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ABSTRACT 
The conjugate gradient(CG) method is one of the most popular and  well-known iterative strategies for 

solving minimization problems, it has extensive applications in many domains such as machine learning, 

neural networks, and many other fields, partly because to its simplicity in algebraic formulation and 

implementation in codes  of computer and partially due to their efficiency in solving large scale 

unconstrained optimization problems. Fletcher/Reeves (C, 1964) expanded the concept to nonlinear 

problems. In 1964, and this is widely regarded as the first algorithm  of nonlinear conjugate gradient. 

Since then, other conjugate gradient method versions have been proposed. In this paper and in section 

one,  we derive a new conjugate gradient for solving  nonlinear minimization problems based on 

parameter of Perry. In section two we will  satisfy some conditions like descent and sufficient descent 

conditions. In section three , we will study the  global convergence of new suggestion. We present 

numerical findings in the fourth part to demonstrate the efficacy of the suggestion technique. Finally, we 

provide a conclusion. 

 
KEYWORDS: Nonlinear Optimization, Algorithm of Conjugate Gradient, property of the Descent, 

property of the  Sufficient Descent and Global Converges Properties. 

 

 

 
1. INTRODUCTION 

 

onsider the following nonlinear 

minimization problem bellow: 

Min 𝑓(𝑥);   𝑥 ∈ 𝑅𝑛                                  (1.1) 

Where;  𝑓: 𝑅𝑛∗1 → 𝑅1∗1 is a continuously 

differentiable real-valued function 

The methods of the form  

𝑥𝑘+ 1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘                                  (1.2) 

Used  for solving  nonlinear conjugate gradient 

methods (1.1)  

This iterative method is starting with an initial 

𝑥1 ∈ 𝑅𝑛, 

where , 𝑣𝑘 is the difference between points 

𝑥𝑘+1 − 𝑥𝑘 = 𝛼𝑘𝑑𝑘 ; the stepsize 𝛼𝑘 is calculated 

by one dimensional line search and 𝑑𝑘 is search 

direction. There are two search directions , the 

first  search direction is the direction of the 

steepest descent method, which is  

𝑑1 = −𝑔1                                                 (1.3) 

The search direction for the next iteration is 

set to:  

𝑑𝑘+1 = − 𝑔𝑘+1 + 𝛽𝑘  𝑑𝑘                           (1.4) 

Where; 𝑔(𝑥𝑘) = ∇𝑓(𝑥𝑘)   and 𝛽𝑘  is scalar. 

There are a lots of  basic formulas of 𝛽𝑘 are 

suggested , like Hestenes,Stiefel (HS)(Steifel, 

1952), PolakRibiere,Polyak (PRP)(E. Polak, 

1969), Fletcher ,Reeves(FR)(Reeves, 1964), Dai 

, Yuan (DY) (Dai, Y.H., and Yuan, 1999), Dai, 

Liao (Y.H. Dai, 2001) ,Perry(Perry, 1978), Liu , 

Storey (Liu Y., and Storey, 1991), and (CD)(R., 

1987)which are shown below: 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −𝑔𝑘)

𝑑𝑘
𝑇(𝑔𝑘+1−𝑔𝑘)

                               ( 1.5) 

𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1−𝑔𝑘)

‖𝑔𝑘‖2                              ( 1.6) 

𝛽𝑘
𝐹𝑅 =

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
                                                                (1.7) 

𝛽𝑘
𝐷𝑌 =

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

                                                                (1.8) 

𝛽𝑘
𝐷𝐿 =

𝑔𝑘+1
𝑇 (𝑦𝑘−𝑡𝑣𝑘)

𝑑𝑘
𝑇𝑦𝑘

  ,    𝑡 > 0                  (1.9) 

𝛽𝑘
𝑃𝑒𝑟𝑟𝑦

=
𝑔𝑘+1

𝑇 (𝑦𝑘−𝑣𝑘)

𝑑𝑘
𝑇𝑦𝑘

                             (1.10) 

𝛽𝑘
𝐿𝑆 =

𝑔𝑘+1 
𝑇 𝑦𝑘

−𝑑𝑘
𝑇𝑔𝑘

                                          (1.11) 

𝛽𝑘
𝐶𝐷 =

‖𝑔𝑘+1‖2

−𝑑𝑘
𝑇𝑔𝑘

                                           (1.12) 

where 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 and The symbol ‖. ‖ 

is used to represent the Euclidean norm of 

vectors. symbol. The property of the global of  

Fletcher R.(FR) method, Polak R. Polyak(PRP) 

method, Hestenes S.(HS)method, Dai Y.(DY) 

method, Conjugate D.(CD) method and 

Liu,S.(LS) method can see(E.G. Birgin, 2001) 

C 
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(J. Sun, 2001)(L. Zhang, W. Zhou, 

2006)(Raydan, 1997)(R., 1987)(Liu Y., and 

Storey, 1991). 

Also, many parameters are suggested, for 

example, Hager  ,  Zhang(W, Hager, 2005)  

suggested  another  conjugate  gradient  

algorithm , called CG- DESCENT method. 

Zhang Li et al. (Zhang L., Zhou W.J., 

2006a)(Zhang L., Zhou W.J., 2006b) also 

suggested some modification conjugate gradient 

methods. You can  see (Hussein A. Kh., 

2019)(Hussein A. Kh., 2020)(Alaa L. I., 

Muhammad A. S., 2019). 

 

2. DERIVATIVE OF  NEW  

FORMULA  𝜷𝒌
𝑁𝐸𝑊 

 

The  idea for finding a new conjugate 

gradient algorithm to find the minimum of the 

unconstrained problems is to use a new vector as 

follows, 

Consider the vector bellow 

𝑦𝑘
∗ = 𝑔𝑘+1 + (1 − 𝛿)((

𝑔𝑘+1

𝛾
) − 𝜇𝑔𝑘+1)    

                                                                 (2.1)                                                                        

Where,  

𝛿 ∈ (0,1) , 𝜇 = 0.1 

𝛾 =
2√𝜔

‖𝑣𝑘‖
 (1 + ‖𝑥𝑘+1‖)   

and 𝜔 is the machine error 

We replace the vector 𝑦𝑘 in the numerator of 

(1.10) by 𝑦𝑘
∗ ,  we get  

𝛽𝑘
𝑁𝐸𝑊 =

𝑔𝑘+1
𝑇 (𝑦𝑘

∗−𝑣𝑘)

𝑑𝑘
𝑇𝑦𝑘

                                 (2.2) 

Or  

𝛽𝑘
𝑁𝐸𝑊

=
𝑔𝑘+1

𝑇 (𝑔𝑘+1 + (1 − 𝛿)((
𝑔𝑘+1

𝛾 ) − 𝜇𝑔𝑘+1) − 𝑣𝑘)

𝑑𝑘
𝑇𝑦𝑘

 

Here, we get  

𝛽𝑘
𝑁𝐸𝑊 =

‖𝑔𝑘+1‖2+(1−𝛿)
‖𝑔𝑘+1‖

2

𝛾
−(1−𝛿)𝜇‖𝑔𝑘+1‖2−𝑔𝑘+1

𝑇 𝑣𝑘

𝑑𝑘
𝑇𝑦𝑘

    

                                                                 (2.3)                                         

 

2.1 Outlines of  the New Method 

Step1:Choose 𝑥 1  and  휀 =
1

10 5
 .  

Step2:Set 𝑑1 = −𝑔1 ; 𝐼𝑓 ‖𝑔1‖ ≤ 휀, then stop,  
𝑔𝑘= ∇𝑓 (𝑥𝑘);  Set  Choose = 1 . 
Step3: Find the steplength 𝛼𝑘 > 0 , satisfying 

the below conditions ( Wolfe condition) 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝑞1𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 

|𝑔𝐾+1
𝑇  𝑑𝑘| ≤ 𝑞2|𝑔𝑘

𝑇 𝑑𝑘| 

                 where, 0 < 𝑞1 < 𝑞2 < 1 . 

Step4: Calculate   𝑥𝑘+1 = 𝑥𝑘  + 𝛼𝑘  𝑑𝑘 

                      𝑔𝑘+1 = 𝛻𝑓(𝑥𝑘+1); 𝐼𝑓 ‖𝑔𝑘+1‖ ≤
휀, then stop. 
Step5: Calculate       𝛽𝑘

𝑁𝐸𝑊 by  (2.3 )  

Step6: Evaluate 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘
𝑁𝐸𝑊 𝑑𝑘 

Step7: If  |𝑔𝑘+1
𝑇 𝑔𝑘| > 0.2 ∗ ‖𝑔𝑘+1‖2, then,  go 

to step2 . 

             Else 

              𝑘 = 𝑘 + 1 and goto step3. 

 

2.2 Descent Property and Sufficient Descent 

Property of the New Algorithm 

Theorem 1:- If (1.2) gives the sequence {𝑥𝑘}, 

then the descent condition is satisfied by the 

equation (1.4) using new gradient 

algorithm (2.3);  𝑑𝑘+1
𝑇 ∗ 𝑔𝑘+1 ≤ 0 with exact 

line search and inexact line search.  

Proof :- From  equations (1.4) and (2.3) we get, 

𝑑𝑘+1 = −𝑔𝑘+1 + 

(
‖𝑔𝑘+1‖2+(1−𝛿)

‖𝑔𝑘+1‖
2

𝛾
−(1−𝛿)𝜇‖𝑔𝑘+1‖2−𝑔𝑘+1

𝑇 𝑣𝑘

𝑑𝑘
𝑇𝑦𝑘

 )𝑑𝑘   

                                                                 (2.4)                     

Implies that                                              

𝑑𝑘+1 = −𝑔𝑘+1 + (
‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

+
(1−𝛿)

𝛾

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

−

(1 − 𝛿)𝜇
‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

−
𝑔𝑘+1

𝑇 𝑣𝑘

𝑑𝑘
𝑇𝑦𝑘

 )𝑑𝑘                 (2.5) 

Multiplying both sides of the above equation by 

𝑔𝑘+1 from right ,  we have 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 +

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘+1

+
(1 − 𝛿)

𝛾
∗

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘+1

− (1 − 𝛿)𝜇
‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘+1

− 𝛼𝑘

(𝑑𝑘
𝑇𝑔𝑘+1)2

𝑑𝑘
𝑇𝑦𝑘

  

This implies that  

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + (1 +

                      
(1−𝛿)

𝛾
)

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘+1 −

                       (1 − 𝛿)𝜇
‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘+1 −

                        𝛼𝑘
(𝑑𝑘

𝑇𝑔𝑘+1)2

𝑑𝑘
𝑇𝑦𝑘

                        (2.6) 

Since  (1 +
(1−𝛿)

𝛾
) >  (1 − 𝛿)𝜇, we can write the 

above equation as follows  

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + 

                     𝜕
‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘+1 − 𝛼𝑘

(𝑑𝑘
𝑇𝑔𝑘+1)2

𝑑𝑘
𝑇𝑦𝑘

    

                                                                 (2.7)                           
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Where,   𝜕 = (1 +
(1−𝛿)

𝛾
) − (1 − 𝛿)𝜇  , which is 

positive. 

Here , we take two cases , the first case if the 

stepsize is determined by an exact line search; 

which is  𝑑𝑘
𝑇𝑔𝑘+1 = 0, then, we get 

 𝑑𝑘+ 1
𝑇 𝑔𝑘+1 ≤ 0. 

The second case if we have inexact line search 

which is 𝑑𝑘
𝑇𝑔𝑘+1 ≠ 0.  

By mathematical induction, from the first search 

direction, we get 𝑑1
𝑇𝑔1 = −‖𝑔1‖2 ≤ 0, and we 

suppose that it is true for case 𝑘  that is mean 

𝑑𝑘
𝑇𝑔𝑘 ≤ 0 . To prove case 𝑘 + 1  

We know that  DY parameter  is satisfy the 

condition of the descent; then , the first term and 

second term of (2.7) are less than or equal to 

zero , and the third term clearly is les that zero, 

so we have  

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + 

𝜕
‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘+1 

                  −𝛼𝑘
(𝑑𝑘

𝑇𝑔𝑘+1)
2

𝑑𝑘
𝑇𝑦𝑘

≤ 0    ∎           (2.9)                  

Theorem2:- Suppose  that {𝑥𝑘} is produced by 

(1.2),  then,  the equation (1.4) with new 

equation (2.3) satisfies the sufficient descent 

condition,  

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −𝐶‖𝑔𝑘+1‖2. 

Proof:- From  equation (2.7) 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + 𝜕

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

𝑑𝑘
𝑇𝑔𝑘+1 −

𝛼𝑘
(𝑑𝑘

𝑇𝑔𝑘+1)2

𝑑𝑘
𝑇𝑦𝑘

         

Since the parameter of DY is satisfy the descent 

property, then we get the following inequality 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −𝛼𝑘

(𝑑𝑘
𝑇𝑔𝑘+1)2

𝑑𝑘
𝑇𝑦𝑘

         

Or  

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −𝛼𝑘

(𝑑𝑘
𝑇𝑔𝑘+1)2

𝑑𝑘
𝑇𝑦𝑘

∗
‖𝑔𝑘+1‖2

‖𝑔𝑘+1‖2    

                                                               (2.10)                                                                   

let  𝐶 = 𝛼𝑘
(𝑑𝑘

𝑇𝑔𝑘+1)2

𝑑𝑘
𝑇𝑦𝑘

∗
1

‖𝑔𝑘+1‖2     

Then we have  

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −𝐶‖𝑔𝑘+1‖2. ∎  

 

2.3 Convergence Analysis  

we assume that: 

1) The level set 𝐵 = {𝑥;  𝑥 ∈ 𝑅𝑛∗1, 𝑓(𝑥) ≤
𝑓(𝑥1)} is bounded, where 𝑥1 is the beginning   

point. 

2) The function f is continuously differentiable 

and its gradient is Lipchitz continuous in a 

neighborhood of B, i.e. there is a constant 𝑀 > 0 

such that  

‖𝑔(𝑥) − 𝑔(𝑥𝑘)‖ ≤ 𝑀‖𝑥 − 𝑥𝑘‖, ∀𝑥, 𝑥𝑘 ∈ Ω                    

(2.11) 

There is a constant under these assumptions on f,  

𝜌 ≥ 0 ; such that ‖𝑔(𝑥)‖ ≤ 𝜌,    ∀𝑥 ∈ 𝐵 . 

Lemma1: We suppose the assumptions (1) and 

(2) are holds and consider the equations (1.2) , 

(1.3) and (1.4), where 𝑑𝑘 is a descent direction  

and 𝛼𝑘 is calculated by the strong Wolfe 

condition. 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝑞1 ∗ 𝛼𝑘𝑔𝑘
𝑇𝑑𝑘   

                                                             (2.12)                                                              

|𝑔𝐾+1
𝑇 𝑑𝑘| ≤ 𝑞2𝑔𝑘

𝑇𝑑𝑘                            (2.13)                                                                                  

If 

∑
1

‖𝑑𝑘‖2 = ∞𝑘≥1                                       (2.14)                                                                                      

Then 

lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0                            (2.15)                                                                                

See (Dai, Y.H., and Yuan, 1999). 

If f is a function that is uniformly convex,, there 

is a constant 𝜗 > 0 such that: 

(𝑔(𝑥) − 𝑔(𝑦))
𝑇

(𝑥 − 𝑦) ≥ 𝜗‖𝑥 − 𝑦‖2 ∈ Ω    

                                                               (2.16)                                                

We can rewrite (2.16) in the following manner: 

𝑦𝑘
𝑇𝑣𝑘 ≥ 𝜗‖𝑣𝑘‖2                                     (2.17)                                                                                       

Theorem 3: Suppose the above assumptions are 

holds and that f is a function that is uniformly 

convex. Then the equations  (1.2), (1.4) with 

new method (2.3) where 𝑑𝑘 satisfies the descent 

condition and  𝛼𝑘 is obtained by the strong 

Wolfe conditions (2.12) and (2.13) satisfies 

property of the global convergence.  

That is mean    lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘+1‖ = 0 

Proof: From (1.4) and (2.3), we get 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘
𝑁𝑒𝑤𝑑𝑘                     (2.18)                                                                        

|𝛽𝑘
𝑁𝑒𝑤| =

|
‖𝑔𝑘+1‖2+(1−𝛿)

‖𝑔𝑘+1‖
2

𝛾
−(1−𝛿)𝜇‖𝑔𝑘+1‖2−𝑔𝑘+1

𝑇 𝑣𝑘

𝑑𝑘
𝑇𝑦𝑘

|                                    

                                                               (2.19) 

Or  

|𝛽𝑘
𝑁𝑒𝑤| = |

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

+
(1−𝛿)‖𝑔𝑘+1‖2

 𝛾 𝑑𝑘
𝑇𝑦𝑘

−

(1−𝛿)𝜇‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

−
𝑔𝑘+1

𝑇 𝑣𝑘

𝑑𝑘
𝑇𝑦𝑘

|                          (2.20) 

Since   𝑔𝑘+1
𝑇 𝑑𝑘 ≤ 𝑑𝑘

𝑇𝑦𝑘  , then,                   

|𝛽𝑘
𝑁𝑒𝑤| ≤ |

‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

| + |
(1−𝛿)‖𝑔𝑘+1‖2

 𝛾 𝑑𝑘
𝑇𝑦𝑘

| +

|
(1−𝛿)𝜇‖𝑔𝑘+1‖2

𝑑𝑘
𝑇𝑦𝑘

| + |𝛼𝑘|                            (2.21)  

Since 𝑦𝑘
𝑇𝑑𝑘 ≥

𝜗‖𝑣𝑘‖2

𝛼𝑘
 , then , we can write 

equation (2.21) as follows 
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|𝛽𝑘
𝑁𝑒𝑤| ≤

𝛼𝑘‖𝑔𝑘+1‖2

𝜗‖𝑣𝑘‖2 +
𝛼𝑘(1−𝛿)‖𝑔𝑘+1‖2

 𝛾 𝜗‖𝑣𝑘‖2 +

𝛼𝑘(1−𝛿)𝜇‖𝑔𝑘+1‖2

𝜗‖𝑣𝑘‖2 + 𝛼𝑘                              (2.22) 

Here, we get  

|𝛽𝑘
𝑁𝑒𝑤| ≤

𝛼𝑘𝜌2

𝜗‖𝑣𝑘‖2 +
𝛼𝑘(1−𝛿)𝜌2

 𝛾 𝜗‖𝑣𝑘‖2 +
𝛼𝑘(1−𝛿)𝜇𝜌2

𝜗‖𝑣𝑘‖2 + 𝛼𝑘                                                           

(2.23) 

Now, since,  

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |𝛽𝑘
𝑁𝑒𝑤|‖𝑑𝑘‖                                                   

Then, 

‖𝑑𝑘+1‖ ≤ 𝜌 + (
𝛼𝑘𝜌2

𝜗‖𝑣𝑘‖2 +
𝛼𝑘(1−𝛿)𝜌2

 𝛾 𝜗‖𝑣𝑘‖2 +

𝛼𝑘(1−𝛿)𝜇𝜌2

𝜗‖𝑣𝑘‖2 + 𝛼𝑘)‖𝑑𝑘‖                           (2.24)                         

Implies that 

‖𝑑𝑘+1‖ ≤ 𝜌 + (
𝜌2

𝜗‖𝑣𝑘‖
+

(1−𝛿)𝜌2

 𝛾 𝜗‖𝑣𝑘‖
+

(1−𝛿)𝜇𝜌2

𝜗‖𝑣𝑘‖
+

‖𝑣𝑘‖)                                                     (2.25)  

Since, ‖𝑣𝑘‖ = ‖𝑥 − 𝑥𝑘‖ ,  𝐷 = max {‖𝑥 −
𝑥𝑘‖} , ∀𝑥, 𝑥𝑘 ∈ 𝑅}  

Here, 
‖𝑑𝑘+1‖ ≤ 𝜌 + 

     (
𝜌2

𝜗𝐷
+

(1−𝛿)𝜌2

 𝛾 𝜗𝐷
+

(1−𝛿)𝜇𝜌2

𝜗𝐷
+ 𝐷)         (2.26) 

So, inequality  (2.26) becomes 
‖𝑑𝑘+1‖ ≤ 𝜌 + 

                (
𝜌2

𝜗𝐷
+

(1−𝛿)𝜌2

 𝛾 𝜗𝐷
+

(1−𝛿)𝜇𝜌2

𝜗𝐷
+ 𝐷)  = 𝜑     

                                                               (2.27)                                   

Then,  

∑
1

‖𝑑𝑘+1‖2 ≥𝑘≥1 ∑
1

𝜑2 = ∑ 1𝑘≥1 = ∞𝑘≥1   

And  

∑
1

‖𝑑𝑘+1‖2 = ∞𝑘≥1  .By using lemma(1), we get   

lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘+1‖ = 0. 

 

3. NUMERICAL RESULTS 

 

     In this part, we present detailed numerical 

findings of a variety of problems applying a new 

method. We compare the new algorithm  with 

standard Conjugate Gradient algorithm(Perry). 
The comparative tests contain nonlinear 

unconstrained problems (a popular testing 

function) with different dimensions𝑛 =
4,100,500,1000,3000 and  
5000. FORTRAN 90 is the programming 

language used, the stopping condition is 

‖𝑔𝑘+1‖ ≤ 10 −5 . Tables (i) and (ii) show the 

number of functions (NOF) and iterations ( 

NOI). Results in tables (i) and (ii) showed that 

the our method is superior to standard Conjugate 

Gradient methods (Perry),  with respect to the 

NOF  and NOI .

 

 
Table (i) : Comparing the numerical results of the algorithms (Perry and New Algorithm) 

Test function Dim. Algorithm of  

Perry 

New algorithm 

 

NOI NOF NOI NOF 

Powell 4 

100 

500 

1000 

3000 

5000 

35 

43 

43 

45 

46 

46 

89 

105 

105 

120 

122 

122 

30 

34 

34 

34 

34 

34 

79 

90 

90 

91 

92 

92 

Rosen 4 

100 

500 

1000 

3000 

5000 

30 

30 

30 

30 

30 

30 

83 

83 

83 

83 

83 

83 

27 

20 

22 

16 

20 

17 

90 

59 

64 

51 

60 

53 

Miele 4 

100 

500 

1000 

3000 

5000 

34 

46 

52 

58 

58 

64 

113 

169 

198 

229 

229 

261 

21 

14 

30 

44 

37 

35 

76 

46 

117 

190 

152 

146 

Wolfe 4 

100 

500 

1000 

11 

49 

52 

70 

24 

99 

105 

141 

16 

43 

47 

49 

33 

87 

96 

100 
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3000 

5000 

170 

166 

351 

350 

146 

140 

309 

296 

Wood 4 

100 

500 

1000 

3000 

5000 

30 

30 

30 

30 

30 

30 

68 

68 

68 

68 

68 

68 

27 

28 

27 

28 

28 

28 

63 

64 

62 

65 

64 

64 

Cubic 4 

100 

500 

1000 

3000 

5000 

12 

13 

13 

13 

13 

13 

35 

37 

37 

37 

37 

37 

16 

11 

10 

10 

10 

10 

50 

33 

30 

31 

30 

31 

Non-Digonal 4 

100 

500 

1000 

3000 

5000 

24 

29 

29 

F 

29 

30 

64 

79 

79 

F 

79 

81 

20 

19 

27 

24 

21 

24 

62 

56 

85 

74 

66 

77 

G-Edger 4 

100 

500 

1000 

3000 

5000 

5 

5 

6 

6 

6 

6 

14 

14 

16 

16 

16 

16 

5 

5 

5 

5 

5 

5 

14 

14 

14 

14 

14 

14 

Total  1750 4682 1342 3650 

 
Table(ii):- Percentage comparison of the algorithms(Algorithm of Perry and New Algorithm) 

 

 

 

 

 

 

4. CONCLUSION 

 
For nonlinear unconstrained minimization 

problems, a new conjugate gradient algorithm 

proposed. We  have proved the descent 

condition of the proposed method , also  the 

sufficient descent condition, moreover global 

convergence property. Numerical tests were 

done on problems with low and high 

dimensionality, and comparisons were done 

between different test functions. The new 

method has proven its efficiency through 

results in tables (i) and (ii). 
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