
Journal of University of Duhok, Vol. 21, No.1 (Pure and Eng. Sciences), Pp 6-14, 2018
DOI: https://doi.org/10.26682/sjuod.2018.21.1.2

*
E-mail: faris.alyas@uod.ac

6

THE IMPACT OF DISTANCE BETWEEN THE DATA AND CONTROL PLANE

ON OPENFLOW PROTOCOL PERFORMANCE

FARIS KETI
*

Dept . of Electrical and Computer Engineering,College of Engineering, University of Duhok, Kurdistan Region-Iraq

(Received: September 11, 2017; Accepted for Publication: May 10, 2018)

ABSTRACT
 The Internet has led to the creation of a digital society, where most of things is connected to it. However,

in spite of their popular adoption, current internet networks are complex and very difficult to manage. With

the increasing complexity of traditional IP networks, Software Defined Networking (SDN) has been emergent

as a new norm of networking that can solve many of current internet network management problems. Intro-

ducing the concepts of SDN into the network architecture brought the idea of physical separation of these two

planes, pushing up the control planes to the centralized controller of the architecture and leaving the data

planes remained on the network elements. This paper is to investigate that if the control plane is physically

moved away from the data plane, what impact does this have on the performance as seen by users of the net-

work. Also, the effect of this physical distance resulted from the separation of these two planes on the most

famous protocol (OpenFlow protocol) performance is conducted.

KEYWORDS: OpenFlow, Data Plane, Control Plane, Software Defined Networking.

I. INTRODUCTION

he community of computer networks re-

searchers has been searching for ideas that

enable the use of networks with more program-

ming resources and less need for hardware ele-

ments replacement. SDN is an emerging network

architecture that virtualizes network infrastructure

by separating the control and data plane logic of

traditional network devices, creating a flexible,

dynamic, automated and manageable architecture

[1, 2]. In an SDN architecture, a layer 2 switch

forwards packets according to a set of rules that are

defined by a software controller. This allows to

keep the network device simple and to add func-

tionality to the switch by developing software ap-

plications on the controller [3].

This paper is to investigate that if the control

plane is physically moved away from the data

plane, what impact does this have on the perfor-

mance of the network. Since, OpenFlow protocol

[4] is the most famous open interface protocol that

standardizes the communications between the data

and control plane, the effect of physical distance

resulted from the separation of these two planes on

protocol performance is conducted [5].

 Section II of this paper is the literature review.

Section III discusses the SDN paradigm describing

its motivation, network elements that are part of

this new structure, in addition, the operation of

these components. Section IV describes OpenFlow

Protocol which is the interface between control and

data plane of the new norm of computer networks

known as SDN. Section V presents a brief descrip-

tion of the software used in the implementation of

this study. In section VI the effect of distance be-

tween control and data planes on the OpenFlow

protocol performance is conducted. Section VII

concludes the paper.

II. LITERATURE REVIEW

 Although SDN is being rapidly deployed and

developed, and get too much interest by both arti-

ficial and research community, but there have been

a small number of studies that focus on the evalua-

tion of SDN architecture performance [3, 5].

Among that few studies, to the best of my

knowledge, this paper is one of the first studies to

consider the impact of distance between the data

and control plane on OpenFlow protocol perfor-

mance particularly and the SDN architecture in

general.

In section VI of this paper a scenario where

there is significant delay between the control and

data planes has been considered. Multiple tests

using different protocols: from ping, TCP file

transfer, to UDP traffic streaming. For each test,

T

Journal of University of Duhok, Vol. 21, No.1 (Pure and Eng. Sciences), Pp 6-14, 2018

7

different distances between the control plane and

the data plane were experimented. The results

show that at the beginning of every communica-

tion, there is a mean Round-Trip Time (RTT) ap-

proximately three times the programmed delay

between the controller and the data plane. This

delay significantly affects the OpenFlow protocol

performance (increases the time needed by

OpenFlow protocol switches to consult the con-

troller) and reduces the throughput especially when

transferring small files.

III. SOFTWARE DEFINED NETWORKING

(SDN)

 SDN is a new network paradigm that decouples

the infrastructure (control and data planes) logic of

traditional network devices [6].

Figure 1 shows an SDN network architecture.

Fig(1):- Software Defined Network Architecture [7]

 In SDN based networks an Application Pro-

gramming Interface (API) is provided for data

plane devices such as switches and routers. API

makes the programmability of network devices

possible, resulting in a flexible, dynamic, manage-

able, and automated architecture [8].

 There are three main planes in SDN network,

which are; data plane, control plane, and manage-

ment plane. The main SDN planes are shown in

Figure 2.

Journal of University of Duhok, Vol. 21, No.1 (Pure and Eng. Sciences), Pp 6-14, 2018

8

Fig.(2):- The main SDN Planes [9]

The control and data planes communicate with

each other via south-band open interface protocol

(OpenFlow Protocol), while the management and

control planes communicate with each other via

north-band open interface.

In the future, SDN will be an important and/or

main part of internet technology. As all networking

technologies have software to some percentage;

therefore, they are all SDN [9].

IV. OPENFLOW PROTOCOL

 OpenFlow protocol [4] was proposed to stand-

ardize how the centralized software controller and

the switches communicate with each other through

an open interface protocol between control plane

and data plane. The OpenFlow protocol defines the

communication between an OpenFlow based SDN

controller and an OpenFlow switch. This protocol

is what most uniquely identifies OpenFlow tech-

nology. At its essence, the protocol consists of a

set of messages that are sent from the controller to

the switch and a corresponding set of messages

that are sent in the opposite direction. Collectively

the messages allow the controller to program the

switch so as to allow fine-grained control over the

switching of user traffic.

OpenFlow switch architecture consists of mul-

tiple flow tables in addition to a secure channel

which communicates with a controller via

OpenFlow protocol [7].

The architecture of OpenFlow Switch is shown

in Figure 3.

Fig. (3):- OpenFlow Switch [10]

Each flow table consists of a number of for-

warding flow entries, each incoming packet

matched a correspondent flow entry, then pro-

cessed and forwarded according to that flow entry.

The flow entries of any flow table have the follow-

ing parameters, which are; matching fields, coun-

ters, and a group of instructions. Match fields are

used for the process of matching the incoming

packets based on previously stored information

with incoming packet header, ingress port, and

metadata. Counters are used to count up the statis-

tics for every flow such as; the duration of a specif-

ic flow, and the number of received packets or re-

ceived bytes. The instructions are used when there

is a match; they determine how to deal with the

matched packets [11].

The centralized controller and the switches (Net-

work Elements) communicate with each other

through OpenFlow Protocol messages.

Figure 4 shows different types and categories of

OpenFlow Protocol messages.

Journal of University of Duhok, Vol. 21, No.1 (Pure and Eng. Sciences), Pp 6-14, 2018

9

Fig.(4):- OpenFlow Protocol messages

V. SOFTWARE USED IN STUDY

IMPLIMENTATION AND TESTS

 For the purpose of this study implementation

and tests, the softwares in Table 1 are used.

Mininet is the earliest emulation software (Em-

ulator) that provides a simple and easy opportunity

to prototype and evaluates SDN topologies, proto-

cols, controllers, and applications [12]. The main

property of Mininet emulator is that SDN topolo-

gies, protocols, controllers, and applications creat-

ed, and developed by the emulator can be easily

used in a real SDN network without any modifica-

tion. It is possible to emulate an SDN network with

hundreds of hosts by using only a single laptop

[13].

The capabilities of Mininet enable students, re-

searchers, and network programmers to prototype

SDN networks in an easiest way [12]. But for

Mininet to be utilized as one of the powerful tools

in emulating the SDN networks, the simulation

environment characteristics and qualifications

should be considered [14].

Journal of University of Duhok, Vol. 21, No.1 (Pure and Eng. Sciences), Pp 6-14, 2018

10

Table (1):- Software Used in Implementation and Tests
Software Function

Oracle VM Virtual Box Virtualization Software

Linux (Ubuntu) Host Operating System

Mininet Network Emulator

POX SDN Controller Platform

Python Programming Language

Nttcp New Test TCP

Iperf Network Traffic Generator

There are a lot of SDN controllers, however, for

the tests of this paper, POX [15] SDN controller is
selected because POX began as a controller for
OpenFlow protocol, geared towards research and
education, and can be used for developing net-
working software. POX is a software platform de-
veloped in Python [16]. It works with all Python
versions, and can run under Linux operating sys-
tems, Mac operating systems, and Windows oper-
ating systems. The core and main modules of POX
are developed in python Table 2 contains the

names of some controllers and the programming
language it supports.

New test TCP program (nttcp) is the software
used to measure the transfer rate on a Transmission
Control Protocol (TCP), User Datagram Protocol
(UDP), or UDP multicast connection.

IPERF [17] is a tool used for network perfor-
mance measurement. It has client and server func-
tionality, and can create unidirectional or bidirec-
tional streams of data to measure the throughput
between two nodes.

Table(2):- SDN Controllers with Appropriated Programming Language

Controller Programming Language

POX Python

Ruby Trema

Beacon Java

NOX C++ / Python

OpenDaylight Python

FloodLight Java

RYU Python

VI. PERFORMANCE MEASUREMENTS

 In order to evaluate the impact of the location

of the SDN control plane with respect to the data

plane on OpenFlow protocol performance, and

what impact does this have on the performance of

the network, a simplified topology was created to

emulate different scenarios. The topology (see

Figure 5) enables us to change the location of the

controller with respect to the data plane, with a

constant delay between the hosts.

https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Server_(computing)

Journal of University of Duhok, Vol. 21, No.1 (Pure and Eng. Sciences), Pp 6-14, 2018

11

Fig. (5):- Experimental Topology

The topology was created using the Mininet

emulator [18]. The following instruction is used

for the purpose of creating such topologies by

Mininet:

$ sudo mn - - topo Single,2 - - controller = re-

mote

The topology consists of two end devices

(hosts), one forwarding device (switch), and the

controller. The control plane was implemented

using the POX SDN controller [18] which com-

municated with the OpenFlow switch using

OpenFlow protocol.

The geographical location of the controller was

simulated by adding a fixed delay to packets arriv-

ing and leaving the controller. The first scenario of

our experiments was to generate traffic using ping

with different values of controller delay settings as

per Table 3.

Table(3):- Controller Delay Values
SDN Controller

Delay SDN Location

0 (ms) Reference Controller (Controller in the
same location as Data Plane)

15 (ms) Controller in a different location in the
same city as the Data Plane

30 (ms) Remote Controller (Controller is re-
mote geographically from Data Plane)

The purpose of this scenario from the experi-

ment was to observe the effect of SDN controller

delay (controller Round-Trip Time (RTT)) on

ping transmission times. It involved sending Inter-

net Control Message Protocol (ICMP) requests

from Host 1 to Host 2 repeatedly for many repeti-

tions. It has been observed that the first ICMP re-

quest took longer time to complete than all subse-

quent ICMP requests.

The registered response time for the first ICMP

request and all subsequent requests is summarized

in Table 4.

It could be noticed, that all subsequent requests

for the entire controller delay configurations were

completed in an approximately constant average

RTT of about 6 ms, indicating that when the SDN

switch was completely configured, then the traffic

was switched with less considerable delay. This is

because the switch’s flow table entries had been

programmed and updated, therefore; the controller

would no longer be consulted by the switch.

Table(4) :_ Controller Delay Values
Delay (ms) First Ping Subsequent Pings

Avg RTT (ms) Avg RTT (ms)

0 (ms) 27.744 5.47

15 (ms) 44.4 6.23

30 (ms) 92.6 6.41

Journal of University of Duhok, Vol. 21, No.1 (Pure and Eng. Sciences), Pp 6-14, 2018

12

From Table 4, it can be noted that the RTT taken

by the first ICMP request is approximately equal

to three times the added delay between the control

and data planes.

This denotes that the switch consulted the con-

troller for instructions on how to deal with the new

ICMP request three times during the first request.

It’s expected that for entire flows from Host 1 to

Host 2, the first packet will take an additional de-

lay of approximately 3 times the added delay

(RTT time) and all subsequent packets will take

no extra delay.

The second scenario was the TCP experiment.

In this experiment amounts of data where trans-

ferred from Host 1 to Host 2 using TCP protocol.

As an example usage of TCP files transfer, a Hy-

pertext Transfer Protocol (HTTP) requests were

run using the same range of controller delays as

per first scenario. The purpose of this scenario

from the experiment was to explain the effect of

controller location on perceived TCP throughput.

The obtained results plotted in Figure 6.

Fig. (6):- perceived TCP throughput.

From the results it could be concluded that for

particularly small transfers (such as HTTP re-

quests or web page downloads), the distance be-

tween the controller and the data planes can have a

large impact on the user perceived throughput.

Therefore; the location of the SDN controller may

need to be carefully considered by network admin-

istrators in order to decrease it’s heavily impact on

network performance.

The third and last scenario from our tests con-

sidered the impact of the distance between the

control plane and the data plane on the perfor-

mance of UDP flow traffic. The IPERF [18] tool

was used to generate the UDP traffic between the

two hosts. The results show that as the distance

between the control and data plane increases, the

time that the data plane switches took to consult

the controller increased. As a result, there is a sub-

sequent increase in the number of packets (data-

grams) arriving out-of-order at destination Host,

especially at the beginning of each flow (see Fig-

ures 7 and 8).

Journal of University of Duhok, Vol. 21, No.1 (Pure and Eng. Sciences), Pp 6-14, 2018

13

Fig(7):- Less Datagrams Received Out-of-Order

Fig.(8):- More Datagrams Received Out-of-Order

From Figure 7, one can see that when the time

taken by data plane switch to consult the SDN

controller through OpenFlow protocol was 0.125

ms, then the number of datagrams that received

out of order at the destination host was only 1

datagram out of 4345 datagrams have been sent.

Or, in other words, the percentage of out of order

received datagrams was only 0.023%.

While when the time of messaging between the

data plane switch and the SDN controller using

OpenFlow protocol standardized messages in-

creases to 0.859 ms as shown in Figure 8 above,

then the number of datagrams that received out of

order at the destination host become 3 datagrams

out of 2740 datagrams have been sent. Or the per-

centage of out of order received datagrams in-

creased to become 0.11%.

Due to real-time flows nature, upon receipt of

the first packet the playback process begins.

Therefore; the subsequent packets are buffered for

playback because of the playback of the first

packet. As such, in addition to the time required

for the packet reordering process, the complete

real time flow will experience an observed trans-

mission delay. This possible impact should be tak-

en into consideration when the location of an SDN

controller determined.

VII. CONCLUSION

 For decades to come, SDN is on a way to be

an important and permanent part of networking

technology. Therefore, this work considered if

SDN sees widespread deployment then network

operators and administrators might consider re-

mote deployment of controllers to reduce costs. In

this paper an analysis of the impacts of distance

between the control plane and the data plane on

the performance of an OpenFlow based SDN net-

work is performed.

 From the results obtained in this paper, it can be

noticed clearly that the flexibility offered by SDN

can come at the expense of perceived network per-

formance.

For ping traffic, it’s clear that the distance be-

tween the control plane and the data plane in-

creases the time needed by OpenFlow protocol

switches to consult the controller. In response the

RTT of the first ping increases by at least three

times the delay between the control and data

plane. While subsequent pings, however, were fast

and not affected at all. For TCP file transfers, it

has a large impact on the throughput of transfer-

ring small files. While for real-time UDP traffic

streaming flows, it could be noticed that a RTT

delay in addition to the time required for the pack-

et re-ordering process will be added to the lifetime

of the flow.

Therefore, this paper concluded that the net-

work operators and administrators need to careful-

ly consider the placement of SDN controllers

within their network. Also the Open Networking

Foundation (ONF) who manages the OpenFlow

protocol standardization needs to take this impact

of distance on protocol performance in to consid-

eration in order to improve the performance or in

worst case to decrease the distance impact. This

study suggests that the controllers that manage the

data plane using OpenFlow Protocol should be

placed as close to the data plane as possible.

Journal of University of Duhok, Vol. 21, No.1 (Pure and Eng. Sciences), Pp 6-14, 2018

14

While, remote controllers could be used for meta-

network management, performing tasks such as

security or Quality of Services (QoS). This would

allow more detailed management to be performed

centrally.

REFERENCES

 Guohui Wang, T. S. Eugene Ng, and Anees Shaikh,

“Programming your network at run-time for big

data applications”,HotSDN’12, Helsinki, Fin-

land, August 13, 2012.

 RogérioLeão Santos de Oliveira, and Christiane

Marie Schweitzer, et al., “Using Mininet for

Emulation and Prototyping Software-Defined

Networks”, 2014 IEEE Colombian Conference

on Communications and Computing

(COLCOM), Brazil, ©2014 IEEE.

 Seongbok Baik, Chankyou Hwang,and Youngwoo

Lee, “SDN-based architecture for end-to-end

path provisioning in the mixed circuit and pack-

et network environment”, Asia-Pacific Network

Operation and Management Symposium

(APNOMS), ©IEICE -2014.

 OpenFlow Protocol, The Openflow Switch,

[Online].Available:

http://www.openflowswitch.org.

 Adrian Lara, Anisha Kolasani, and Byrav Rama-

murthy, “Simplifying network management us-

ing Software Defined Networking and

OpenFlow”, 2012 IEEE International Confer-

ence on Advanced Networks and

Telecommunciations Systems (ANTS), ©2012

IEEE.

 ONF White Paper, “Software-Defined Networking:

The New Norm for Networks,” Open Network-

ing Foundation, Tech. Rep., April 2012.

 Ian F. Akyildiz, Ahyoung Lee , and Pu Wang, “A

roadmap for traffic engineering in software de-

fined networks”, computer networks journal,

2014 Elsevier B.V. All rights reserved ©2014

Elsevier.

 Markus Vahlenkamp, Fabian Schneider, and Dirk

Kutscher, “Enabling Information Centric Net-

working in IP Networks Using SDN”, 2013

IEEE International Conference (SDN4FNS),

©2014 IEEE.

 Paul Goransson, and Chuck Black, “Software De-

fined Networks: A Comprehensive Approach ” ,

Book (1st ed.), 2014 Elsevier Inc. All rights re-

served© 2014 Elsevier.

 Alexander Gelberger, Niv Yemini, and Ran Giladi,

“Perfor mance Analysis of Software-Defined

Networking (SDN)”, 2013 IEEE 21st Interna-

tional Symposium on Modelling, Analysis &

Simulation of Computer and Telecommunica-

tion Systems, IEEE Computer Society.

 Thomas D. Nadeau, and Ken Gray, “SDN: Software

Defined Net works”, Published by O’Reilly

Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472, First Edition, August

2013.

 B. Lantz, B. Heller, and N. McKeown, “A network

in a laptop: rapid prototyping for software-

defined networks,” in Proceedings of the 9
th

ACM SIGCOMM Workshop on Hot Topics in

Networks. ACM, 2010.

 Diego Kreutz, and Fernando M. V. Ramos, et al., “

Software Defined Networking: A Comprehen-

sive Survey”, 2015 proceeding of IEEE journal,

First Edition ©2015 IEEE.

 Faris Keti, and Shavan Askar, “A New Investiga-

tion of Mininet Emulator for Evaluating Soft-

ware Defined Networks Performance”, Journal

of University of Duhok, Vol. 18, No.1 (Pure and

Eng. Sciences), 2015.

 POX, “Pox SDN controller”, [Online].Available:

http://www.noxrepo.org/pox/about-pox.

 Python Software Foundation, “Python language

reference, version 2.7 ” , [Online].Available:

http://www.python.org,.

 Iperf network traffic generator, [Online].Available:

(https://iperf.fr/).

 Mininet: An Instant Virtual Network on your Lap-

top. [Online]Available: http://mininet.org.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Christiane%20Marie%20Schweitzer.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Christiane%20Marie%20Schweitzer.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6851796
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6851796
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6851796
http://www.openflowswitch.org/
http://www.noxrepo.org/pox/about-pox
http://www.python.org/

