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ABSTRACT 
Compressive sensing (CS) is a new technique that give an approach to reconstruct the signal with few 

numbers of observations or measurements. The CS is based on L1 -norm minimizations to find the sparse 

solutions and it is known as basis pursuit. 

In this investigation, CS scheme with different transforms is proposed. The three utilized transform 

techniques are: Discrete Fourier Transform(DFT), Discrete Cosine Transform(DCT) and Discrete Wavelet 

Transform(DWT) with daubechies1(DB1) and coiflets1(coif1) basis. The proposed system is tested by 

employing the following signals: Blocks, Heavy Sine, ‘Bumps’ and ‘Doppler’ which cover wide range of 

applications. The four testing signals are represented in sparse domain using different transforms. In order to 

threshold the coefficients of the signals in sparse domain, the universal threshold is utilized in the case of CS 

with FFT and DWT whereas, the universal threshold is modified to prune the DCT coefficients.   

The main aim of this study is to investigate the differences among CS with DFT, CS with DCT and CS 

with DWT, and consequently a suitable transform domain used with CS to be selected. The comparative 

study is established by assessing the performance of the proposed system using Root Mean Square Error 

(RMSE), output SNR, and the time required to reconstruct approximated signals.  

Simulation results have shown that the CS with DWT outperforms the CS with FFT and DCT. CS with 

DWT has achieved good RMSE values about (0.0014 to 3.359e-8) even when half of the signal elements are 

removed. CS with FFT and DCT enhanced the noisy Blocks and Bumps signals by 3dB and 1dB respectively, 

while it is failed to enhance noisy Heavy Sine and Doppler signals. CS with DWT of two basis and for single 

decomposition level have improved the noisy  Blocks, Bumps, Heavy Sine and Doppler signals by 5dB, 4dB, 

3dB, and 3dB respectively. 
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1- INTRODUCTION 

 

n the period of digital technology 

innovation, the data acquisition/sensing 

instruments are producing enormous amount of 

data that should be transmitted, processed, or 

stored. This is a popular issue in sensing systems 

dealing with multimedia signals, medical and 

biomedical data, radar signals, and so forth. The 

required amount of digital information given as 

the number of digital samples, measurements or 

observations per time instance is determined based 

on Shannon–Nyquist sampling theorem. 

Consequently, a signal can be recovered if the 

sampling frequency (  ) is at least greater than 

two times the maximum frequency contained in 

the signal (     ). Clearly, the sampling 

technique results in a large number of samples for 

signals with significantly high maximal frequency 

[1]. 

The signal acquisition process in the real 

applications was mainly done as stated by the 

Nyquist rate. To respond to the storage, 

transmission, and computational challenges, the 

data are compressed up to the acceptable quality 

by applying complex and demanding algorithms 

for data compression. 

Discrete-time signals can be transformed into 

other domains using different signal 

transformations. A few signals that have a dense 

representation in one domain could be sparse in 

some domain such as time, frequency or space. A 

signal, which has a few nonzero coefficients, is 

called a sparse signal or its transform in another 

domain is sparse [2, 3].  

CS is a relatively new scheme of data sampling 

technique, which use random sensing to sample 

the signal that is spares in one of its transform 

domain. CS allows recovering sparse signal from 

a reduced set of observations. A reduced set of 

observations can be a result of a desire to sense a 

sparse signal with as low as possible number of 

measurements/observations [4-6].  

The CS technique is widely utilized in the 

practical applications such as speech 

enhancement, radar, wireless communication, 

I 
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image processing, and observing the electrical 

activities of the human body [7, 8]. 

Recent results have completely demonstrated that 

the performance of all CS reconstruction 

algorithms depends on numerous parameters, for 

example, Sparsity level, level of under-sampling, 

measurement noise power, and the statistical 

distribution of non-zero elements of a sparse 

signal [9]. 

In this work, the CS scheme is applied on four 

types of testing signals. These can cover a wide 

range of applications. For every signal, three 

transformation techniques are utilized to sparsify 

the interested signal. The performance of the 

proposed system with different transform domains 

is assessed using root mean square error (RMSE) 

and the time taken by the reconstruction process to 

recover the signal. 

In the second part of this study, the testing 

signals are corrupted by AWG N and the CS 

system is used as a denoising scheme. In addition, 

the universal threshold is modified for trimming 

the DCT coefficients. The system performance in 

this time is evaluated using SNRo for each case.  

The remaining of this paper is organized in the 

following way: The second section, provides the 

Fundamentals principles of the CS. The third 

Section, deals with the proposed system. 

Simulation results with conclusions are given in 

sections 4 and 5 respectively.  

2- Fundamentals of CS 

The CS system can be implemented through 

two phases. These are the sampling/sensing phase 

and the reconstruction phase. Figure (1) shows the 

schematic diagram of the CS system. The two 

phases are explained in the next sub-sections. 

 

 

 

 

                                     

Fig. (1):- The Schematic Diagram of the CS System [10] 

 

 

2-1 Sensing Phase 

Assume that x(n) is  a real-valued, discrete-

time signal of limited length. It can be viewed as a 

N×1 column vector x with constituents xi, i = 1, 

…, N.  The signal x can be expressed as  

x = Ψ f     ------------------------- (1) 

Where Ψ is an N × N orthonormal basis matrix 

and f is the vector of coefficients, a N × 1 column 

vector. x and f are descriptions of the signal in 

different domains. Here, the time and the 

frequency domains are considered. Familiar basis 

or representations are DFT, DCT, and DWT. 

The signal x is considered as a K-sparse 

function, if f has K significant and (N – K) non-

significant coefficients. In general, x is 

compressible if the coefficient vector has a few 

large elements, while the remaining elements are 

small. 

Based on what mentioned above, in this part 

we can clarify whether one can discard an 

extensive portion of the coefficients fi without 

much loss in x or not. Accordingly, we consider 

   = Ψ    ------------------------------- (2) 

 

Where    is the vector of coefficients    with 

all but the K-largest coefficients set to zero. In 

other words, after the thresholding process the 

signal can be represented by a linear combination 

of K (K<<N) basis function. 

Now consider a measurement of the signal x 

which results in the vector y having M < N 

elements, representing the M  

measurements. This is characterized by 

 

y = Φ ---------------------------------------(3) 

 

with the M<<N measurement matrix. In the 

case of random sampling, Φ is composed of M 

rows of a N×N identity matrix. This corresponds 

to selecting M out of N samples of x. Substituting 

Eq. (1) into Eq.(3) we have 

 

y = Φ Ψf= Θf    ---------------------------(4) 

 

where the M×N matrix Θ is called the sensing 

matrix or sampling matrix[11].  

 

For successful compressive sensing, suitable 

sensing matrix is required. Some of the most used 

sensing matrices include matrix randomly sampled 

from Fourier transform or Walsh–Hadamard 

transform, random matrix, Toeplitz matrix, 

Circulant matrix, random demodulation matrix, 
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Gaussian or Bernoulli matrix, deterministic 

matrix, random convolution matrix, and DCT 

[12]. 

In this paper, the random Gaussian matrix is 

utilized to sample the input signal. Random 

Gaussian matrix is opted because it is simple, 

universal and easy to implement. Universality 

means that the signal can be sparse in any domain 

or any basis. 

2-2 Reconstruction Phase 

Once CS based sampling is performed, 

producing a sub-sampled signal y, it becomes the 

responsibility of the CS recovery algorithm to 

produce an estimate of the input signal x. There 

are various algorithms developed specifically for 

CS recovery, and can be classified into one of the 

following: greedy methods , convex-optimization 

techniques  and combinatorial methods. The CS 

recovery algorithms, all sparse recovery methods 

must optimize the following. 

• Minimal number of measurements. 

• Robustness to noise and mismatch errors. 

• Speed of computation. 

• Performance guarantee on recovery. 

Equation (4) is an underdetermined system of 

M equations with N unknowns, the N elements of 

f. However, if f. is sparse, CS theory shows that it 

is possible to find a solution if Θ satisfies the 

restricted isometry property RIP [13]. A vector 

that minimizes the L1 norm gives the solution. 

 

    
 
     

  

 

   

              

 

That is from all vectors     satisfying Θ   = y 

we select the one with minimum l1 norm. Once 

we know  , we can reconstruct the signal 

x = Ψ     ……………..………………… (6) 

 

Finding    is an optimization problem, which 

can be solved in a linear program.  

2-3 RIP  

There are two essential conditions that should 

be met in order to accomplish successful 

reconstruction for a wider range of sparsity level. 

First, is the (RIP). For a proper isometry constant, 

RIP ensures that any subset of columns in Θ with 

sparsity level less than K, is approximately 

orthogonal. This will ensure the successful signal 

reconstruction from small set of measurements. 

The second condition is a small correlation 

between the transform representation matrix and 

the measurement matrix (incoherence property). 

The random Gaussian measurement matrix satisfy 

the RIP. Each type of measurement matrix has a 

different lower bound for the number of 

measurements. Hence, in the case of Gaussian 

random matrix with zero mean and variance 1/M, 

the lower bound: 

          
 

 
                  

is achievable and can guarantee the exact 

reconstruction of x (C is a positive constant).  

 

3- PROPOSED SYSTEM 

This paper considers four types of testing 

signals suggested by donoho and jonosten [14]. 

These signals are HeavySine, Blocks, Doppler and 

Bumps. Figure (2), shows the flowchart of the 

proposed system. It illustrates CS implementation 

steps. 
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Fig. (2):- the flowchart of the proposed system 

 

At first, the signals are generated. These 

signals are dense in time domain but they can be 

sparse in the proper basis. The signals are 

sparsified using different transforms. The 

transforms are DFT, DWT and DCT.  Once, the 

signal is transformed to a new domain in which 

Start 

Generate the testing signals 

HeavySine, Blocks, Doppler and Bumps 

Sparsify the testing signals using different 

transforms DFT, DWT, DCT 

Set the value of measurements M  

Generate the sensing Matrix 

Sample the signals using sensing matrix 

Reconstruct the approximated input signal 

using L1-Norm minimization algorithm 

Calculate the assessing parameters: RMSE, 

Time, SNRo  

End 

Determine the inverse transform using  

IDFT, IDWT, IDCT 
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the signal is sparse, some elements must be pruned 

by setting different values for M (number of 

observations). After that, the sensing matrix is 

generated and the testing signals are sampled 

using compressive sampling.  

In the case of corrupted signals by AWGN, a 

hard threshold is applied. The elements that are 

less than the threshold value γ are deleted and the 

number of measurements M is adjusted by 

computing the non-zero elements. 

            
 

          ---------------(8) 

  
           

      
             ---------------(9) 

 

Where N is the signal length, σ is the standard 

deviation of zero mean AWGN, estimated by 

Donoho and Johnoston, and c is the detail 

coefficient of DWT. The FFT and DWT 

coefficients are pruned using equation (8). 

In order to suggest a threshold value for the 

DCT coefficients, we have to recall the equation 

of the DCT, which is given in equation (10)[15]. 

 

         
 

 
              

        

  
         

   

   

                                                                 
 

 It can be noticed that the coefficients of the 

DCT are scaled by  
 

 
   , thus we suggest to use γ 

as in equation (8) but after scaling it by   
 

 
 as 

given in equation (11).  

 

      
 

 
                       

 

At this point, the L1- Norm minimization 

algorithm is utilized to reconstruct the 

approximated input signals. Then the inverse 

transform is determined using IDFT, IDWT and 

IDCT.  

With the completion of these steps, the 

assessing parameters for each reconstructed signal 

are calculated. 

In this work, the following evaluation factors 

are used: 

 

a- Root Mean Square Error (RMSE) is defined as 

 

      
 

 
              
 

   

 

 
 

          

 

Where                are the original and 

reconstructed (estimated) signals respectively. 

 

b- Output SNR 

 

           
       

   

               
   

         

                                                                                                                                                          

 

c- Time taken by the optimization function to 

estimate the input signal. This time is determined 

using MATLAB script. 

 

4- Simulation Results  

This section describes the simulation of the 

proposed system with its results using MATLAB 

software package. A MATLAB script is written to 

examine the ability of the proposed scheme in 

recovering the testing signals from compressed 

samples. The first step in this process was to 

generate the four testing signals Blocks, Bumps, 

HeavySine, and Doppler using wnoise() function. 

Each signal is characterized by 2048 samples. 

Prior to the compressive sampling process, the 

four signals are preprocessed using different 

transformation techniques which are FFT, DCT 

and DWT, and consequently, the four signals are 

sparsified. After converting the testing signals 

from dense domain to sparse domains, the random 

Gaussian sensing matrix is created. On the 

completion of sensing matrix generation, the 

signals are compressively sampled through 

multiplying the sensing matrix by testing signals. 

Following this treatment, the testing signals are 

recovered by utilizing a free software package 

called L1-Magic [16]. At the finale, the signals are 

re-backed to time domain using IFFT, IDCT and 

IDWT functions. The results of this work are 

average values over 5 runs for the four testing 

signals.  

In the simulation part, two experiments are 

executed. At first the effect of number of 
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measurements or observations on the RMSE for 

each reconstructed signal are obtained. The Tables 

1, 2, 3 and 4 display the RMSE values of four 

tested signals with different values of 

measurements M and different transform. The 

DWT is implemented using two families, which 

are daubechies1 and coiflets 1 because they are 

widely used in signal denoising. In the case of CS 

with DWT, the CS is applied individually on 

approximation coefficients (CA) and details 

coefficients (CD). The RMSE values of  the 

reconstructed signals using CS with DWT applied 

on CA are not acceptable thus, it is not 

recommended to apply CS on CA of the DWT 

because most of these coefficients are significant 

values. As can be seen from the above tables, the 

CS with DWT applied on CD is outperform CS 

with DCT and CS with FFT, for the four testing 

signals. As a comparison between CS with DCT 

and CS with FFT, CS with DCT performs better 

than CS with FFT. Figure (3), Figure (4), Figure 

(5) and Figure (6), display the reconstructed 

Doppler, HeavySine, Blocks and Bumps signals, 

which are sampled by a sensing matrix of size 

(M×N), (M=1024, N=2048) thus the signals are 

reconstructed after deleting half of the samples.  

 

Table (1):-RMSE Values of the Reconstructed Blocks Signal for different values of M 

 
Measurements 

M 
DCT FFT DWT 

DB1 CA 
DWT DB1 

CD 
DWT 
Coif1 
CA 

DWT Coif1 
CD 

400 0.7340 1.4710 4.5373 3.2861e-7 4.4693 1.1796e-6 

800 0.4083 0.6734 4.1350 1.5225e-7 3.9809 1.1363e-7 

1200 0.2510 0.4785 3.4781 4.3511e-8 3.3887 3.359e-8 

1600 0.1555 0.1671 2.5729 4.1980e-8 2.5208 3.4376e-8 

2000 0.0454 0.0353 0.8930 1.1672e-8 0.9205 5.2908e-9 

 

Table (2):- RMSE Values of the Reconstructed Bumps Signal for different values of M 
Measurements 

M 
DCT FFT DWT DB1 

CA 
DWT DB1 

CD 
DWT Coif1 

CA 
DWT Coif1 

CD 

400 0.3738 0.9589 2.6067 0.0567 2.6059 0.0071 

800 0.0537 0.7029 2.1785 0.0287 2.1087 0.0034 

1200 0.0044 0.3028 1.0287 0.0124 1.2423 0.0014 

1600 1.3712e-4 0.0580 0.1161 0.0014 0.0891 9.6451e-5 

2000 1.3296e-5 3.2051e-5 0.0015 1.0521e-5 0.0024 1.4689e-6 

 

Table (3):- RMSE Values of the Reconstructed HeavySine Signal for different values of M 
Measurements 

M 
DCT FFT DWT DB1 

CA 
DWT DB1 

CD 
DWT Coif1 

CA 
DWT Coif1 

CD 

400 0.1365 0.2183 4.7437 0.0130 4.5280 6.5989e-5 

800 0.0852 0.1492 4.2143 0.0122 4.2324 6.1338e-5 

1200 0.0558 0.0866 3.5825 0.0107 3.6793 5.3381e-5 

1600 0.0325 0.0440 2.7364 0.0092 2.8175 4.3605e-5 

2000 0.0078 0.0079 0.8827 0.0043 0.9286 2.296e-5 

 

Table (4):- RMSE Values of the Reconstructed Doppler Signal for different values of M 
Measurements 

M 
DCT FFT DWT DB1 

CA 
DWT DB1 

CD 
DWT Coif1 

CA 
DWT Coif1 

CD 

400 0.0864 0.2043 0.4276 0.0118 0.4268 0.0027 

800 0.0359 0.0779 0.4050 0.0080 0.4139 4.5295e-4 

1200 0.0122 0.0489 0.3470 0.0048 0.3520 1.1297e-4 

1600 0.0019 0.0184 0.2831 0.0024 0.2766 2.2186e-5 

2000 1.905e-5 8.4336e-5 0.0978 5.3385e-4 0.1068 3.228e-6 
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     Figures (3), The reconstructed Doppler signal using CS with different transforms (M=1024)   

 

 
    Figures (4), The reconstructed HeavySine signal using CS with different transforms (M=1024)   
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    Figures (5), The reconstructed Blocks signal using CS with different transforms (M=1024) 

 

 
    Figures (6), The reconstructed Bumps signal using CS with different transforms (M=1024)  
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The tables 5, 6, 7 and 8 provide the time taken 

(in seconds) by the L1-magic function to 

reconstruct the four testing signals. Again, the CS 

with DWT outperforms the others. 

 

Table (5):- Time taken (in seconds) by L1-magic to Reconstruct Blocks Signal for different values of M 
Measurements 

M 
DCT FFT DWT DB1 CA DWT DB1 CD DWT Coif1 

CA 
DWT Coif1 

CD 

400 2.445489 4.984162 0.565039 0.311339 0.653135 0.565727 

800 5.911202 8.305987 1.015677 0.4422887 1.088137 0.656686 

1200 12.001254 12.15079 1.803465 0.757201 1.895024 0.913502 

1600 21.400325 38.528599 2.863318 1.019992 3.131341 1.223524 

2000 28.1607 69.755147 3.419567 1.53494 3.597302 1.685283 

 

Table (6):-Time taken (in seconds) by L1-magic to Reconstruct Bumps Signal for different values of M 
Measurements 

M 
DCT FFT DWT DB1 CA DWT DB1 CD DWT Coif1 

CA 
DWT Coif1 

CD 

400 2.616347 4.706586 0.629739 0.539427 0.591839 0.517094 

800 7.281437 8.199710 1.016012 1.001984 1.056784 0.95074 

1200 15.066650 27.935582 1.911401 1.854934 1.789974 1.635013 

1600 24.932513 88.882971 3.34314 3.022442 3.59434 2.722893 

2000 18.264106 131.623723 5.261913 4.960288 5.367138 2.967109 

 

Table (7):- Time taken (in seconds) by L1-magic to Reconstruct HeavySine Signal for different values of 

M 
Measurements 

M 
DCT FFT DWT DB1 CA DWT DB1 CD DWT Coif1 

CA 
DWT Coif1 

CD 

400 2.692652 4.125602 0.580958 0.585103 0.600505 0.56922 

800 6.385464 11.232797 1.399249 0.986099 1.057430 0.810918 

1200 11.975623 24.074669 1.959287 1.500744 1.770792 1.226418 

1600 19.683648 98.402756 2.817492 2.433053 2.860797 1.849281 

2000 28.939284 157.121291 7.119102 3.290138 3.208479 2.706948 

 

Table (8):- Time taken (in seconds) by L1-magic to Reconstruct Doppler Signal for different values of M 
Measurements 

M 
DCT FFT DWT DB1 CA DWT DB1 CD DWT Coif1 

CA 
DWT Coif1 

CD 

400 2.581048 1.749504 0.505288 0.540821 0.518549 0.544389 

800 6.635624 8.780828 1.005269 0.969398 1.044102 0.987540 

1200 12.632409 14.985458 1.731112 1.4585 1.803332 1.595637 

1600 25.284833 77.059023 2.617687 2.326997 2.771761 2.368390 

2000 27.41301 115.93344 3.09954 2.680331 3.160513 2.724257 

 

Secondly, the four testing signals are corrupted 

by AWGN then; the CS scheme is utilized as a 

denoising technique. The universal threshold as 

explained section 3 is used in pruning the 

elements of the sparse signals. Table (9) gives the 

results of denoising Blocks signal, it can be seen 

that CS with FFT and DCT achieves enhancement 

of 3dB, on the other hand CS with DWT of two 

basis and for single decomposition level 

accomplishes enhancement of 5dB. 

 Table (10) provides the result of denoising 

Bumps signal, CS with FFT and DCT improve the 

signal by 1 dB while CS with DWT of DB1 and 

Coif1 basis improves the signal by 4dB. Tables 11 

and 12 present the results of Heavy Sine and 

Doppler signals; it can be noticed that CS with 

DWT reduces the noise by 3dB but no increase in 

SNR is obtained using CS with DCT and FFT. 
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Table(9):- Results of denoising the Blocks signal using CS with different transforms 

 

 

 

 

 

 

 

 

 
Table( 10):- Results of denoising the Bumps signal using CS with different transforms 

 SNRo dB 

SNR in 

dB 

FFT DCT DWT 

DB1 

DWT 

Coif1 

0 1.17 1.435 4.2765 4.3327 

5 6.38 6.423 9.5884 9.3216 

10 11.26 11.3 14.2637 14.3943 

15 16.36 16.28 19.1724 19.4732 

 
Table( 11):- Results of denoising the Heavy Sine signal using CS with different transforms 

 SNRo dB 

SNR in 

dB 

FFT DCT DWT 

DB1 

DWT 

Coif1 

0 0.35 0.57 3.4433 3.6359 

5 5.33 5.521 8.5082  8.0830 

10 10.24 10.33 13.2922 13.4120 

15 15.54 15.35 18.2093 18.3390 

 
Table (12):-, Results of denoising the Doppler signal using CS with different transforms 

 SNRo dB 

SNRin 

dB 

FFT DCT DWT 

DB1 

DWT 

Coif1 

0 0 0.302 3.2966 3.2387 

5 5.18 5.12 7.8665 8.3022 

10 10.1 10.127 12.9403 13.0624 

15 15.1 15.11 17.7866 18.1480 

 

Figures7,8,9 and 10 display the relationship 

between input SNR and output SNR of the signals 

blocks, Bumps ,Heavy Sine and Doppler after they 

are reconstructed by CS with different transforms. 

These figures have revealed that the relation 

between input SNR and output SNR is linear for 

the proposed system. 

 

 

 

 

 

 SNRo dB 

SNRin 

dB 

FFT DCT DWT 

DB1 

DWT 

Coif1 

0 3.61 3.58     6.3728 6.6655 

5 8.4 8.45    11.2586 11.2517 

10 13.58 13.55 15.5946 16.2240 

15 18.56 18.5 19.4242 20.2238 
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 Fig.(7):- SNRo versus SNRin for the reconstructed Blocks signal 

 

 

       Fig.(8):- SNRo versus SNRin for the reconstructed Bumps signal 

 

 

      Fig. (9):- SNRo versus SNRin for the reconstructed Heavy Sine signal 
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Fig. (10):- SNRo versus SNRin for the reconstructed Doppler signal 

 

 

5- CONCLUSIONS 
 

In this investigation, a CS with different signal 

transformation is proposed and simulated. Four 

types of testing signals, which are Blocks, Bumps, 

Heavy Sine and Doppler, are used. Random 

Gaussian matrix is selected because it is simple, 

universal and easy to implement. Furthermore, a 

modified universal threshold is proposed for 

pruning the coefficients of the DCT.  This paper 

compares the impact of DFT, DCT and DWT 

transformations on CS Scheme. Three parameters 

that are RMSE, SNRo, and time to reconstruct the 

signals are employed to evaluate the performance 

of the proposed system. In addition, this study 

contributes to our understanding of CS technique.  

Simulation results have led us to conclude the 

followings: 

- RMSE is inversely proportioned to the 

number of measurements/observations (M). 

- Time taken to reconstruct the signal is directly 

proportioned to number of measurements (M). 

- The relationship between SNRo and SNRin is 

linear for the proposed system. 

- CS with DWT outperforms the DCT and FFT in 

RMSE, reconstruction time, and SNRo so we 

strongly recommend   CS with DWT over DCT 

and FFT transformations. 

- The proposed system has achieved less amount 

of SNR enhancement in the cases of Heavy Sine 

and Doppler signals so these type of signals 

require more processing.  

- It is not recommended to apply CS on 

approximation coefficients (CA) of the DWT 

because most of these coefficients are significant 

(large values). 
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