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ABSTRACT 
In this paper, we studied the numerical method to solve the stochastic differential equations.  The Milstein 

method was used because of the difficulty of finding analytical solutions for many of Stochastic differential 

equations. Numerical simulations for different selected examples are implemented. In addition, the strong 

convergence error, are supported by numerical tests problems. 
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1.  INTRODUCTION 

 
tochastic differential equations (SDEs) 

have become standard models for  financial 

quantities such as asset prices, interest rates, and 

their derivatives. Un- like deterministic models 

such as ordinary differential equations, which 

have a unique solution for each appropriate initial 

condition, SDEs have solutions that are 

continuous-time stochastic processes. Methods for 

the computational solution of stochastic 

differential equations are based on similar 

techniques for ordinary differential equations, but 

generalized to provide support for stochastic 

dynamics. In mathematics, the Milstein method is 

a technique for the approximate numerical 

solution of a stochastic differential equation. It is 

named after Grigori N. Milstein who first 

published the method in 1974.The numerical 

methods are based on time discrete 

approximations. Time discrete approximations for 

both the strong and weak convergence criteria will 

be presented. Whereas time discrete 

approximations which satisfy the strong 

convergence criterion involves the simulation of 

sample paths at each step of the discretization 

time, approximations that satisfy the weak 

convergence criterion involve the approximation 

of some function of the lt ô  process such as the 

first and second moments at a given final time T. 

Early attempts are made in the area of numerical 

methods for stochastic differential equations using 

Euler-Maruyama method. [1,4,3,7] provides an 

early account for constructing a numerical method 

for solving stochastic differential equations. This 

method is known as the Milstein method. 

[3,6,9,10] proved an application of the central 

difference and predictor methods for finding a 

solution of differential equations with stochastic 

inputs. Numerical methods for SDE's constructed 

by translating a deterministic numerical method 

(like the Euler method or Runge-Kutta 

method,[11,12]).Applying it to a stochastic 

ordinary differential equation. However, merely 

translating a deterministic numerical method and 

applying it to an SDE will generally not provide 

accurate methods[2,5,8]. 

Definition 1.[6]  

Let                be a stochastic process 

such that for any 0   t1< t2  T, we have 

x(t2) x(t1) 
2

1

t

t


a(t) dt + 

2

1

t

t


b(t) d  (t) 

where a 
1L [0, T], b 

2L [0, T]. Also we say 

that x(t) has stochastic differential    , on [0, T], 

given by  

dx(t)  a(t)dt + b(t)d  (t). 

Theorem .1.[7].  

Let d(t) adt + bdw(t), and let f(x, t) be a 

continuous function in (x, t)   [0, ) together 

with its partial derivatives fx, fxx, ft. Then the 

process f((t), t) has a stochastic differential given 

by  

df((t), t)  [ft((t), t) + fx((t), t)a(t) + 1

2
fxx((t), t)b

2
(t)]dt + fx((t), t)b(t)dw(t)  .                                          …(1) 

S 

https://www.google.iq/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj73d3Q26DYAhVBDuwKHTqiDqQQFggqMAA&url=https%3A%2F%2Flink.springer.com%2F978-3-662-12616-5&usg=AOvVaw1ON1rVgkqgu5BM2-igezij
https://www.google.iq/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj73d3Q26DYAhVBDuwKHTqiDqQQFggqMAA&url=https%3A%2F%2Flink.springer.com%2F978-3-662-12616-5&usg=AOvVaw1ON1rVgkqgu5BM2-igezij
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/w/index.php?title=Grigori_N._Milstein&action=edit&redlink=1
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This is equation is called Itô formula. Notice 

that if h(s) were continuously differentiable in s, 

then (by the standard calculus formula for total 

derivatives) the term 
1

2
fxxb

2
dt will not 

appear.(For the definitions and proof the   theorem 

see [6,7] ) . 
 
2. GENERATING BROWNIAN MOTION IN 

MAT LAB.[8] 

 
The underlying difference between 

deterministic and probabilistic differential 

equations is the need to generate the following 

random increments of the Brownian motion for 

the SDE: 

wn                                                                                                                        

……(2) 

For computational purpose, it is necessary to 

describe the Brownian motion, where wt is 

specified at discrete t values. Therefore, let t  

T/N, for some positive integer N and for T on the 

interval [0, T]. From the definition of Brownian 

motion: 

wn        ~ N(0, tntn1) 

or equivalently: 

wn        ~ n n 1t t  N(0, 1) 

where N(0, 1) denotes a standard normally 

distributed random variable with zero mean and 

variance equal to one. Here tntn1t is the 

variance of the Brownian motion random variable. 

In Mat lab, the function  

rand n(1, N) will generate N random variables 

from the standard normal distribution. In order to 

generate a random variable with variance equal to 

t, random variables from the standard normal 

distribution are generated using the Mat lab 

function rand n (1, N) and each of these variables 

are then multiplied by t , resulting in the 

random increments in equation (2). From equation 

(2),we get 

w1      and w2      . That is w1 

+ w2      +          . Since t0 0 and 

w0 0.  Therefore    

n

j 1

 wj. For more 

details, see the computational algorithm for 

generating Brownian motion supported by Mat lab 

[4,10,12 ]. 

Our work , we propose to solve Certain 

stochastic differential equations, using the 

Milstein method in2-wiener process. Furthermore 

we use some examples to show that numerical 

solutions from different examples are 

implemented correctly. 

 
3. MAIN RESULTS 

 
          In this section we can state and prove the 

Lemma by using theorem 1.[7]. 

If                                       

,and let f(x ,t) is a continuous function in  

(x ,t)          together with its  fx, fxx, ft. 

Then the process f(      , t) has a stochastic 

differential given by                     

              
 

 
        

  
 

 
        

 
                                     

… (3) 

Proof  .  

let f(x ,t) be a twice continuously differential 

function  of  x and t ; consider writing the Taylor 

expansion of 

  

 

                             

             
 

 
       

  
 

 
       

                                                                  …. (4) 

Next , we will substitute equation(3) in equation(4) , we get 

                 

                        
 

 
       

  
 

 
                  

                       

                                
 

 
       

  
 

 
     

                           
  

         abdtdz1+bkdz1dz2+akdz2dt+bkdz1dz2+k2dz22+afxtdt2+bfxtdz1dt+kfxtdz2dt 

Now, we take a crucial step , and only keep terms up to order    using the following Logic. The 

standard deviation dz is of order     , hence we think terms up to order dt yielding  

                              
 

 
        

  
 

 
        

 
                                  …. (5) 
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Finally we replace by    
 
&    

 
 it's expectation dt which leads to Itô -lemma. 

           
 

 
      

 

 
                                                                                     …. 

(6) 

which using the operator  

       

        
 

 
      

 

 
      

                         

                                                                                                                                                                  
... (7)    

We can express (6) as the integral relation: 

       (   )+    

  
           

 

  
              

  
                                                 ...(8) 

for all t  [t0, T]. When f(x)  x, we have   f  a, L
1
f b  and        and (10) reduces to: 

        =           
 

  
            

 

  
          

 

  
                                                           ....(9) 

In formula (8) is again applied to the function f=a and b and k , In equation (7) the following is obtain  

                                 
 

  

                   

 

  

             
 

  

   
 

  

               
 

  

                   

 

  

              
 

  

 

  

    

 

  

             
 

  

                   

 

  

             
 

  

 
 

  

    

                                     =    

              
 

  
           

 

  
           

 

  
                                   

       

        

  

 

  
    ) dz ds +    

 

  

 

  
    )d  ds +     

  

 

  
    )d  ds +     

  

 

  
    ) dz d   

          +    
 

  

 

  
    )d      d   +     

  

 

  
    )d     d   +     

  

 

  
    ) dz d    

          +    
 

  

 

  
    )d      d   +     

  

 

  
    )d      d   

Repeat this procedure by applying the formula (8) to     b in equation (10) to obtain 

  =              
 

  
           

 

  
           

 

  
              

 

  

 

  
                     ...(11) 

where 

         

  

 

  
    ) dz ds +    

 

  

 

  
    )d  ds +     

  

 

  
    )d  ds +     

  

 

  
    ) dz d   

           +      

  

 

  

 

  
      )du d  (z)d   +     

 

  

 

  

 

  
      )d   d  d  +        

  

 

  
    )d     d      

            +     

  

 

  
    ) dz d   +    

 

  

 

  
    )d      d  +     

  

 

  
    )d      d           

 

Remrak.1 

     The Itô -Taylor expansion can thus be considered as a generalization of both the Itô  formula and 

the deterministic Taylor formula. 

        Now we have The Milstein scheme is obtained by considering the first five terms of Taylor 

expansion of equation (11). It is given by: 

                             =              
 

  
           

 

  
           

 

  
              

 

  

 

  
         

…(12) 

Use the following formula 
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t

0

 ws() dws()  
1

2
  

  ()  
1

2
t 

We find that 

n 1

n n

t t

t t



  dw1dk1  
1

2
{(Wn)

2
  n} 

From equation (7) we get  L
1
b  bb

' 
. Thus 

L
1
b(   )

0 0

t s

t t

  dw1dk1  
1

2
bb

' 
{(Wn)

2
  n} 

Therefore the Milstein scheme is defined by 

       Yn+1  Y(n) + a(n, Y(n))(n+1  n) + b(n, Y(n))(     
     

)  

                   +  k(n, Y(n))(      
      

) +
1

2
b(n, Y(n))b(n, Y(n)){(     

     
)

2
  (n+1  n)} 

For brevity, can be written as  

Yn+1  Yn + an + bWn + kWn +
1

2
bb{(Wn)

2
  (n)}                                                                       

….(13) 

The term b is the partial derivative of b with respect to x. 

 

3.1. Strong Convergence Criterion: 

1. We saw in the Euler method has strong order of converges   1/2 in E|Xn  X(T)|   Ct

, the method 

with classical distribution 1. The strong order of Euler method 1 by adding a correction to the random 

increment    that gives Milstein's method. The Itô -Taylor expansion at an appropriate point produces 

Milstein's method for the stochastic differential equations(13). 

Xj  Xj1 + tf(Xj1) + g(Xj1)(W(Tj)  W(Tj1)) +                        + 

          1

2
g(Xj1)g(Xj1)((W(Tj)W(Tj1))

2
t    ,           for   j  1, 2, …, L                                       …(14) 

 

      Illustration  (With Absolute Error Test and Comparisons): 

The stochastic differential equations Considered by 

                                                                

                                                                        
   

The unique solution has the form 

x(t)      
 

 
 

 

 
   

    
                   

 

 ,  for 0   t   1. 

where   f(t)  cost;             sint  ; X0  0;  Y0  1. .  The values absolute error at the final time 

interval T  1; for R  1, can be shown in table (A). As one can see, generating final time error is 

obtained for sample space N  2
8
.  
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Table (A): Error generated by the explicit Milstein scheme. 

R N Error at final time 

1    0.2904 

   1.7081 

   1.4006 

   0.1732 

2    0.8550 

   0.2975 

 

 
Fig. (1): Exact solution and the numerical solution by Milstein scheme with N  2

8
; R  1 

                                                      
Fig. (1.1): Absolute error between the Euler scheme and exact solution, with N  2

8
;  R=1. 
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       Illustration  (With Absolute Error Test 

and Comparisons): 

The stochastic differential equations 

Considered by 

                        

                                           
   

and the unique solution has the form  

x(t)   
 

 
    

    
    

 

 
               

 

 , 

for 0   t   1, 

where                sin(t)  ;     1;      0.  

      The absolute error at the final time interval 

for different sample space numbers, where t  t; 

R  1; the step time for discretization of Brownian 

motion equals to the step time discretization of 

explicit Euler scheme are shown in the following 

(table (B)) and Figure (2.1). As one can see, 

increasing the sample space generated randomly 

(N) leads to improving the absolute error at the 

different time steps, where t  t. The Figure (2) 

show the very good agreement between the exact 

solution and the corresponding numerical solution

 

 
Table (B): Error generated by the Milstein  scheme. 

R N Error at final time 

1    0.1360 

   0.7220 

   0.5794 

2    0.8550 

   0.2975 

   0.3392 

 

 
Fig. (2): Exact solution and the numerical solution by Milstein  scheme with N  2

5
; R  1. 
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Fig. (2.1) : Absolute error between the Milstein scheme and exact solution with N  2

5
; R  1. 

 
        Illustration (With Strong Convergence 

Test): 

The stochastic differential equations 

Considered by  

                  
With the condition  

       

where                sint ; X0  1; N 

 2
11

; T  1; sample path   500. 

the strong convergence for the numerical 

solution using Milstein method is obtained. This 

produces the blue asterisks connected with solid 

lines in the plot of Figure (3). For reference, a 

dashed red line of slope one-half is added. The 

least-squares power law fit gives q  0.5316and 

reside   0.0260

 

 
Fig.(3): Milstein strong convergence. 

 

CONCLUSIONS 
 

In this paper, we performed a survey on 

stochastic ordinary differential equations from 

first-order with time and  random coefficients. We 

indicated a complete analysis for stochastic first -

order equations in special case of scalar linear 

order equations. After wards, with making a 

system of stochastic differential equations from 

this mentioned equation. it calculated based on the 

exact solution of this system. We approximated its 

solution based on a method with an analytical 

approach different from other numerical methods. 

Finally, this stochastic equation was solved by 

conventional numerically Milstein method  .  

Furthermore we use some examples to show that 

numerical solutions from different examples are 

implemented correctly. 
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 پوختە

چارەسەركرنا هاوكێشێن جیاكارییێن ئەم رابوینە ڤەكولینا رێكا ژمارەلی بو , دا  دئەڤی ڤەكولینێ

هاتیە ژئەگەری زەحمەت دیتنا چارەسەریێن شیكاری ژبو گەلەك ژهاوكێشێن ( میلستین)دیاركری رێكا 

بكارنیان كو دڤیژەدا لاسایكرنا ژمارەلی ژبو هەمی نموونەریێن هەلبژارتی هاتیە , جیاكاریێن رەمەكی

كارە بو چارەسەكرنا چەوتیا نیزیك بوونا ب هێزئەوا كو هاری  چەندێ  زێدەباری ئەفێ. بە جێكرن   جێ

 .پەیددكەت

 

 

 

 

 الخلاضة

تم استخدام طريقة . تفاضلية العشوائيةالمعادلات ال، قمنا بدراسة الطريقة العددية لحل  البحثفي هذا 

تنفيذ  بسبب صعوبة إيجاد حلول تحليلية للعديد من المعادلات التفاضلية العشوائية ، يتم العددية ميلستين

بالإضافة إلى ذلك ، فإن خطأ التقارب القوي مدعوم بمشاكل  .المحاكاة الرقمية لمختلف الأمثلة المختارة

 .الاختبارات العددية
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