passed on from parents to their offspring (Falconer, 1981).

According to (Zecevic *et al.*, 2001; Shukla *et al.*, 2004; Clarke *et al.*, 2010), heritability and genetic advance are frequently employed in wheat to assess the degree of diversity in breeding material, choose the best selection methods, and forecast the breeding advance in improving key traits.

The results of the investigation show that applying nitrogen at the right level considerably boosted wheat production (Gwal *et al.*, 1999; Ali *et al.*, 2000). Nitrogen is the most crucial nutrient for vegetative crop growth, plant productivity, and grain quality among all the necessary nutrients sprayed in the field (Mariotti, 1997).

The main objective of the present study is to estimate the simple correlation among characters and determined some variability genotypic coefficient variance (Gcv), phenotypic coefficient variance (Pcv), heritability in broad sense (h2.b.s), genetic advance (GA) percent of mean.

MATERIALS & METHODS

Twelve varieties of bread wheat (Adana-99, Adana, APST-33, APST-36, APST-26, IPA-95, Jihan-99, Criso, APST-6, BABAGA-3, APST-35, TAWA-HI-3), genotypes with source showed in table (1), with four level of nitrogen(0, 75, 150, 225 Kg N h⁻¹), Which are sown in growing season, in farmer field which located in summel/batel (hazaz villiage) in (2021), At maturity, ten plant from each genotype were taken at random for recording observation, the characters are days to 75% flowering, plant height(cm), grain filling, grain yield, number of spikes/plant, spike length(cm), grain weight11000 g., flag leaf area(cm), biomes g., harvest index and protein percent. Al-zubaidy, Kh. M. D. and Kh. K. A. Al- Jubory (2016) Analysis were done to according Al-zubaidy, Kh. M. D. and Al-Juboury, the simple correlation among traits was estimated using the following formula:

$$\mathbf{r} = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{n}}{\sqrt{\sum X^2 - \frac{(\sum X^2)}{n}} X \sqrt{\sum Y^2 - \frac{(\sum Y^2)}{n}}}$$

Where:

n = number of the treatments (observations).

r = correlation coefficient value,

the correlation coefficients between grain yield (y) and each of grain filling (X1), number of spike (X2), spike length (X3), grain weight 1000 (X4), leaf area (X5), biomass (X6), harvest index (X7), the method outlined by (Al-Rawi, 1987).:

Genetic advance

(Allard 1960) $GA=I \ge h^2$.b.s σp K. slection indensity 10% = 1.76 σp = phenotypic standard deviation. GA as percent GA y.. = GA/y^ - X 100 (Kempthorne 1969)

Genetic advance

Low less than 10% Medium 10 – 30 % High more than 30% (Agarwal and Ahmed (1982).

Estimation Gev and Pev (according to Dudlx and Moll 1969), (Burton (1952),

$$Gcv = \frac{\sqrt{\sigma^2 g}}{\gamma^-} X \ 100$$
$$Pcv = \frac{\sqrt{\sigma^2 P}}{\gamma^-} X \ 100$$

y- = general mean

And the Broad sense heritability measured high when it is more than 60%, it is medium between 40% - 60% and low when it is less than 40%, (Ali, 1999),

h2.b.s =
$$\frac{\sigma^2 G}{\sigma^2 P}$$

Where:

 h^2 .b.s = broad sense heritability

 $\sigma^2 G$ = standard variance of genotypic

 $\sigma^2 P$ = standard variance of phenotypic

#	Genotype	Source
1	Adana	Kurdistan region / certified
2	Adana-99	Kurdistan region / certified
3	APSTA-33-85577	Italy / not certified
4	APSTA-36-85576	Italy / not certified
5	APSTA-26-85579	Italy / not certified
6	IPA-95	Baghdad / certified
7	Jihan-99	Kurdistan region / certified
8	Creiso	Kurdistan region / certified
9	APSTA-6-85576	Italy / not certified
10	BABAGA-3	ICÁRDA
11	APSTA-35-85574	Italy / not certified
12	TAWA-HI-3	ICÁRDA

Table(1):- Genotypes used in the study and their sources

RESULT AND DISCUSSION

Table (2) Analysis of variance of wheat genotypes and nitrogen levels on studied traits showed for genotype highly significant at 1% for traits (number of spike/plant, flag leaf area, biomes and harvest index). And significant at 5% for as (days of 75% flowering and plant height, while not significant for the other traits. And for the nitrogen showed highly significant at 1% for (plant height, grain yield, number of

spike/plant, spike length, flag leaf area, protein and significant at 5% for (grain weight, biomes harvest index), and not significant for the other traits, for the interaction between nitrogen and genotype showed the highly significant at 1% for traits (spike length, flag leaf area, biomes and harvest index), and significant at 5% for the (grain yield .g and number of spike/plant), and there is not significant for the other traits. Similar findings were also reported by Navin et al. (2014);Dabi et al. (2019).

			Trea	tments N	IS							
Source Of variance	characters DF	Days of 75% Floweri ng	Plant height (cm)	Grain filling	Grain yield g.	Number of spike/plant	Spike length(cm)	Grain weight (1000) g.	Flag leaf area (cm)	Biomes g.	Protein %	Harvest index
Replication	2	4.00	* 30.11	* 17.27	* 8.71	43.38	0.06	* 19.58	64.80	96.60	0.48	5.07
Nitrogen (n)			**		**	**	**	*	**	*	**	*
	3	15.52	270.46	8.60	39.18	511.19	1.73	69.37	422.79	121.23	12.71	15.53
Replication				*	*				*		*	*
nitrogen	6	3.21	14.34	13.90	7.25	34.88	0.36	17.47	60.47	85.30	3.39	9.25
Genotypes		*	*			**			**	**		**
(g)	11	24.78	34.28	10.58	3.47	209.63	0.30	18.83	184.85	389.70	2.12	12.63
NXG					*	*	**		**	**		**
	33	11.35	16.02	9.15	5.44	73.12	0.54	22.10	68.58	137.42	1.78	9.74
Error												
	88	11.91	11.70	6.87	3.22	41.65	0.23	18.47	32.73	55.74	1.72	4.69
Total												
	143											

Table (2):- Analysis of variance of wheat genotypes and nitrogen levels on studied traits.

*and ** significant different at level 0.05 and 0.01 respectively

The mean value of effected of interaction between bread wheat genotype and nitrogen level on study tried presented in table (3) presented that for days of 75% flowering there are significant differences among all the genotype with their interaction with nitrogen level which are latest in flowering which are ranged between (135.66 - 136.33 - 137.00) days 75% of flowering accept the genotype (N0V1-N0V10- N1V5- N1V7- N1V9- N1V1- N2V2-N2V3- N2V4- N2V9- N3V1- N3V8), regarding number plant height (N3V12) recorded the maximum value with (71.43), and minimum value for (N0V2- N1V6) the value (57.36-57.66), and regarding the grain filling (N2V6-N3V6) the maximum value range (56.33 -56.00) and minimum value for (N0V2)(44.33), and the grain yield g. (N3V7- N3V12) the maximum value with (83.00- 82.00), and minimum value for (N1V2- N2V2- N3V5) is (59.00), and the result of number of spike/plant

(N0V4) the maximum value is (8.86) and minimum value for (N2V3) (7.00), the result showed of the spike length(cm) (N1V2) recorded the maximum value with(49.20) and minimum value for (N3V7) the range is (37.86), the result of 1000 grain weight indicated (N1V4-N1V12) the highest weight (70.56-69.16), while (N3V5) showed the lowest value (44.83), flag leaf area (cm) the (N1V12) recorded the maximum value with (132.60 cm) and minimum value for (N0V9) (98.21), and the result of the biomass .g the (NOV8) recorded the maximum value (25.83) and minimum value for (N0V5) is (15.54), protein have a maximum value (N2V3-N2V7) its (12.32-12.30) and minimum value for (N3V5) with (9.16), and the result of harvest index indicated (NOV8) the maximum value (26.00) and the minimum value for (N0V5) is (17.63), Similar findings were also reported by (Ortiz- Monasterio et al, 1997), and (Moll, R. H. W.A. Kamprath and Jackson (1982).

Character Days of 75% flowering Plant height (m) Grain yield G. Number of spike Spike length (m) Grain weight (1000).g Flag leaf area(cm) Biomes g. Protein % Harvest index NVV1 138.33 58.56 jk 52.66 ab 60.33 gh C 8.13 Ab 42.63 ab 58.96 (ab) 10.75.0 19.23 Ab 10.26 Ab 20.56 biol 20.56 biol 20.56 biol 21.53 Ab 22.03 Ab 21.53 Ab 22.03 Ab 21.53 Ab 21.53 Ab 22.03 Ab 21.53 Ab 22.03 Ab 21.53 Ab 22.03 Ab 21.53 Ab 22.03 Ab 21.53 Ab 21.53 Ab 21.53 Ab 21.53 Ab 22.03 Ab 21.53 Ab 21.53					Tr	eatments						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Character	Days of 75% flowering	Plant height (cm)	Grain filling	Grain yield g.	Number of spike	Spike length (cm)	Grain weight (1000).g	Flag leaf area(cm)	Biomes g.	Protein %	Harvest index
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N0V1	136.33 A	58.56 jk	52.66 ab	60.33 gh	8.13 a-i	42.63 abcd	58.96 a-m	107.50 e-l	19.23 b-i	10.26 Abcd	20.56 b-j
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N0V2	131.33 Ab	57.66 k	44.33 C	71.00 a-h	8.73 Ab	44.40 abcd	57.13 b-m	105.03 e-l	18.49 c-l	9.72 a bcd	19.36 Hij
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N0V3	134.33 ab	65.26 a-j	54.66 ab	66.00 c-h	7.93 a-j	46.56 abcd	64.56 a-h	112.40 b-l	19.71 b-i	11.56 a bcd	22.03 b-l
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N0V4	133.00 Ab	68.13 abcd	54.00 Ab	73.33 a-g	8.86 A	47.36 abc	55.03 f-n	104.34 f-l	19.62 b-i	11.30 a bcd	20.53 b-j
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N0V5	128.00 B	61.60 d-k	54.33 ab	63.66 efgh	8.13 a-i	41.30 abcd	56.86 c-m	113.46 b-l	15.54 I	10.93 a bcd	17.63 j
NOV7 134.33 64.16 b-k 54.00 ab 80.00 ab 7.63 41.76 abcd 56.60 105.00 19.77 b-i 10.30 abcd 20.73 b-j N0V8 132.00 68.40 54.33 ab 72.00 a-h 8.40 44.93 abcd 65.43 100.87 25.83 11.66 abcd 26.00 Ab abcd a-f a-g h-l a a a N0V9 131.33 58.63 jk 53.66 64.00 efgh 8.60 abcd 43.53 abcd 61.06 101.70 19.42 b-i 11.06 abcd 20.56 b-j N0V10 135.66 59.90 g-k 54.00 ab 62.33 fgh 7.26 48.43 66.23 106.83 19.68 b-i 10.18 abcd 20.96 b-j N0V11 135.00 63.06 d-k 54.00 ab 62.66 fgh 7.16 48.43 66.23 106.83 19.68 b-i 10.18 abcd 20.96 b-j N0V12 134.00 63.90 c-k 53.66 abc 8.40 47.70 63.03 104.07 19.16 b-i 11.96 abc	N0V6	132.00 Ab	65.50 a-j	55.00 ab	68.66 b-h	7.13 Jk	45.90 abcd	65.56 a-g	110.40 d-l	17.97 d-i	10.62 abcd	19.86 d-j
NV8 132.00 68.40 54.33 abd 72.00 ab 8.40 44.93 abcd 65.43 100.87 25.83 11.66 abcd 26.00 Ab abcd a-f a-g h-l a a-g a-g b-l 1 1.06 abcd 19.73 e-j a-g	N0V7	134.33 Ab	64.16 b-k	54.00 ab	80.00 ab	7.63 d-k	41.76 abcd	56.60 c-m	105.00 e-l	19.77 b-i	10.30 abcd	20.73 b-j
NOV9 131.33 58.63 pk 53.66 b 64.00 efgh 8.60 abcd 43.53 abcd 51.03 pk 98.21 pk 20.97 b-g 9.96 abcd 20.56 b-j N0V10 135.66 59.90 g-k 54.00 ab 64.33 efgh 8.06 42.33 abcd 61.06 101.70 19.42 b-i 11.06 abcd 19.73 e-j A -	N0V8	132.00 Ab	68.40 abcd	54.33 ab	72.00 a-h	8.40 a-f	44.93 abcd	65.43 a-g	100.87 h-l	25.83 a	11.66 abcd	26.00 a
NOV10 135.66 59.90 g-k 54.00 ab 64.33 etgh 8.06 42.33 abcd 61.06 101.70 19.42 b-i 11.06 abcd 19.73 e-j N0V11 135.00 63.06 d-k 54.00 ab 62.33 fgh 7.26 48.43 66.23 106.83 19.68 b-i 10.18 abcd 20.96 b-j N0V12 134.00 63.90 c-k 53.66 ab 78.66 abc 8.40 47.70 63.03 104.07 19.16 b-i 11.96 abcd 19.90 c-j ab	N0V9	131.33 Ab	58.63 jk	53.66 Ab	64.00 efgh	8.60 abcd	43.53 abcd	51.03 j-n	98.21 I	20.97 b-g	9.96 abcd	20.56 b-j
NV11 135.00 63.06 d-k 54.00 ab 62.33 fgh 7.26 48.43 66.23 106.83 19.68 b-1 10.18 abcd 20.96 b-1 NV12 134.00 63.90 c-k 53.66 ab 78.66 abc 8.40 47.70 63.03 104.07 19.16 b-i 11.96 abc 19.90 c-j ab	N0V10	135.66 A	59.90 g-k	54.00 ab	64.33 efgh	8.06 <u>a-j</u>	42.33 abcd	61.06 a-k	101.70 g-l	19.42 b-i	11.06 abcd	19.73 e-j
NUV12 134.00 63.90 c-k 53.66 ab 78.66 abc 8.40 47.70 63.03 104.07 19.16 b-l 11.96 abc 19.90 c-j ab a-f ab a-f ab a-i f-l 104.07 19.16 b-l 11.96 abc 19.90 c-j N1V1 133.66 59.50 hijk 54.00 ab 62.66 fgh 7.16 38.86 48.63 lmn 101.00 20.76 b-g 9.86 abcd 20.90 b-j Ab - 1jk Cd g-l - Cd - <td>N0V11</td> <td>135.00 Ab</td> <td>63.06 d-k</td> <td>54.00 ab</td> <td>62.33 fgh</td> <td>7.26 Hijk</td> <td>48.43 Ab</td> <td>66.23 a-g</td> <td>106.83 e-l</td> <td>19.68 D-I</td> <td>10.18 abcd</td> <td>20.96 b-j</td>	N0V11	135.00 Ab	63.06 d-k	54.00 ab	62.33 fgh	7.26 Hijk	48.43 Ab	66.23 a-g	106.83 e-l	19.68 D-I	10.18 abcd	20.96 b-j
N1V1 133.86 59.50 hijk 54.00 ab 62.66 fgn 7.16 38.86 48.63 imn 101.00 20.76 b-g 9.86 abcd 20.90 b-j Ab ljk Cd g-l N1V2 134.33 59.23 ijk 52.00 ab 59.00 7.66 49.20 56.26 111.60 18.62 c-i 9.47 20.60 b-j Ab n c-k A d-m c-l Cd g-l N1V3 132.00 63.90 c-k 52.33 ab 63.66 efgh 8.43 43.46 abcd 54.80 100.34 23.56 ab 12.13 abc 23.56 abc Ab a-f g-m ijkl c-k A f-l N1V4 132.66 64.10 b-k 53.66 68.00 b-h 8.63 47.43 abc 70.56 103.50 18.80 c-i 11.46 abcd 19.43 f-j Ab a-b Abc a-k a-k e-l a-k e-l N1V5 137.00 60.56 f-k 52.00 ab 63.66 efgh		134.00 ab	63.90 C-K	53.66 ab	78.66 abc	8.40 a-f	47.70 ab	63.03 a-i	104.07 f-l	19.16 D-I	11.96 abc	19.90 C-J
N1V2 134.33 59.23 ijk 52.00 ab 59.00 7.06 49.20 50.26 11.00 16.02 c+1 9.47 20.60 b-j Ab h c-k A d-m c-l Cd Cd N1V3 132.00 63.90 c-k 52.33 ab 63.66 efgh 8.43 43.46 abcd 54.80 100.34 23.56 ab 12.13 abc 23.56 abc N1V4 132.66 64.10 b-k 53.66 68.00 b-h 8.63 47.43 abc 70.56 103.50 18.80 c-i 11.46 abcd 19.43 f-j N1V4 132.66 64.10 b-k 53.66 ab 62.33 fgh 7.73 45.36 abcd 61.96 106.93 18.19 d-i 9.84 abcd 19.40 ghij Ab c-k a-k e-l -<		Ab	59.50 NIJK	54.00 ab	62.66 ign	/.16 ljk	38.86 Cd	48.63 Imn	g-l	20.76 b-g	9.86 abcd	20.90 b-j
N1V3 132.00 63.90 c/k 52.33 ab 63.00 e/g/m 43.46 abcd 54.00 100.34 23.00 ab 12.13 abc 23.36 ab 23.	N1V2	Ab 132.00	63.00 c.k	52.00 ab	h 63.66 of ab	c-k	49.20 A 43.46 abod	d-m	c-l	22.56 ab	9.47 Cd 12.13 abc	20.00 D-J
N1V4 Ab <	N1V/	Ab 132.66	64 10 b-k	53.66	68.00 b-b	0.43 a-f	43.40 abcu	g-m 70.56	ijkl	18.80 c-i	11.46 abcd	10.43 f-i
A bit is a rest of a bit	N1\/5	Ab 137.00	60 56 f-k	ab 52.66 ab	62 33 fab	Abc 7 73	45.36 abcd	A 61.96	f-l 106.93	18 19 d-i	9.84 abcd	19.40 abii
N1V7 137.00 65.63 a-i 53.00 ab 78.66 abc 7.93 47.13 abc 68.00 abc 126.80 16.90 ghi 11.77 abcd 21.43 b-l N1V8 135.00 64.70 a-k 53.33 ab 65.00 d-h 8.33 47.06 abc 64.90 101.13 20.82 b-g 10.31 abcd 21.06 b-j	N1V6	A 135.00	57 36 k	52.00 ab	63 66 efab	c-k 8 10	44.73 abcd	a-k 68 56	e-l 117.43	17.67 e-i	11 51 abcd	20 73 h-i
A a-k ab N1V8 135.00 64.70 a-k 53.33 ab 65.00 d-h 8.33 47.06 abc 64.90 101.13 20.82 b-g 10.31 abcd 21.45 b-f	N1V7	Ab 137.00	65.63 a-i	53.00 ab	78 66 abc	<u>a-j</u> 7.93	47 13 abc	Ab 68.00 abc	b-e 126.80	16.90 abi	11 77 abcd	21 43 h-l
	N1V8	A 135.00	64.70 a-k	53.33 ab	65.00 d-h	a-k 8.33	47.06 abc	64.90	ab 101.13	20.82 b-q	10.31 abcd	21.06 b-j

Table(3):- Effect of interaction between wheat genotypes and nitrogen levels on studied traits.

	۸ h				- 1						
	AD	60.00 d k	52.22 ob	67.66 h h	a-r	11 62 abod	a-g	g-i	15 60 hi	10 52 abod	10.62 a i
INT V9	135.00	63.33 U-K	53.35 ab	07.00 D-11	7.60	44.03 abcu	00.20 d m	120.00	10.00 11	10.52 8000	19.63 e-j
N11/10	A 100.00	62 22 d k	50.22	70.66 o b	7.22	12 92 abod	0-111 67.06	40 122.60 abod	17 20 fabi	0 EE bod	21 12 hi
NIVIO	155.55	03.33 U-K	00.00 D	70.00 a-11	7.33	43.03 abcu	07.20	122.00 abcu	17.30 IYII	9.55 bcu	21.13 D-J
NI41/44	AD 124.00	60.16 d k	D	70.00 aba	9-K	17.20 aba	a-e	116 10	10 C0 h i	10.67 abod	22 70 e l
INTVIT	134.00	62.16 U-K	53.00 aD	79.00 abc	8.10 Q	47.30 abc	62.50	110.13 h a	19.60 D-I	10.67 abcu	22.70 a-i
N11/10	122.22	64.76 o.k	54.00 ob	70.66 o b	a-j 0 42	12 20 abod	a-j 60.16	122.60	16 91 abi	10.16 abod	22.16 h l
INTV12	155.55 Ab	04.70 d-k	54.00 ab	70.00 a-11	0.45 of	43.20 abcu	09.10 A	152.00	10.04 ym	10.10 abcu	22.10 0-1
NOV/1	127.66	60.62 o.k	52.00 ob	61 66 fab	a-i	16 76 oho	FG 52	a 102.22	20.22 h a	0.75 abod	20.96 hi
INZ V I	137.00	00.03 e-k	52.00 ab	01.00 Ign	0.40	40.70 abc	00.00 c m	103.23 f I	20.23 D-Y	9.75 abcu	20.00 D-J
	125.66	62 10 o k	51.22 ob	50.00	7 96	41.00 abod	64.00	109.16	10 00 d i	12.12 obo	20.20 hi
INZVZ	135.00	02.10 e-k	51.55 au	59.00 h	7.00 b.k	41.90 abcu	04.00	100.10 d I	10.00 u-i	12.15 abc	20.20 D-J
NOV/2	125.66	62 06 o.k	52.22 ob	67.22 h h	7.00	12 60 abod		11/17	10.70 h i	10.00 0	22.22 h l
112 0 3	155.00	03.90 C-K	55.55 ab	07.33 D-II	7.00 K	42.00 abcu	00.00	114.17 b.k	19.70 0-1	12.32 a	22.33 D-1
N2\//	125.66	63 33 d k	54.00 ab	72 22 2 0	9.26	47.60 abc	65.02	106.02	22.20 abod	10.84 abod	22.66 ab
INZ V4	Δ	03.33 U-K	54.00 ab	72.55 a-y	0.00 a-f	47.00 abc	00.00 a-d	۵.95 ما	22.20 abcu	10.04 abcu	23.00 ab
N2\/5	133.33	67 /3 a-f	53.00 ab	7/ 33 a-f	8.00	40.90 abcd	<u> </u>	115/13	18.07 d-i	12.20 ab	20.00 h-i
112 00	ah	07.40 01	00.00 ab	74.00 01	0.00 a-i	+0.00 abca	2-k	h_i	10.07 01	12.20 00	20.00 b j
N2\/6	133.00	59.43 iik	56.00	79.00 abc	8.23	40 73 abcd	53.26	100 11	21 97 2-0	11 28 abcd	22.03 h-l
112 00	Ah	00.40 ijk	Δ	15.00 800	0.20 a-h	40.75 abca	h-n	ikl	21.57 4 0	11.20 abcu	22.00 01
N2\/7	132.00	66 56 a-d	53.66.ab	77.66 abcd	8 40	48 20	64.53	103.07	22 78 ahc	12 30 a	23.10.a-f
112 17	Ab	00.00 u g	00.00 05	11.00 0000	a-f	Ab	a-h	f-l	22.10 000	12.00 0	20.10 0 1
N2V8	133.66	70.86 ab	54 66 ab	76.00 a-e	8 10	48.66	67 70 abcd	102 73	22.01.a-e	10.90 abcd	22.60 a-l
11210	ab	10.00 40	01.00 45	10.00 4 0	a-i	ab	01.10 4004	f-l	22.01 4 0	10.00 0000	22.00 41
					~ J						
N2V9	135.66	59.73 a-k	53.33 ab	63.00	7.46	40.90 abcd	66.60	102.87	20.08 b-h	10.18 abcd	20.63 b-i
	A	een e g n		Efah	f-k		a-f	f-l	20100 0 11		20.00 0)
N2V10	131.00	63.93 c-k	55.33	68.33 b-h	8.26	41.23 abcd	59.00	107.56	20.67 b-a	10.56 abcd	22.16 b-l
-	Ab		Ab		a-q		a-m	e-l	5		
N2V11	133.33	70.30 abc	55.66 ab	72.33 a-f	8.06	41.43 abcd	61.36	107.43	17.61 e-l	11.86 abc	19.06 hii
	Ab				a-i		a-k	e-l			,
N2V12	134.00	67.46 a-f	53.66 ab	74.00 a-f	8.40	47.13 abc	63.40	119.70	19.47 b-i	12.16 abc	23.03 a-h
	Ab				a-f		a-l	а-е			
N3V1	136.33	61.90 d-k	53.00 ab	70.33 a-h	7.90	40.30 bcd	52.56	101.60	19.35 b-i	9.57 bcd	19.66 e-j
	А				a-k		i-n	g-l			
N3V2	131.00	59.66 g-k	54.66 ab	70.00 a-h	8.20	43.90 abcd	60.63	99.80	20.27 b-g	11.53 abcd	20.23 b-j
	Ab	-			a-h		a-k	kl	-		-
N3V3	128.00	67.60 a-e	55.00 ab	70.00 a-h	8.33	41.96 abcd	65.90	103.07	20.61 b-g	11.96 abc	21.26 b-j
	В				a-f		a-g	f-l	-		
N3V4	132.00	66.43 a-h	53.66 ab	78.66 abc	7.93	42.23 abcd	65.16	115.66	19.93 b-l	12.18 ab	23.06 a-g
	Ab				a-k		a-g	b-h			-
N3V5	132.66	60.26 g-k	54.00 ab	59.00	7.66	46.86 abc	44.83	99.91	20.11 b-g	9.16	20.10 b-j
	Ab			h	c-k		N	jkl		d	-
N3V6	128.00	64.10 b-k	56.33	68.00 b-h	8.30	42.86 abcd	60.30	100.60	19.92 b-i	9.64 abcd	20.06 b-j
	В		A		a-g		a-k	h-l			
N3V7	132.66	67.56 a-e	53.66 ab	82.00	8.40	37.86	55.76	115.13	19.19 b-l	10.94 abcd	21.86 b-l

Journal of University of Duhok., Vol. 26, No.1(Agri. and Vet. Sciences), Pp 41-52, 2023

						_					
	Ab			а	a-f	D	e-m	b-j			
N3V8	135.66	62.80 d-k	52.66 ab	73.33 a-g	8.16	43.36 abcd	51.10	112.03	20.98 b-g	11.56 abcd	23.43 abcd
	A				a-h		j-n	c-l			
N3V9	134.44	63.63 c-k	53.66 ab	80.00 ab	8.03	41.16 abcd	50.56 klmn	100.60	20.11 b-g	9.66 abcd	20.23 b-j
	Ab				a-j			h-l			
N3V10	132.66	62.50 d-k	53.00 ab	73.66 a-f	7.66	46.66 abc	47.73	100.63	20.77 b-g	10.93 abcd	20.96 b-j
	Ab				c-k		Mn	h-l	-		
N3V11	132.00	67.23 a-f	55.00 ab	71.00 a-h	8.26	45.46 abcd	55.63	108.26	21.59 b-f	11.93 abc	23.23 а-е
	Ab				a-g		e-n	d-l			
N3V12	132.66	71.43 a	52.33 ab	83.00	8.60 abcd	46.80 abc	59.56	115.43	19.80 b-l	11.37 abcd	22.83 a-h
	Ab			а			a-l	b-i			

Values followed by the same latter for each trait are not significantly different. Where: levels of nitrogen (N0= 0, N1=75, N2=150, N3= 225 kg N ha⁻¹). V= genotype (V1= APST-6, V2= APST-36, V3= BABAGA-3, V4=APST-35, V5= Adana-99, V6= IPA-95, V7= Crezo, V8= APSTA-26, V9= Jihan-99, V10= Adana, V11=APSTA-33, V12=TAWA)

Table (4) revealed simple correlations coefficients between all studied characters in bread wheat. Highly significant and positive correlation was shown between days of 75% flowering and biomes yield g. While significant and positive correlation was found between days of 75% flowering, grain weight 1000 g. and flag leaf area, While negative highly significant harvest index and grain filling. And negative significant with number of spike/plant, while not significant with other trait. Highly significant and positive correlation was showed between plant height (cm) and number of spike/plant. While significant and positive correlation was found between plant heights (cm), spike length (cm) and grain yield .g, and not significant with other traits. In grain filling showed highly significant and positive correlation in the number of spike/plant, grain weight 1000 g. and while significant protein, and positive correlation was found between grain filling, spike length (cm) and biomes g. while not significant for other traits. While Significant and positive correlation was showed between numbers of spike/plant and spike length (cm). While not significant for all other traits. Highly

significant and positive correlation was showed between spike length (cm) and grain weight 1000g.while negative highly significant flag leaf area (cm) and grain yield g. while not significant for other traits. Highly significant and positive correlation was showed between grain weight 1000 g, flag leaf area (cm), harvest index, protein% and grain yield g. while not significant for all other traits. Highly significant and positive correlation was showed between flag leaf area (cm) and biomes g. and while negative highly significant in harvest index. And all other traits were not significant. Highly significant and negative correlation was showed between biomes g. and harvest index. And negative significant form protein%. While not significant for other traits. Highly significant and positive correlation was showed between harvest index and grain yield g. and significant positive from protein%. And other traits not significant. While highly significant and positive correlation was showed between protein% and grain yield g. and other traits not significant. Similar results have been reported by other researcher (Ahmad and Al-Taweal, 2007).

Phenotypic correltion												
Characters		days of 75 % Flowering	Plant height (cm)	Grain filling	Numb er of spike	Spike length (cm)	Grain weight 1000g	Flagle af area (cm)	Biom es g.	Harvis t index	Protein %	Grain yield g.
Days 75% flowering	1	1	-0.0860	- 0.53 02	* 0.209 6	0.097 9	* 0.234 2	0.248 1	** 0.27 19	** - 0.347 1	0.0344	-0.0718
Plant height(cm)	2		1	0.05 50	** 0.695 9	* 0.237 7	0.082 1	- 0.146 4	0.09 28	0.011 2	0.1551	* 0.2531
Grain filling	3			1	** 0.298 1	- 0.236 2	** 0.294 2	- 0.067 8	- 0.26 11	0.197 4	** 0.3363	0.1682
Number of spike	4				1	* 0.216 9	- 0.091 8	- 0.206 8	0.06 67	0.043 6	0.1293	0.1902
Spike length(cm)	5					1	** 2.235 5	- 0.357 4	- 0.20 51	0.057 6	-0.1055	** -1.2425
Grain weight(cm)	6						1	** 0.419 3	0.01 49	** 0.453 1	** 0.7007	** 0.6348
Flag leaf area(cm)	7							1	0.32 47	- 0.361	0.0709	-0.1271

Table(4):- phenotypic correlation for studies traits.

			7		
Biomes g.	8	1		*	
			-	-0.2102	0.1158
			0.694		
			9		
Harvest	9		1	*	**
index				0.2245	0.8428
Proein%	1				**
	0			1	0.4645
Grain yield	1				
g.	1				1

*and ** significant difference at level 0.05% (r= 0.207) and 0.01 (r= 0.269) respectively.

Estimation of variance component for twelve genotypes with eleven traits is presented table (5), the phenotypic and genotypic coefficient of variation reveled that for all studied traits had greater than phenotypic coefficients of variation more than influenced by the environmental. Similar result were also found by (Adhiena, M., and Taddesse, D., 2016).

According (Ali, 1999), heritability estimation showed low values of all studied traits indicated that the characters are influenced by environment. For the genetic advance as percent

according (Al-Rawi 1987) were height for days of 75% flowering, grain filling, number of spike/plant, flag leaf area (cm), biomes g. and protein percent.in which value of heritability indicating that these traits are not governed by additive gene action and could be equally improve through hybridization program. While moderate genetic advance found for (plant height, spike length (cm) and harvest index, while low for other traits. Similar result was also found by (Delta M, and Zerga, 2020). And (Muhder, N.. and Sorsa, Ζ., 2020).

 Table (5):- component analysis and genotypic parameters for studies traits.

Treatments	$\sigma^2 g$	$\sigma^2 p$	Gcv	Pcv	h².b.s	GA	GA%
Days of 75% flowering	1.072	12.99	0.775	2.699	8.257	0.523	39.232
Plant height (cm)	1.881	15.026	2.155	6.091	12.519	0.854	13.422
Grain filling	0.308	7.947	1.039	5.2733	3.883	0.192	36.044
Number of spike	13.998	66.140	5.346	11.620	21.164	3.029	43.286
Spike length (cm)	0.005	0.343	0.936	7.268	1.659	0.017	21.224
Grain weight 1000 g.	0.029	19.716	0.387	10.022	0.149	0.011	2.633
Flag leaf area (cm)	12.676	57.362	5.915	12.583	22.098	2.945	48.940
Biomes g.	27.829	110.801	4.869	9.716	25.116	4.653	42.951
Harvest index	0.661	7.036	4.125	13.452	9.406	0.439	22.270
Protein %	0.033	1.779	1.680	12.208	1.893	0.044	40.689
Grain yield	0.020	3.986	0.675	9.411	0.515	0.018	8.534

Where: $\sigma^2 p$ = phenotypic variance, $\sigma^2 g$ = genotypic variance, Gcv= genotypic coefficient of variation, Pcv= phenotypic coefficient of variance, h².b.s= broad sense heritability, GA= genetic advance, GA%= genetic advance percent.

CONCLUSION

According to the results obtained the following can be concluded:

The correlation study revealed that yield and strong positive association with, this correlation studies indicated that grain yield of wheat can be improved by selecting genotypes having higher performance for the above characters.

Path-coefficient analysis revealed that the maximum positive direct effect exhibited by

biomess yield followed by harvest index, pathcoefficient analysis suggest that biomess and harvest index may serve as effective selection attribute, during breeding program for yield improve and in wheat.

For breeding program attention should be paid to traits with moderate to high variability and genetic advance like days to 75% flowering, grain yield, number of spike, flag leaf area, biomess yield and protein. In order to produce and effective responses to yield enhancement, the genotype exanimated under the level (225 kg N ha-1) was more effective on the yield and it component for all studied genotype.

REFERENCE

- Adhiena, M., Wassu, M. and Taddesse, D., (2016). Estimation of heritability and genetic advance of yield and yield related traits in bread wheat (Triticum aestivum L.) genotypes at Ofla District, Northern Ethiopia. International Journal of Plant Breeding and Genetics, 10 (1), pp. 31-37.
- Agarwal. V and Z. Ahmad. (1982). Heritability and genetic advance intritcalc. Indian. J. Agric. Res. 16: 19-23.
- Ahmed A. A. and M. S. Al-Taweal (2007). Performance, Variance and Heritability for seventeen Genotypes of Durum wheat.
- Al-Rawi, K.M. (1987). Introduction to Regression Analysis Directorate of Book House of publishing and pressing Mosul University, Iraq.(In Arabic).
- Allard, R.W. (1960). Principle of plant breeding .John Wiley and sons, Inc., U.S.A.P. 485.
- Ali, A., M.A. Choudhry, M.A. Malik, R. Ahmad and Saifullah, (2000). Effect of various deoses of nitrogen on the growth and yield of two wheat cultivars. Pak.J. Biol. Sci., 3: 1004-1005.
- Ali, A. A. (1999). Heterosis and Gene action of Maize (Zea mays L.) ph.D. Thesis, College of Agricultre and Forestry. Mosul University. (In Arabic).
- Akbar, M., N.I. Khan and M.H. Chowdhry (1995). Variation and inter relationships between some biometric characters in wheat. J. Agric. Res., No. 33: PP 247-54.
- Burton. G. W. (1952). Quantative inheritance ingrasses. Proc. Sixth. Int. Grass land congr. 1: 277-288.
- Clarke, F.R., Clarke, J.M., Ames, N.A., Knox, R.E. and Ross, R.J., (2010). Gluten index compared with SDSsedimentation volume for early generation selection for gluten strength in durum wheat. Canadian Journal of Plant Science, 90(1), pp.1-11.
- Cormier, F.; S. Faure; P. Dubreuil; E. Heumez; K. Beauchêne; S. Lafarge; S. Praud and J. Le Gouis (2013) A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor. Appl. Genet., 126 :3035–3048.
- Dabi, A., Mekbib, F. and Desalegn, T., (2019). Genetic variability studies on bread wheat (Triticum aestivum L.) genotypes. Journal of Plant Breeding and Crop Science, 11(2), pp.41-54.
- Dewey, D.R. and K.H. Lu (1959). A Correlation and path-coefficient Analysis of Components of crested Wheatgrass Grain production. Agronomy Journal, 51: 515-5118. Cited by (Dogan, 2009).
- Delta M, Shiferaw A and Zerga, (2020). Study of genetic variability in some bread wheat accessions (Triticum aestivum L.) in Gurage

zone, Ethiopia. Asian J. Biol. Sci., 13: 309-317.

- Dudlex. J. W. and R. H. Moll. (1969). Interpretation and use of estimates of heritability and genetic variance in plant breeding. Crop. Sci. 9: 257-262.
- FAOSTAT. (2019). Crop production. Retrieved 31 January 2019 from. <u>www.fao.org/faostat/</u>.
- Falconer, D. S. (1981). Introduction to quantitative genetics. Ed. 2. Longmans Green, London/ New York.
- Feldmann, M. (2001). Origin of cultivated wheat. In A. P. Bonjean & W. J. Angus (Eds.), the world wheat book. A history of wheat breeding (pp. 3–56). Lavoiser Publishing.
- Gwal, H.B., R.J. Tiwari, R.C. Jain and F.S. Prajapati, 1999. Effect of different levels of fertilizer on growth, yield and quality of late sown wheat. RACHIS Newsletter, 18: 42-44.
- Kandel, M., Bastola, A., Sapkota, P., Chaudhary, O., Dhakal, P., & Chalise, P. (2017).Association and path coefficient analysis of grain yield and its attributing traits in different genotypes of wheat (Triticum aestivum L.). International Journal of Applied Sciences and Biotechnology, 5(4), 449-453.
- Kashif M and Khaliq K (2004). Heritability, correlation and path coefficient analysis for some metric traits in wheat. International Journal of Agriculture and Biology 6(1):138-142.
- Mariotti, A., (1997). Quelques re'flexions sur le cycle bioge'ochimique de l'azote dans les agrosyste`mes. In: Lemaire,G., Nicolardot, B. (Eds.), Maı'trise de l'Azote dans les Agrosyste`mes, Reims, 19–20 Novembre 1996, Les Colloques n°83. INRA Editions, Versailles, France, pp. 9–20.
- Moll, R.H., Kamprath, E.J., Jackson, W.A., (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 74, 562–564.
- Muhder, N., Gessese, M. K. and Sorsa, Z., 2020. Assessment of genetic variability among agronomic traits and grain protein content of elite bread wheat (Triticum aestivum L.) genotypes in the central highlands of Ethiopia. Asian J. Agric. Res., 14: 1-12
- Navin K, Shailesh M, Vijay K (2014). Studies on heritability and genetic advance estimates in timely sown bread wheat (Triticum aestivum L.). Journal Bioscience Discovery 5(1):64-69.
- Ortiz-Monasterio, J.I., Sayre, K.D., Rajaram, S., McMahon, M., (1997). Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 37, 898–904.
- Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768.

- Shukla, S., Bhargava, A., Chatterjee, A. and Singh, S.P., (2004). Estimates of genetic parameters to determine variability for foliage yield and its different quantitative and qualitative traits in vegetable amaranth (A.tricolor)[India]. Journal of Genetics and Breeding (Italy), 58, 169-176.
- AL-Zubaidy, Kh. M. D. and Kh. K. A. Al-Juboury (2016). Design and Analysis of Genetic Experiments. Dar Al-Wadah. Publishing, Kingdom of Jordan – Amman, Dijla Library

for Printing, Publishing and Distribution, Republic of Iraq – Baghdad (In Arabic).

Zecevic, V., Knezevic, D., Micanovic, D., Urosevic, D., Dimitrijevic, B. and Urosevic, V., (2001).Components of variance and heritability of quality parameters in wheat cultivars. Genetika, 13(3), pp.77-84.[48]
Zerga, K., Mekbib, F. and Dessalegn, T., 2016. Estimation of association among growth and yield.

يوخته

دوازده جورین گه نمی نانی دگه ل چار ریّژه ییّن په یننی نایتروجینی (۰،۷۵،۱۵۰،۲۷۵)کغم/هیکتار. هاتیه چاندن ب ریّیا پارچه یّین ژیکڤه کری ب سیّ جارکی ل سالا ۲۰۲۱. هه فبه ست و هوکاریّن ژیّک جودا ییّن بوماوه یی و شیّوه ی. بوماوه دگه ل باشکرنا بوماوه یی گومان لیکری هاتنه هژمارتن بو سالوخه تیّن هژمارا روژیّن گولی دانیّ ۷۵٪ و بلندیا رووه کی و تژی بونا دندکیّ و به ریّ دندکیّ و فره هیا به لگیّ و به ریّ بایلوژی/بنا رووه کی و ریژین پروتینی. دگه ل ریبه ریّ دروینی هاتیه دیتن کو هه فبه ستا پوزه تیف یا بلند یا به رچاڤ دناڨبه را به ریّ دروینیّ و سه نگا ۱۰۰۰ دندکا. ریبه ریّ دروینی های و ریژا پروتینی یا پوزه تیف یا بلند یا به رچاڤ دناڨبه را به ریّ دروینیّ و سه نگا ۱۰۰۰ بوماوه ییّ ب رامانا فره هـ یا کیم بو بو هه مم سالوخه تان. سه باره ت نافه راستا کشتی دنافبه را به اییّ نافه راست بوماوه یی ب رامانا فره هـ یا کیم بو بو هه مم سالوخه تان. سه باره ت نافه راستا کشتی دنافبه را به یی نافه راست

الخلاصة

اثنتا عشر تركيب وراثي مع أربعة مستويات من سماد نيتروجين (٢٢٥،١٥٠،٠)كغم/هكتار. تم زراعتها وفق تصميم القطاعات المنشقة بثلاث مكررات في الموسم الزراعي (٢٠٢١). الأرتباط و معامل الأختلاف الوراثي والمظهري، التوريث مع التحسين الوراثي المتوقع تم تقديرها لكل من ٧٥ % يوم التزهير، ارتفاع النبات (سم)، أمتلاء الحبة، حاصل الحبوب غم، مسافة ورقة العلم (سم)، الحاصل البيولوجي غم، نسبة البروتين المعنوية مع دليل الحصاد وجدت أرتباط موجب عالي المعنوية بين صنفة الحاصل مع وزن ١٠٠٠ حبة غرام، دليل الحصاد و نسبة البروتين مئوية بينما كانت معنويا و موجبا عنده 5% مع صفة ارتفاع النبات سم. التوريث المفهوم الواسع كانت منخفضا لكل الصفات رافقتها التحسين التورثي المتوقع نسبتا الى المتوسط العام بين قيم متواسط الى منخفضة للصفات المدروسة.

الكلمات الدالة: حنطة الخبز, التوريث, الارتباط مع التحسين الوراثى المتوقع