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ABSTRACT 
In this study, autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) 

models were applied to predict the average monthly flow time series of two stations, named Begova and 

Chemcermo, for the Khabour River. The analysis of the time series was performed using several criteria 

and tests. The autocorrelation function (ACF) and partial autocorrelation function (PACF) were applied 

to check the accuracy of the ARIMA model. The Akaike (AIC) and Bayesian (BIC) equations were 

performed to determine the optimum model for prediction, which depended on the lowest AIC and BIC 

values. Applied test results show that the models of order ARIMA (0,0,0)(3,0,0)12 and 

ARIMA((0,0,5)(5,1,4)12 have higher acceptance compared to the other models for predicting the average 

monthly flow for Begova and Chemecermo stations, respectively. An ANN model of type multilayer 

perceptron method (ANN-MLP) was used for predicting the average monthly flow of Begova and 

Chemecermo stations, where the best models found are MLP (5,3,1) and MLP (9,7,1), respectively. 

Different statistical tests were applied and showed that the efficiency of the ANN model was better than 

the ARIMA model, with deterministic coefficients of 0.914 and 0.876 compared to 0.854, and 0.852 for the 

ARIMA for the monthly time series of Begova and Chemecermo stations, respectively. 
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1. INTRODUCTION 
 

orecasting streamflow is a technique that 

has high importance in the design, 

planning, and management of water resource 

systems. Stochastic simulation can be used for 

generating the possible future flows for the 

rivers, where it is assumed that those rivers' 

flows are extracted from a common statistical 

population and that the recorded data form a 

sample from this population. While the 

frequency of critical floods and droughts may 

not be adequately represented within the 

recorded data, several stochastic models have 

been developed in the last decades for 

hydrological time series data prediction and used 

by several researchers (Mirzavand and Ghazavi, 

2015, Al-Saati et al., 2021, Essam et al., 2022). 

The ARIMA model, sometimes called the 

Box-Jenkins approach, is a useful tool for 

forecasting and predicting data of the time series 

from the coming years. The Box-Jenkins 

technique, developed in 1970 and named after 

statisticians George Box and Gwilym Jenkins, is 

also known as the ARMA or ARIMA model. 

Many researchers have applied the ARIMA 

model for predicting different types of 

hydrological time series (Kurunç et al., 2005, 

Tong and Liang, 2005). 

Kurunç et al. (2005) evaluated the forecasting 

performance of two modeling approaches, 

ARIMA and Thomas–Fiering, for selected water 

quality constituents and streamflow of the 

Yeşilırmak River at Durucasu monitoring. The 

test results for forecast accuracy indicated that, 

between the two approaches, the Thomas–

Fiering model presented more reliable 

forecasting than the ARIMA model (Kurunç et 

al., 2005). The monthly streamflow data of the 

Zayandehrud River in western Isfahan province, 

Iran, were used to predict by applying ARIMA 

(1,1,0)(0,1,1), and they found that the data had 

been best represented by a multiplicative 

seasonal ARIMA model that satisfied all tests 

(Modares and Eslamian, 2006).  

F 
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Frausto Solis et al (2008), compared the 

performance of two forecasting techniques, 

ARIMA and multilayer perceptron neural 

network (ANN-MLP) models, for the San Juan 

Tetelcingo river in Mexico. They found that the 

ARIMA model exhibited lower prediction errors 

than ANN-MLP (Frausto-Solis et al., 2008). 

Monthly streamflow at the Doyian station in 

Pakistan was predicted by ARMA and ARIMA 

models. The results indicated that the ARIMA 

model’s forecasting accuracy is much better than 

that of the ARMA model (Adnan et al., 2017). 

an ANN is an empirical model used for 

modeling complex hydrological processes by 

connecting inputs and outputs through 

mathematical functions without the need to 

know the relationship between the basin 

characteristics (Palit and Popovic, 2006). ANN 

has been widely used and found to be a powerful 

tool in predicting streamflow time series 

(Humphrey et al., 2016, Alade et al., 2017, 

Alquraish and Khadr, 2021). 

A stepwise model empowered with genetic 

programming is developed to predict the 

monthly flows of the Hurman River in Turkey, 

the Diyalah River, and the Lesser Zab River in 

Iraq, where the results based on five different 

statistical measures show that the proposed 

stepwise model performed better than the 

Markovian model and the ARIMA model (Al-

Juboori and Guven, 2016). Fashae et al (2019), 

used ANN and ARIMA models for comparing 

their efficiency for predicting the flow of the 

Opeki River station. They found that ARIMA 

was better than the ANN model according to the 

results of different tests (Fashae et al., 2019). Al-

Saati et al (2021), applied the monthly recorded 

flow downstream of the Euphrates River 

(Hindiya Barrage/Iraq) using ARIMA and ANN 

models. The results show that the standard Box-

Jenkins model was more accurate than the ANN 

model (Al-Saati et al., 2021). 

The Khabour River basin has been studied by 

different researchers for different purposes since 

1980 using the recorded data (1958–1982) of the 

old station at Zakho (Khidir, 1980, R Muhamad 

and N Hassan, 2005, Saleh, 2010, Khadir et al., 

2018). Different techniques were used in the 

aforementioned research, such as Thomas-

Fiering, ARIMA, MATALAS, and others. In 

this study, the applied data were recorded in two 

new stations established in 2004 at Begova and 

Chemcermo. Climate change has great effect on 

the metrological and hydrological systems in the 

Kurdistan region and the other neighboring 

regions since 1997. 

The main objective of this research is to 

investigate ARIMA and ANN models for 

predicting average monthly flow in the time 

series at Khabour River at Begova and 

Chemcermo stations. 

 

2. STUDY AREA AND COLLECTION OF 

THE DATA 
 

Khabour River is one of the tributaries 

feeding the Tigris River in the Kurdistan Region 

of Iraq. The basic source of this river lies in the 

Turkish lands, which enters the Iraqi lands near 

Nazori and Begova villages before it empties 

into the Tigris River near the village of 

Fishkhabour, as shown in Fig. (1. The area of 

the Khabour basin is about 3500 km
2
, and the 

total length of the Khabour River is 160 km 

inside the Iraqi border (Saleh, 2010). Two 

stations have been established since 2004 for 

measuring the flow of the Khabour River, named 

Begova and Chemcermo, which are presented in 

Fig. (1. Begova station lies near the Iraq and 

Turkey borders; Chemcermo station lies in a 

village named Chemcermo near Zakho city. 

Table (1 shows the topographical characteristics 

of the two stations that catch up from the Water 

Resources Directorate of Duhok.
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The recorded average monthly flow data for Begova and Chemcermo stations are available for the 

period from (October 2004 to September 2020), The statistical characteristics of the recorded data for 

the two stations are shown in Table 2 and Table 3, respectively. 

 

Table 2: Statistical characteristics of the recorded data for the Begova station. 

Mean 

(m
3
/sec) 

Standard 

deviation 

(m
3
/sec) 

Median 

(m
3
/sec) 

Minimum Flow 

(m
3
/sec) 

Maximum flow 

(m
3
/sec) 

Skewness 

coefficient 

(m
3
/sec) 

Kurtosis 

coefficient 

(m
3
/sec) 

80.461 76.380 45.327 12.778 398.811 1.959 6.706 

Table 3: Statistical characteristics of the recorded data for the Chemcermo station. 

Mean 

(m
3
/sec) 

Standard 

deviation 

(m
3
/sec) 

Median 

(m
3
/sec) 

Minimum Flow 

(m
3
/sec) 

Maximum flow 

(m
3
/sec) 

Skewness 

coefficient 

(m
3
/sec) 

Kurtosis 

coefficient 

(m
3
/sec) 

76.167 107.226 35.44 2.7 996.2 2.746 12.255 

 

 
Fig. (1): The basin map of the Khabour River showing the two stations under study. 

Table (1): Study area information for two stations, Begova and Chemcermo, in the Khabour 

 River basin. 

Stations Area of the basin upstream of the 

station 

(Km
2
) 

Latitude 

(0° 0ʹ 0.0ʺ) 

Longitude 

(0° 0ʹ 0.0ʺ) 

Elevation (m) 

Above MSL 

Begova 1517 33° 65ʹ 42ʺ 41° 24ʹ 47ʺ 779 

Chemcermo 1983 29° 57ʹ 06ʺ 41° 12ʹ 48ʺ 438 
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3. FORECASTING MODELS 
 

3.1. Auto Regressive Integrating Moving 

Average (Arima) Model 

The ARIMA model is an extension of the 

autoregressive moving average (ARMA) model, 

which is fitted to time series data to offer 

generalized data and anticipate potential series 

points. The ARIMA parameters are (p, d, q), 

which are all positive integers, with (p) 

representing the autoregressive model parameter, 

(d) representing the degree of differencing 

parameter, and (q) representing the moving 

average model parameter. Seasonal ARIMA (p, 

d, q) (P, D, Q), where S specifies the number of 

seasons and the second part parameters (P, D, Q) 

signifies the differencing and moving average 

components for the seasonal member of the 

model (ARIMA). Mathematically, the seasonal  

integrated moving average (SARIMA) can be 

described as an Error! Reference source not 

found. (Tong and Liang, 2005): 

 ( )   (  )  (    )
  ( )   (  )     

Equation 

1 

Where: 

 : Coefficient (AR). 

   Moving average coefficient (MA). 

   Seasonal coefficient. 

 : Coefficient of moving average for seasonal. 

 : Random rate in time (t). 

B: Backshift processor. 

S: Period of season.  

AIC is a useful approach for identifying the 

statistically best models. Also, it provides a 

mathematical definition of the parsimony 

principle in the context of model development, 

as shown in Equation 2 (Akaike, 1974). 

   (   )      (  )   ( ) 
Equation 

2 

Where             
Equation 

3 

The Bayesian information criterion (BIC) is a 

computationally tractable approach represented 

in Equation 4 (Schwarz, 1978). It can be used to 

perceive a better labor model between several 

model trials (Kassem et al., 2020): 

   (   )      (  )      ( ) 
Equation 

4 

Where: 

σ: Standard deviation of the recorded data. 

N: Number of recorded data.  

The optimal model is the one that has a 

minimum value for AIC and BIC. This 

procedure was applied to select the efficient 

model that can be used to predict the average. 

3.2. Artificial Neural Network (Ann) Model 

An important aspect of an ANN model is its 

model design component and structure, input 

data, and hidden, and output data layers (Arisoy 

et al., 2012). The input dataset is processed first 

in the input layer, which is linked to the hidden 

layers through a neural network. The modeling 

procedure may uncover one or more hidden 

levels, depending on the extent of data mining. 

The number of optimal hidden layers and 

accompanying neuron weights might then be 

computed using the input-output dataset during 

the training phase. Although there are no widely 

acknowledged guidelines for selecting the ideal 

amount of input variables, neurons, or hidden 

layers, it has been demonstrated that data 

processing improves the effectiveness of ANN 

models (Nacar et al., 2018). 

In this research, MLP-ANN was used. 

MLP is a feed-forward neural network 

architecture with uni-directional cell 

connections between successive layers (Seo 

et al., 2016), as shown in Fig. (2.
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The MLP method has one weight for each 

input and only one output; however, a multilayer 

network has multiple weights, each of which 

contributes to more than one output. The output 

layer results can be obtained from Equation 5 

below: 

 ̂    *∑ (       (∑ (       )
 

   
   ))

 

   

   + 

Equation 

5 

Where: 

    : Weight of hidden-output. 

    : Weight of input-hidden layers. 

  : Activation function of the hidden layer. 

  : Activation function of the output layer. 

  : Input variable. 

  : Hidden layer bias. 

  : Output layer bias. 

m: Hidden layer neurons number. 

 ̂ : Variable of output. 

n: Variable of input. 

 

4. APPLICATION OF THE APPLIED 

MODEL AND DISCUSSION 

4.1. Data Analyses 

The recorded average monthly flow data of 

Begova and Chemcermo stations are available 

for the water years (2004 –2019), which were 

used in this study. Before analyzing the recorded 

data, the few missing data points of the year 

2006 for Begova were estimated using the linear 

regression method such as (Haitovsky, 1968, 

Loh and Wainwright, 2011, Wang et al., 2008) 

and applying the Microsoft Office Excel version 

2016. The available recorded data for each 

station was divided into two sets. The first set of 

water years’ (2004 –2017) was used for 

calibration. The last two water years recorded 

data (2018 and 2019) were used for the 

verification stage. 

Non-stationary time series cannot be used to 

build the ARIMA model (Chow, 1984), where 

the stationarity of time series is significant, 

which means that the statistical characteristics of 

a process that creates a time series do not change 

with time (Priestley and Rao, 1969). 

Checking the normality of the two series was 

done using the Kolmogorov-Smirnov test by 

Fig. (2): Three layers of the ANN: input, hidden, and output layers. 
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applying the MINITAB software program 

(version 19). Fig. (3 shows the non-normal 

average monthly flow time series before 

normalization, where the Box-Cox 

transformation was used for the transformation 

of the series to a normal distribution by 

determining a suitable coefficient (λ) for Cs 

equaling zero (Box and Cox, 1964).

 

  

Before normalizing the time series of the Begova station  Before normalizing the time series of the Chemcermo station 

Fig. (3):Test of normal distribution before transforming the average monthly flow time series of Begova and 

Chemcermo stations by Kolmogorov-Smirnov. 

 

Fig. (4 presents the normality of the average 

monthly flow series after normalization. The 

skewness coefficient (Cs) was downgraded to 

zero for the two stations. The coefficients (λ) 

and (Cs) were found to be equal to (-0.559) and 

(0.00006) for the Begova station and (0.00045) 

and (0.00003) for the Chemcermo station, 

respectively.

 

  

After normalizing the time series of the Begova station  After normalizing the time series of the Chemcermo station 

Fig. (4): Test of normal distribution after transforming the average monthly time series of Begova and 

Chemcermo stations by Kolmogorov-Smirnov 

 

The value of (λ) was calculated after 

transforming the time series of the two stations 

to a normal distribution using Equation 6 

(Grimaldi, 2004): 

    
      

 
 

Equation 

6 

Where: 

  : Recorded average monthly discharge after 

changing to normal dispersion.  

  : Recorded average monthly discharge before 

changing to normal dispersion.  

λ: Box-Cox coefficient lie between (-1,1). 

The split sample method was made for testing 

the jump component by dividing the time series 

of each station into two equal subsamples 

(Khadir et al., 2018), at the 95% confidence 

level, for checking that the difference between 

the means and standard deviations of two 

subsamples is significantly different from zero. 

Table (4 displays the t-test results, which reveal 

that the average monthly flow time series for 

both Begova and Chemcermo stations is 

significant.
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Table (4): Calculated-t the values of the mean and standard deviation of Begova and Chemcermo 

stations for the average monthly flow time series, respectively. 

Stations Average monthly flow time series 

Calculated t-test for Mean Calculated t-test for Standard Deviation 

Begova -0.538 -1.764 

Chemcermo -4.162 0.561 

 

The critical value of the t-test was equal to 

(1.99) for the mean and standard deviation 

values for the two stations at the 95% probability 

level of significance, which indicates that the 

two-time series were free from the jump 

component. 

The existence of the trend component was 

checked for the time series of the two stations; 

Fig. (5 shows the equations of trend and its 

slopes for Begova and Chemcermo stations, 

where the Mann-Kendall test was eligible for 

detecting the trend in the two stations’ time 

series.

 

  

Trend component of average monthly flow series at Begova station 
Trend component of average monthly flow series at Chemcermo 

station. 

Fig. (5): The Mann-Kendall test of trend components for both stations was applied by NCSS software. 

 

The Mann-Kendall test is non-parametric. It 

was performed to analyze whether there is a 

trend in the existing data or not, even if the 

series contains a seasonal component (Hussain 

and Mahmud, 2019). The Mann-Tau Kendall's 

Correlation test results are shown in  

Table (5, where Kendall's tau correlation was 

found to be (0.0689) and (0.2216) for Begova 

and Chemcermo stations, respectively. This 

demonstrates that the average monthly data of 

the two stations is free of trend components.

 

 

Table (5): Mann-Kendall trend component test for flow time of both Begova and  

Chemcermo stations. 

Stations Kendall's Tau Correlation 

Begova 0.0689 

Chemcermo 0.2216 

The correlogram or autocorrelation plot is a 

helpful method for identifying the periodic 

component of a time series, as shown in Error! 

Reference source not found. and Fig. (7 for both 

stations for testing periodicity in the forecasting 

model section.
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Fig. (6): Autocorrelation (ACF) and partial autocorrelation (PACF) functions of ARIMA models for average 

monthly flow time series of Begova station 
 

  
Fig. (7): Autocorrelation (ACF) and partial autocorrelation (PACF) functions of ARIMA models for average 

monthly flow time series of Chemcermo station. 

Both of the two-time series under study 

ended up being free of trend, jump, and 

periodicity phenomena.  

The recorded average monthly flow data for 

Begova and Chemcermo stations are available 

for the water year between 2004 and 2019 

obtained from the Directorate of Water 

Resources of Duhok Governorate. The average 

monthly flow for 14 water years (2004 –2017) 

for the two stations, was used in the ARIMA and 

ANN models in the calibration stage, and that of 

the last two water years (2018 and 2019) was 

used in the verification stage. 

4.2. Application Of The Arima Model 

The components of the ARIMA model were 

discovered using three stages of analysis: 

identification, parameter estimation, and 

diagnostic. ARIMA can be built after testing and 

converting the average monthly flow time series 

for the two stations under study to stationery. 

The Development of the ARIMA model was 

applied by NCSS statistical software, Version 

12, after normalizing both the monthly flowtime 

series of Begova and Chemcermo stations and 

standardizing sixteen years from October 2004 

to September 2020 for modeling and forecasting. 

The primary estimation ARIMA model for the 

two average monthly flow time series can be 

indicated by plotting the ACF and PACF. Error! 

Reference source not found. and Fig. (7 show the 

ACF and PACF for the two average monthly 

time series. The two figures indicate that the 

two-time series is random because the values of 

ACF are outside the confidence limits. 
The best two ARIMA models for the two 

stations were chosen from several ARIMA 

models and found, as shown in Table 6. These 

two best models were used in forecasting the 

average monthly flow of the time series in the 

verification stage for the two water years 2018 

and 2019, due to the least values of (AIC) and 

(BIC) as presented in Equation 2 and Equation 4 

for both Begova and Chemcermo stations.
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Table 6: Parameters of the best performing ARIMA models for Begova and Chemcermo 

stations. 

Station Best performing (ARIMA) model (AIC) (BIC) 

Begova (0,0,0)(3,0,0)12 391.479 395.013 

Chemcermo (1,0,3)(1,0,1)12 473.064 480.132 

 

In the verification stage, the average monthly 

flow time series for the two years 2018 and 

2019, which were not used in the calibration 

stage, were applied. This stage was applied to 

find the most effective model that can be utilized 

for forecasting and predicting the average 

monthly flow for the two stations at the Khabour 

River. 

The statistical tests of deterministic 

coefficient (R
2
), root mean square error (RMSE), 

and mean absolute error (MAE) were used to 

check the acceptability of each model. Table (7 

shows that the results of predicting average 

monthly flow by the ARIMA model for Begova 

are better than that of Chemcermo, as indicated 

by its high value of R
2
 (0.854), compared to that 

of Chemcermo (0.852). The RMSE and MAE 

test values for the Begova time series are 63.796 

and 40.573, which are less than those of the 

Chemcermo station 84.937 and 51.544, 

respectively. The results of the testing indicate 

that the best ARIMA can be used efficiently for 

forecasting the average monthly flow time series 

of the two stations.

 

 

4.3. Application Of Ann Model 

The ANN model of the ANN-MLP method 

was used and applied for forecasting the average 

monthly flow. The best model was obtained in 

the verification stage for the years 2018 and 

2019 by applying the SPSS statistical software 

(version 26). 

Following multiple trials, in these networks 

the rescale covariate was standardized in the 

partition section for training at 70%, testing at 

20%, and holdout at 10% nearly, and it was 

determined that the sigmoid and hyperbolic 

tangent functions were the optimal activation 

functions for the MLP method, which linked the 

two layers one after another, the input and 

hidden layers together, as well as the hidden and 

output layers for two stations. The maximum 

training epochs were estimated automatically to 

prevent overtraining, and the gradient descent 

approach was used to describe the optimization 

procedure. In the training section, the online type 

was processed, which modified the synaptic 

weights after each single training data record 

(Zacharis, 2016). MLP-ANN’s architectural 

information was presented in Table (8.

 

Table (8): The network information for Begova and Chemcermo stations 
 

Station Input Layer Hidden Layer unit Activation Function Output Layer unit Activation Function 

Begova 5 3 Sigmoid 1 Sigmoid 

Chemcermo 9 7 Hyperbolic tangent 1 Hyperbolic tangent 

 

The best results from the earlier trials for 

each station were found to be the input layer, 

hidden layer, and output layer for MLP models 

(5,3,1) and (9,7,1). Table (7 shows that the 

results of predicting the average monthly flow 

by the ANN model for the time series of Begova 

are better than those of Chemcermo, as indicated 

by its high value of R
2
 (0.914), compared to that 

of Chemcermo (0.876). The RMSE and MAE 

test values for the Begova time series are 36.953, 

24.357 which are lesser than that of Chemcermo 

72.796, and 50.236 respectively. The results of 

the testing indicate that the best ANN model can 

be used efficiently for forecasting the average 

monthly flow time series of the two stations.

Table (7): Statistical test results of average monthly flow time series for Begova and 

 Chemcermo stations. 

Stations Best ARIMA Model R² RMSE MAE 

Begova (0,0,0)(3,1,3)12 0.854 63.129 40.573 

Chemcermo (0,0,5)(5,1,4)12 0.852 84.937 51.544 
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Table (9): Statistical tests results by applying the ANN model to the average monthly flow time 

series of Begova and Chemcermo stations 

Stations Deterministic coefficient 

 (R
2
) 

Root Mean Square Error 

 (RMSE) 

Mean Average Error 

(MAE) 

Begova 0.914 36.953 24.357 

Chemcermo 0.876 72.796 50.236 

 
Fig. (8 and Fig. (9, show the recorded and 

predicted average monthly flow hydrograph for 
the two years of the verification stage by the two 
models for Begova and Chemecermo stations, 
respectively. It is clear from these two Figs. that 
the hydrograph of the predicted average monthly 
flow by the ANN model is closer to the recorded 
data than that predicted by applying the ARIMA 
model for both Begova and Chemcermo stations. 

Results tests in Table (7, Table (9, and Fig. 
(8 and Fig. (9 show the high acceptance of the 
ANN model as compared with the result of 
ARIMA, where the R

2
 values of the ANN model 

(0.914 and 0.876) are higher than those of the 
ARIMA model (0.854 and 0.852) for Begova 
and Chemcermo, respectively. RMSE values of 
the ANN model (36.953, 72.796) are less than 
those of the ARIMA model (63.129, 84.937) for 
Begova and Chemcermo, Also, MAE values of 
the ANN model (24.357, 50.236) are less than 
those of the ARIMA model (40.573, 51.544) for 
Begova and Chemcermo, respectively. As a 
result, the ANN model was more accurate than 
the ARIMA model for predicting the average 
monthly flow of the Khabour River for both the 
Begova and Chemcermo stations.

 

 
Fig. (8): Recorded and predicted average monthly time series (verification stage) of Begova station by applying 

ARIMA and ANN models. 

 

Fig. (9): Recorded and predicted average monthly time series (verification stage) of Chemecermo station by 

applying ARIMA and ANN models. 
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5. CONCLUSION AND 

RECOMMENDATION 

 

The following notes can be concluded from 

the application and results of ARIMA and ANN 

models for the average monthly flow time series 

at Khabour River: 

a) The average monthly flow time series of the 

two stations were exposed to check for normality 

and stationarity by different methods before 

applying the ARIMA model. The average 

monthly time series were found to be free of 

jumps and trends; the series was also stationary 

in mean, standard deviation, and variance. 

b) The best ARIMA models were found to be 

ARIMA (0,0,0)(3,1,3)12 for Begova station and 

ARIMA (0,0,5)(5,1,4)12 for Chemcermo station 

which was used for forecasting 24 months of 

data in the verification stage. 

c) The ANN models, ANN-MLP (5,3,1) for 

Begova station and ANN-MLP (9,7,1) for 

Chemcermo station, are the best for forecasting 

the average monthly flow time series.  

d) Test results show that the ANN model gives 

more adequate results for predicting at the 

aforementioned stations than the ARIMA model.  

e) The ANN model can further be used for 

forecasting and generating average monthly data 

for any required period to get a more adequate 

design and management for future proposed 

hydraulic structures upstream of the two stations 

at Khabour River. 

f) As a recommendation, other stochastic models 

can be applied to the recorded data of the two 

discharge sites under study, such as the radial 

basis function neural networks (RBF) and the K-

Nearest Neighbors (KNN) model for predicting 

flow series. 
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