pair of primers (TW81-F with AB28Actin-R) for two nematode isolates which showed after sequencing that they are: *M. incognita* isolate CN36 (lane 3) and *M. javanica* isolate MJ- 32 (lane 6).

On the other hand, results of the sequence quality observed the presence of two Meloiodogyne species,that are *M. incognita* (Kofoid and White, 1919) Chitwood, 1949 and M. javanica (Treub, 1885) Chitwood,1949 due to recording of some nucleotide differences between both nematode species, then the accession number for each species was detremined by NCBI to be MW152160 for M.incognita and MW168165 for M. javanica. Nucleotide differences between both nematode species were emphasized by comparing the DNA sequence alignment of the

internal transcribed spacer (ITS) region as shown in Figure .3 and Fig.ure 4 for *M. incognita* and *M. javanica* respectively, and by A DNA Dot plot extraction (A graphical method for comparing two biological sequences) for each species against the other (Figure 5 and Figure.6). Thus, according to these results it is not possible to rely on this universal primer pairs and agarose gel electrophoresis in diagnosing both nematode species together and therefore it is necessary to use species specific primers or sequencing for the amplified DNA products to achieve the aforementioned goal.

Score	Expect	Identities	Gaps		Strand
614 bits(332)	2e-180	340/344(99%)	0/344(0%)		Plus/Plus
Query 1					C O
TGCTGATACGGT	IGTGAACGTCCGTGGCTGT	ATATGTGGTGACAT	GTTAGGACTCTA	ATG (50
TGCTGATACGGT	IGTGAACGTCCGTGGCTGT	ATATGTGGTGACAT	GTTAGGACTTTA	ATG 1	164
AGTTTAAGACCT	AATGAGCCTCTTACGTGAG	GCCGCCAGCAACCt	tttttttCTCTA	CAT 1	120
Sbjct 165					
AGTTTAAGACCTA	AATGAGCCTTTTAAGTGAG	GCCGCCAGCAACCT	TTTTTTTTTCTCTA	CAT 2	224
Query 121	ᡔᠭ᠋ᠬᡡ᠕᠕᠕ᡎᡎᡊᡎ᠕ᡎᡊᡊᡎᠬ᠕᠉		ССТССТССАТССА	NTC 1	180
Sbict 225	ACTAAAAT ICTATCCITAT	CGGIGGAICACIAG	GCICGIGGAICGA	AIG .	100
ТТТААААААААА	ACTAAAATTCTATCCTTAT	CGGTGGATCACTAG	GCTCGTGGATCGA	ATG 2	284
Query 181					
AAGAACGCAGCAA	AACTGCGATAATTATTGCG	AACTGCAAAAGTAT	TGAGCACAAAAG	FTT 2	240
Sbjct 285					
AAGAACGCAGCA	AACTGCGATAATTATTGCG	AACTGCAGAAGTAT	TGAGCACAAAAG	FTT (344
Query 241					200
TGAACGCAAATGC	GUUGUATTGAGGTUAAAUT	CITITGCAACGICIG	GITCAGGGTCAT.	1.1.1.	300
SDJCT 345					4.0.4
TGAACGCAAA'I'G			GTTCAGGGTCAT.		104
Query 301 (AATTTCTATAATGA	TGTTGTTGCTT	344	
Sbjct 405 (CTCTTATAGCGGAAGCIIIII	AATTITCTATAATGA	TGTTGTTGCTT	448	

Fig.(.3): Meloidogyne incognita isolate C N 36 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence. Sequence ID: MW152160.1_Length: 448 Number of Matches:1

Score	Expect	Identities	Gaps		Strand
614 bits(332)	2e-180	340/344(99%)	0/344(0%)		Plus/Plus
Query 105					
TGCTGATACGGTTGTGA	ACGTCCGTGGCTGT	ATATGTGGTGACATG	TTAGGACTTTA	ATG	164
Sbjct 1					
TGCTGATACGGTTGTGA	ACGTCCGTGGCTGT	ATATGTGGTGACATG	TTAGGACTCTA	ATG	60
Query 165					
AGTTTAAGACCTAATGA	GCCTTTTAAGTGAG	GCCGCCAGCAACCtt	ttttttCTCTA(CAT	224
Sbjct 61					
AGTTTAAGACCTAATGA	GCCTCTTACGTGAG	GCCGCCAGCAACCTT	TTTTTTTCTCTA	CAT	120
Query 225					
TTTaaaaaaaaaCTAA	AATTCTATCCTTAT	CGGTGGATCACTAGG	CTCGTGGATCGA	ATG	284
Sbjct 121					
ТТТААААААААААСТАА	AATTCTATCCTTAT	CGGTGGATCACTAGG	CTCGTGGATCGA	ATG	180
Query 285					
AAGAACGCAGCAAACTG	CGATAATTATTGCGA	AACTGCAGAAGTATT	GAGCACAAAAG	ΓTΤ	344
Sbjct 181					
AAGAACGCAGCAAACTG	CGATAATTATTGCGA	AACTGCAAAAGTATT	GAGCACAAAAG	ΓTΤ	240
Query 345					
TGAACGCAAATGGCCGC	ATTGAGGTCAAACT	CTTTGCAACGTCTGG	TTCAGGGTCAT	ΓTΤ	404
Sbjct 241					
TGAACGCAAATGGCCGC	ATTGAGGTCAAACT	CTTTGCAACGTCTGG	TTCAGGGTCAT	ΓTΤ	300
Query 405 CTCTI	ATAGCGGAAGCTTTA	AATTTCTATAATGAT	GTTGTTGCTT	448	
Sbjct 301 CTCTI	ATAGCGGAAGCTTTA	AATTTCTATAATGAT	GTTGTTGCTT	344	

Fig. (4):*Meloidogyne javanica* isolate M J -32 internal transcribed spacer 1, partial sequence; 5.8S ribosomal

2- Genetic similarity and phylogenetic tree of both root – knot nematode isolates :

Results of genetic similarity as illustrated by description of the Query ID (according to the blast program)for both nematode species diagnosed in this study showed a similarity of 98.84%, while it does not increased more than 99.33% and 99.53% as a percent identity of *M.incognita* and *M.javanica* respectively with the other root – knot nematode species (Table, 1 and 2),

 Table (1): Percentage identity of *M. incognita* isoalte CN36 (MW152160.1) with some of the other root – knot nematode species.

Nematode species and its isolate	Percent identity (%)	Sequence ID	Country
M. incognita isolate C N 36	99.55	MT490912.1	China
<i>M.</i> sp.Mj-c3b on tamarillo	99.33	JX465575.1	New Zealand
M. javanica voucher VW4 18S	99.1	KP901063.2	USA
M. konaensis isolate KON-B	99.1	KY911100.1	Brazil
M. polycephannulata isolate POLY	99.1	KY882491.1	Brazil
<i>M. arenarai</i> isolate Tuku	99.33	KJ572384.1	Taiwan
<i>M.</i> sp.Mi-c2a	99.1	JX465577.1	New Zealand
M. incognita isolate CN12	98.44	MT490895.1	China
<i>M. javanica</i> isolate MJ – 32	98.84	MW168165.1	Iraq
M. incognita isolate CN7	97.99	MT490891.1	China
M. incognita isolate A-1	97.99	ON677753.1	Iraq
M. incognita isolate B-2	97.99	ON677754.1	Iraq

Nematode species	Percent identity (%)	Sequence ID	Country
Meloidogyne javaniac voucher M J- 21	99.53	MF168971.1	Brazil
Meloidogyne incognita isolate Nem Mi T G 2	99.53	KJ451618.1	India
<i>Meloidogyne</i> sp.Mj – c3b	99.53	JX465575.1	New Zealand
Meloidogyne arenaria isolate G 0337	99.30	MK188474.1	South Korea
Meloidogyne javanica voucher M J -33	99.30	MF168970.1	Brazil
Meloidogyne konaesis isolate KON – B	99.30	KY911100.1	Brazil
Meloidogyne phaseoli isolate PHA	99.30	KY882498.1	Brazil
Meloidogyne polycephannulata isolate POLY	99,30	KY882491.1	Brazil
Meloidogyne incognita Isolate CN19	98.60	MT490900.1	China
Meloidogyne incognita isolate C N 36	98.84	MW152160.1	Iraq

Table (2) : Percentage identity of M. javanica isolate MJ-32 (MW168165.1) with some of the otherspecies of root – knot nematode.

Phylogenetic tree for both nematode species (Figure.7 and 8) which was constructed to quantify the amount of genetic change per time unit between each species of nematode and some other species and isoltes of root –knot nematodes .

The horizontal lines or branches in each tree represent an evolutionary descent that changes over time and the longest the branch in the horizontal dimension, the largest the amount of alteration. The scale bar at the base of the left side for each figure dsipalys a scale for this. In this case the line segment with the number 0.008 or 0.003 for phylogenetic tree of M.incognita and M. javanica respectively shows branch length representing an amount of genetic change by 0.008 or 0.0-03.Branch length units are the nucleotide substitutions per site, which is the number of changes or substitutions divided by the length of the sequence. Vertical lines are used to outline the visual tree, thus simply showing how the horizontal lines connect to each other and how long they are not pertinent.are non pertinent.It seems from the phylogenetic tree analysis for *M.incognita* diagnosed in this study (Figure.7) and Genetic similarity percentage (table,1) that the closest species to *M. incognita* is M.incognita isolate CN36 (MT490912.1) from China with a genetic similarity of 99.55%, Followed by two grouping of different nematode species with a genetic similarity range 98.44 – 99.1%, while the nucleotide differences increased with the other species of nematode where more differences were noticed with two isolates [A-1(ON677753.1) and B-2 (ON677754.1)] of *M.incognita* from Iraq with a genetic similarity of 97.99%% (Table 1).

As for M.javanica, and according to the phylogenetic tree analysis (Fig.ure 8) and percent identity (table.2) the closest species to it is a group consisting of three nematode species that included: M. javaniac voucher M J- 21(MF168971.1), M. incognita isolate Nem Mi (KJ451618.1) and TG2 *Meloidogyne* sp.Mj - c3b (JX465575.1) from Brazil, India and New Zealand respectively, with a genetic similarity of 99.53% with each species, then the nucleotide differences started to increase slightly with the 2nd group of nematode species that consisted of M.arenaria isolate G 0337 (MK188474.1), M. konaesis isolate KON - B (KY911100.1), M. javanica voucher M J -33 (MF168970.1), M. phaseoli isolate PHA (KY882498.1) and М. polycephannulata isolate POLY (KY882491.1) from Brazil with a genetic similarity of 99.30%

after which nucleotide differences increased more, as it reached its maximu level with M. *incognita* isolate CN 19 (MT490900.1) from China with a genetic similarity of 98.60 %.Thus, the results showed a high percentage of genetic similarity, whether it is between the both species of root – knot nematodes diagnosed in this study or between each species and other root - knot nematode species extracted from the genetic bank, and this is certainly due to their belonging to the same genus..

Fig.(7): Phylogenetic tree produced by Neighbor joining method using Blast Pairwise alignments showing phylogenetic positioning of *M.incognita* diagnosed in this study with some nematode species of the same genus. Branch lengthes are proportional to the number of inferred changes

CONCLUSIONS

According to the results, researchers concluded that sequencing is necessary for diagnosing nematode species by molecular method. Both nematode species diagnosed in incognita and M. javanica) this study (M. genetically differed ,with a percent identity of 98.84%. Phylogenetic tree analysis showed that the most closest species to M. incognita is M.incognita isolate CN 36 from China, whilst nucleotide differences augmented with the other species of nematode were found with two [A-1(ON677753.1) isolates and **B-2** (ON677754.1)] of *M.incognita* from Iraq. As for *M. javanica*, the most closest species to it is a group of three nematode species included: M *javaniac* voucher M J- 21, *M. incognita* isolate Nem Mi and *Meloidogyne* sp.Mj - c3b from and Brazil. India New Zealand respectively, whilst more ucleotide differences was observed with M. incognita isolate CN19 from China.

REFERENCES

- AL–Sinjary, S. G. (2017). Molecular Identification, Bioassay and Integrated Control of Root-Knot Nematode *Meloidogyne javanica* on Cucumber under Plastic Houses . M.Sc. thesis, College of Agriculture, University of Duhok.
- Berry, S. D.; Fargette, M.; Morand, S. and Cadet, P.(2007).Reliability of PCR-based techniques for detection and discrimination of plantparasitic nematodes of sugarcane. Nematology, 9:499-514.
- Castagnone-Sereno, P.; Esparrago, G.; Abad, P.; Leroy, F. and Bongiovanni, M.(1995).Satellite DNA as a target for PCR-specific detection of the plant-parasitic nematode *Meloidogyne hapla. Current Genetics* 28: 566-570.
- Eisenback, J.D. and Triantaphyllou, H.(1991).Rootknot nematodes: *Meloidogyne* species and races. In: Nickle, W.R.(ed).Manual of Agricultual nematology. Marces Dekker, New York, pp.191-274.

- Hartman, K. M. and Sasser, J. N.(1985).Identification of *Meloidogyne* species on the basis of differential host test and perineal pattern morphology. In: Barker, K. R., Carter, C. C. and Sasser, J.N. (eds) An Advanced Treatise on *Meloidogyne*. Volume II: Methodology. A cooperative publication of the Department of Plant Pathology and the United States Agency for International Development, North Carolina State University Graphics, Raleigh, North Carolina, pp.69-77.
- Karajeh, M.R.; Abu-Gharbieh, W.I. and Masoud, S.A.(2010).DNA extraction and PCR-based diagnosis of the root-knot nematodes (*Meloidogyne* species and races) of Jordan. Jordan Journal of Agriculture Science, 6:342– 351.
- Khalil, M. S.(2013).The potential of five ecobiorational products on the reproduction of root-knot nematode and plant growth. International Journal of Phytopathology, 2(2): 84-91.
- Kumar, N.; Adamu, M.A.; Isah, K.M. and Lawal, A.F.(2014).A Survey of vegetable fields for root-gall disease in Niger State, Nigeria. PAT, 10(1):17-27.
- Nickle,W.R.(1984). Plants and insect nematodes, Marcel Dekker, INC. NewYork. USA. 925PP
- Onkendi, E. M. and Moleleki, L. N.(2013).Distribution and genetic diversity of root-knot nematodes (*Meloidogyne* spp.) in potatoes from South Africa. Plant Pathology, 62(5): 1184-1192.
- Powers, T. O.; Mullin, P. G.; Harris, T. S.; Sutton, L. A. and Higgins, R. S. (2005).Incorporating molecular identification of *Meloidogyne* spp. in to a large-scale regional nematode survey. Journal of Nematology, 37:226-235.
- Subbotin, S. and Moens, M.(2006).Molecular Taxonomy and Phylogeny. In: Plant Nematology. Perry, R. and Moens, M. (Eds).
 Pp: 51-57. CABI Nosworthy Way, Wallingford Oxfordshire OX10 8DE, UK..
- Zijlstra, C.; Lever, A.E.M.; Uenk, B.J. and Van Sifhout, C.H.(1995). Differences between ITS regions of isolates of root-knot nematodes *Meloidogyne hapla* and *M. chitwoodi*. Phytopathology, 85: 1231–1237.