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ABSTRACT

In this paper, we studied the numerical method to solve the stochastic differential equations. The Milstein
method was used because of the difficulty of finding analytical solutions for many of Stochastic differential
equations. Numerical simulations for different selected examples are implemented. In addition, the strong
convergence error, are supported by numerical tests problems.
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for solving stochastic differential equations. This
method is known as the Milstein method.
[3,6,9,10] proved an application of the central
difference and predictor methods for finding a
solution of differential equations with stochastic
inputs. Numerical methods for SDE's constructed
by translating a deterministic numerical method
(like the Euler method or Runge-Kutta
method,[11,12]).Applying it to a stochastic
ordinary differential equation. However, merely
translating a deterministic numerical method and
applying it to an SDE will generally not provide
accurate methods[2,5,8].
Definition 1.[6]

Letx(t) € (0<t<T) be a stochastic process
such that for any 0 <t;< t,< T, we have

ty ty
X(tz) —x(t1) = I a(t) dt + I b(t) dw (1)

ty t

1 2
where a € L [0, T], b e L, [0, T]. Also we say
that x(t) has stochastic differential dw,, on [0, T],
given by
dx(t) = a(t)dt + b(t)dw, (t).
Theorem .1.[7].

Let d&(t) =adt + bdw(t), and let f(x, t) be a
continuous function in (x, t) eR*x[0, o) together
with its partial derivatives f,, f,, fi. Then the
process f(E(t), t) has a stochastic differential given
by

df(E(), ) = [, D + F(EQ), Da() + %

fi(E(1), Db (D)]dt + Fr(E(D), Hb(t)dw(t)
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1. INTRODUCTION

tochastic differential equations (SDES)

have become standard models for financial
quantities such as asset prices, interest rates, and
their derivatives. Un- like deterministic models
such as ordinary differential equations, which
have a unique solution for each appropriate initial
condition, SDEs have solutions that are
continuous-time stochastic processes. Methods for
the computational solution of stochastic
differential equations are based on similar
techniques for ordinary differential equations, but
generalized to provide support for stochastic
dynamics. In mathematics, the Milstein method is
a techniqgue for the approximate numerical
solution of a stochastic differential equation. It is
named after Grigori N. Milstein who first
published the method in 1974.The numerical
methods are based on time discrete
approximations. Time discrete approximations for
both the strong and weak convergence criteria will
be  presented. @ Whereas time  discrete
approximations  which satisfy the strong
convergence criterion involves the simulation of
sample paths at each step of the discretization
time, approximations that satisfy the weak
convergence criterion involve the approximation

of some function of the 1t0 process such as the
first and second moments at a given final time T.
Early attempts are made in the area of numerical
methods for stochastic differential equations using
Euler-Maruyama method. [1,4,3,7] provides an
early account for constructing a numericdethod
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distribution are generated using the Mat lab
function rand n (1, N) and each of these variables

are then multiplied by JA_'[ resulting in the
random increments in equation (2). From equation
(2),we get

AW =W —Wpand AW,=w,—W,. That is Aw;
+ AW,=Wi— Wi+ W —Wg=Wy,. Since t= 0 and

n

we= 0. Therefore thzz Aw;. For more
=1

details, see the computational algorithm for

generating Brownian motion supported by Mat lab
[4,10,12].

Our work , we propose to solve Certain
stochastic  differential equations, using the
Milstein method in2-wiener process. Furthermore
we use some examples to show that numerical
solutions  from  different  examples are
implemented correctly.

3. MAIN RESULTS

In this section we can state and prove the

Lemma by using theorem 1.[7].
If dx = a(t, x.)dt + b(t,x;)dz; + b(t, x)dz,
,and let f(x ,t) is a continuous function in
(x ,H)e R x [0, c0)together with its f,, Ty, f.
Then the process f(x(t)dt, t) has a stochastic
differential given by df = fdt+ af,dt +
bfydzy + Kfydz, + 2 bfeedz,® + K2y dz,”
...(3)
Proof .

let f(x ,t) be a twice continuously differential
function of x andt; consider writing the Taylor
expansion of

df = f(x(t)dt, t + dt) — f(x(t),t)

This is equation is called 1t6 formula. Notice
that if h(s) were continuously differentiable in s,
then (by the standard calculus formula for total

derivatives) the term lfxxbzdt will not
2

appear.(For the definitions and proof the theorem
see [6,7]) .

2. GENERATING BROWNIAN MOTION IN

MAT LAB.[8]
The underlying difference between
deterministic and  probabilistic  differential

equations is the need to generate the following
random increments of the Brownian motion for
the SDE:

For computational purpose, it is necessary to
describe the Brownian motion, where w; is
specified at discrete t values. Therefore, let At =
TIN, for some positive integer N and for T on the
interval [0, T]. From the definition of Brownian
motion:

AW =W —Wi_1~ N(O, ti—ty-1)
or equivalently:

AWn:th_th_1~ o\'tn - tn_l N(O, 1)

where N(0, 1) denotes a standard normally
distributed random variable with zero mean and
variance equal to one. Here t,—t,;=At is the
variance of the Brownian motion random variable.
In Mat lab, the function

rand n(1, N) will generate N random variables
from the standard normal distribution. In order to
generate a random variable with variance equal to
At, random variables from the standard normal

= fudt + fudx + > fie ()2 + > Fie (A% + Fedxdt o (B)
Next , we will substitute equation(3) in equation(4) , we get

dx = adt + bdz, + kdz,

1 1
= fidt + fy(adt + bdz, + kdz,) + zftt(dt)2 + Efxx(adt + bdz; + kdz,)? + f(adt + bdz, + kdz,)dt

= fydt + a fydt + bfydz; + kfydz, + fie (A2 + 5 fi(a2dt? + abdz, dt + a kdz,dt + b2dz,* +
abdtdz1+bkdz1dz2+akdz2dt+bkdz1dz24+k2dz22+afxtdt2+bfxtdz1dt+kfxtdz2dt
Now, we take a crucial step , and only keep terms up to order dt using the following Logic. The
standard deviation dz is of order v/dt , hence we think terms up to order dt yielding
df = fodt + a fydt + bfydzy + kfedz, + 2 bfeedz,® + 2 K2y dz,” vee. (5)
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Finally we replace by dz,*& dz,? it's expectation dt which leads to 1t0 -lemma.
df = (£, + afy + 3 b?fy + 7 K?fyy ) dt + bfydz; + kfydz,

(6)

which using the operator
Lf=af
LOf = af + lbzf" + lsz”

2 2

L?f = kf
Lf = bf’
(7

We can express (6) as the integral relation:

fx0)= fxe ) fy, L0 fOx)ds + [ L fxya)dwy + [, L2 f(xy2)dw, ..(8)
for all t € [to, T]. When f(x) = X, we have Lf = a, L'f =b andL?f = k and (10) reduces to:

Xe = Xy, + ftz a(xs) ds + ftto b(xs)dw; + ftz k(xs)dw, ...(9)
In formula (8) is again applied to the function f=a and b and k , In equation (7) the following is obtain
S
Xp=Xg, + [ (x¢,) + L0 a(x,)dz + f L'a(x,)dw, + f
t t

0

Lza(xz)dwz)] ds

0

f U b(xt0)+ L°b<xz)dz+ [ 1peaw, + [ LZb(xz)dw2>]]dk1
t0 t to to
' j [k(xt0)+ L°k<xz)dz+ f UG, + [ LZk(xz)dWZ)]dkz
to to to to
X, + a(xy,) fi, ds +b(xe,) Ji dky +k(xy,) f dkp + R . (10)

where
R= ftto JS 10a(x,) dz ds + ftto Jg L a(x,)dw, ds + ftto J3 12 a(x,)dwds + ftto J3 12b(x,) dz dk,
+ ftto I3 L b(xz)dwy (z) dky + ftz Jg 12 b(x)dw (z)dky + ftto J3 L0 k(x,) dz dk,
+o IS LR )dwy (2) dip +[7 [ 12 k(xz)dw (2) dk,
Repeat this procedure by applying the formula (8) to f = L'b in equation (10) to obtain
xe= X, +a(xe,) Ji ds +b(xy, ) [ dicy +k(xg,) Ji dkp +Lb(x,) J7 J7 dw; dky + R (1)
where
R= [ [1%(Xy) dzds+[ [ L'a(Xp)dw,ds+[ [ L?a(Xz)dw,ds +[ [ L°b(X7) dz dk,
o to ot ot ot
+ ft‘; Jo S 10 L (xy)du dw (2)dlky + ftz Jo I 1 Ly )dwy, dwdk+ ftt, I3 12 b(x)dw (z)dk,
o JSLOK(x,) dz dky +f, [ LM K(xp)dws (2) dipt [ 7 17 K(x)dwa (2) dicy.

Remrak.1

The 1t0 -Taylor expansion can thus be considered as a generalization of both the It0 formula and
the deterministic Taylor formula.
Now we have The Milstein scheme is obtained by considering the first five terms of Taylor
expansion of equation (11). It is given by:
t t t t
Xe= Xe, +a(xy,) [, ds +b(xq,) fi, dka +k(xq,) fi dka +L'b(xy,) [ f:, dw;, dk,
...(12)

Use the following formula
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jw()dw() L 2 () 1,
(@ () = —w? () — —
2" 2

0
We find that

thep t 1

J' j dwidk, = — {(AW,)? — An}
t, t 2
n n

From equation (7) we get L'b=bb . Thus

t s 1
le(xto)j j dw;dk, = Ebb‘{(Awn)Z—An}

toto
Therefore the Milstein scheme is defined by
Yn+1 = Y(Tn) + a(Tnv Y(’Cn))(‘tn+1 - Tn) + b(T“' Y(’Un))(W-[nH - WTn)

+ Kt Y())(we,,, — we,) +%b(fm Y(@)b' (o, Y () (Wy,,., = We,)* = (thes = )}

For brevity, can be written as
1
Y1 = Yo + aAN + bAW, + KAW, + E bb'{(AW,)? — (An)}

....(13)
The term b’ is the partial derivative of b with respect to x.

3.1. Strong Convergence Criterion:
1. We saw in the Euler method has strong order of converges y = 1/2 in E[X, — X(T)| < CAt', the method
with classical distribution 1. The strong order of Euler method 1 by adding a correction to the random

increment  that gives Milstein's method. The 1td -Taylor expansion at an appropriate point produces
Milstein's method for the stochastic differential equations(13).

Xj=Xj1 + Atf(Xj-1) + g(Xj-)(W(T;) — W(T}1)) +k(Xj-1) (wyq (Tj) - Wy (Tj—l))+
%g(xj_l)g'(xj_l)«W(TJ-)—W(TJ-_l»Z—At . for j=1,2,..,L -.(14)

I.  Hlustration. (With Absolute Error Test and Comparisons):
The stochastic differential equations Considered by
dx = fxdt + gxdw; + gxdw,
with initial condition x(0) = 0 }
The unique solution has the form
X(t) :efotfds_%(&z+g22)d5+f0t(g1dw1+g2dwz), foro<t<1.
where f(t) = cost; g, (t) = g, (t)=sint ; Xo=0; Yo=1.. The values absolute error at the final time

interval T = 1; for R = 1, can be shown in table (A). As one can see, generating final time error is
obtained for sample space N = 28,
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Table (A): Error generated by the explicit Milstein scheme
R N Error at final time
1 25 0.2904
26 1.7081
27 1.4006
28 0.1732
2 27 0.8550
28 0.2975
4
fl
35} A
0
r N1 '(,\L
251 JY ) b
| IJIII
2r N Illll
15} A '\
A \II‘ Il'_ ."‘II
1 ot I'ZI ! I.'.“‘L-
7 J h'. :.' \
05} "
D ! i A ! I ! It A !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig. (1): Exact solution and the numerical solution by Milstein scheme with N =2% R=1
0.3
0.25
0.2}
armor(t) § 45
0.1F
0.05

0 0.1 .2 D.J3 DT4 D.JS D.IB 0.7 D.J& DTQ 1
time(t)
Fig. (1.1): Absolute error between the Euler scheme and exact solution, with N = 2% R=1.
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The absolute error at the final time interval
for different sample space numbers, where At = 8t;
R = 1; the step time for discretization of Brownian
motion equals to the step time discretization of
explicit Euler scheme are shown in the following
(table (B)) and Figure (2.1). As one can see,
increasing the sample space generated randomly
(N) leads to improving the absolute error at the
different time steps, where At = &t. The Figure (2)
show the very good agreement between the exact
solution and the corresponding numerical solution

IL Hlustration. (With Absolute Error Test
and Comparisons):
The stochastic
Considered by
dx = gyxdw, + g,xdw,
x(0)=0 }
and the unique solution has the form
X(t) ze—%fot(glz+g22)dS+f;(g1dw1+g2dw2),

for0<t<1,
where g, (t) = g,(t) = sin(t) ;x,=1; yo,=0.

differential  equations

Table (B): Error generated by the Milstein scheme.

R N Error at final time
1 25 0.1360
26 0.7220
27 0.5794
2 25 0.8550
26 0.2975
27 0.3392
4.5 T
Exact solution
4 4 — Numerical solution | 4
a5k rﬁ '*J
| a,* WA 'ﬁé
g Tt
&% Px A
25 | %
x(t) N .
5l ¥ il |
M
1.5} ]
RE T I
0.5 I
D L L A L I L L A L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Fig. (2): Exact solution and the numerical solution by Milstein scheme with N = 2% R =1.
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Fig. (2.1) : Absolute error between the Milstein scheme and exact solution with N = 2°; R = 1.

the strong convergence for the numerical
solution using Milstein method is obtained. This
produces the blue asterisks connected with solid
lines in the plot of Figure (3). For reference, a
dashed red line of slope one-half is added. The
least-squares power law fit gives q = 0.5316and
reside 0.0260

III.  Hlustration (With Strong Convergence
Test):
The  stochastic  differential  equations

Considered by
dx =gixdw; + g,xdw,
With the condition
x(0) =1
where g;(t) = g,(t) =sint; Xo=1; N
= 2" T =1; sample path p = 500.

= =]
ra L

sample average of x(T)-x |

o
o

-4
10
10

102
At

Fig.(3): Milstein strong convergence.

solution based on a method with an analytical
approach different from other numerical methods.
Finally, this stochastic equation was solved by
conventional numerically Milstein method
Furthermore we use some examples to show that
numerical solutions from different examples are
implemented correctly.
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