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ABSTRACT 

Some results on the existence of residual measures have been generalized. Further results and a 

characterization of such measures are obtained. 
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1. INTRODUCTION AND 

PRELIMINARIES 

 

n mathematics, generally, the concept of 

smallness exists and plays an important 

role. The aim of the present study is to focus on 

this concept in the sense of topological space 

and measure theory. Nowhere dense (meager) 

sets in topological spaces are considered to be 

small as they contain lots of holes. Null sets in 

measure theory are small, which are sets of 

measure zero. Now here a question arises, how 

these two notions are related? This is why we 

study residual measures. In such a type of 

measures, nowhere dense and null sets are 

similar. Armstrong and Prikry [2] defined 

residual measures as a generalization to both 

normal measures of Dixmier [3] and category 

measures of Oxtoby [9]. Residual measures are 

also called hyperdiffuse measures, see [4]. After 

them many other authors have studied this class 

of measures including [4], [5], [7], [11] and [10]. 

In this study, we present some results on the 

existence of residual measures and obtain a 

characterization of such measures. 

Let  be a given topological space and 

let . The notations  and  are, 

respectively, the interior and the closure of . A 

set  is nowhere dense if  

Meager set is a countable union of nowhere 

dense sets. A is regular closed if 

  A space that has a countable 

dense subset is called separable. A point x is 

isolated of A ⊆ X if there is an open set U in X 

such that A ∩ U = {x}.   is perfect if it contains 

no isolated points. A space X is connected if it 

cannot be the union of two disjoint open sets. X 

is locally connected if it has a base of connected 

sets (as subspaces). X is a T1-space if every {x} 

is closed. 

A Borel measure µ is a σ-additive measure 

defined on the least σ-algebra B(X) containing 

all open subsets of a topological space (X, τ). It 

is called (1) trivial if µ(X) = 0, otherwise it is 

nontrivial (2) finite if µ(X) < ∞ (3) nonatomic if 

µ({x}) = 0, for each {x}∈ X, and (4) strictly 

positive if µ(G) > 0, for each G ∈τ. 

A measure µ is regular on X if for every B ∈ 
B(X) we have that  

µ(B) = inf{µ(G) : B ⊆ G, G is open} 

                   = sup{µ(F) : F ⊆ B, F is closed}. 

A subset A of a measure space (X, B, µ) is 

Jordan measurable if µ(∂(A)) = 0, where ∂ stands 

for the topological boundary of a set. A null is a 

set of measure zero. A function f is continuous 

almost everywhere if the set of discontinuity of  f  

has measure zero. The support of µ, denoted by 

supp(µ), is the set of all points x ∈ X for which 

every open set U containing x is of positive 

measure. 

Remark 1.1. The support of  has the following 

properties: 

(1)  is closed because it is the 

complement of the largest open set of measure 

zero (largest means union of all open sets of 

measure zero). 

(2) Every nonempty open set in   is 

of positive measure. 

(3)  has a full measure, i.e. 

. 

I 
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Throughout this study, the word "space" 

stands for an arbitrary topological space without 

assuming any type of separation axiom, and all 

measures are assumed to be finite Borel. 

 

2. RESIDUAL MEASURES 
 

Definition 2.1. [2] A measure µ on some 

topological space X is said to be residual if 

 for every nowhere dense subset N of 

X. 

The following are examples of residual and 

nonresidual measures. 

Remark 2.2. The induced measure on the Stone 

space of the measure algebra of the Lebesgue 

measure on the unit interval is a nice example of 

residual measures, whereas the Lebesgue 

measure itself is not residual. The so-called fat 

Cantor set [6, Page 39] is nowhere dense with 

positive (Lebesgue) measure. 

Next, we call back some important results of 

residual measures from the literature.  

Theorem 2.3. [7] If X is a perfect metric space, 

then no nontrivial residual measure can be 

defined on X, (cf. [4, Proposition 5]). 

Theorem 2.4. [4] If X is a locally connected 

space, then no nontrivial regular nonatomic 

residual measure can exist on X. 

Now here a question arises: Can a similar 

result (to the above one) be true for connected 

spaces? The question has already been answered 

by Plebanek in [10] under a set theoretic 

assumption. Namely, assuming the continuum 

hypothesis, there is a perfectly normal compact 

connected space X on which there is a strictly 

positive residual measure. 

Next, we provide another easy example of a 

connected space that supports a residual 

measure. 

Example 2.5. Let  be the Lebesgue measure on 

the density topological space  Then τd is 

the family of all measurable subsets E of R such 

that each x ∈ E has following property: 

 
It is reported in [9, Page 100] that  is 

connected. By [8, Lemma 4.3.1], every nowhere 

dense set N in τd has measure zero, i.e. µ(N) = 0, 

which proves that µ is residual on R. 

Note that a similar result to the following 

was proved in [7, Proposition 3] for regular 

residual measures, we prove it for a more 

general class of measures. 

Theorem 2.6. Let X be a separable T1-space. 

There is a nontrivial residual measure if and 

only if X has at least one isolated point. 

Proof. Let x ∈ X be an isolated point. Then the 

Dirac measure δx is a nontrivial residual measure. 

Conversely, suppose contrary that X has no 

isolated points, and assume that X is a separable 

T1 space. Then X has a countable dense subset D. 

Set . Since X is T1, every {xi} is 

closed. Since X has no isolated points, no {xi} 

can also be open, and so Int({xi}) = ∅. This 

means that all {xi} are nowhere dense sets. Let µ 

be a nontrivial residual measure on X. Then 

µ({xi}) = 0. Now  

 
Since D is dense in X, then X \ D is nowhere 

dense (Borel) (being the complement of a Borel 

set D which is a countable union of closed sets). 

Thus µ(X \ D) = 0. Therefore µ(X) = µ(X \ D)+ 

µ(D) = 0. It follows that µ is a trivial measure, 

which is contradiction. Since µ was taken 

arbitrarily, the proof follows.  

 

Theorem 2.7. Let X be a separable space. There 

exists no nontrivial nonatomic residual measure 

on X. 

Proof. Suppose that X is a separable space. Then 

X has a countable dense subset D. Namely, D = 

{x1, x2, x3, . . . }. Let µ be a nontrivial nonatomic 

residual measure on X. Then µ({xi}) = 0, for i = 

1, 2, 3, . . . (by nonatomicity). Now 

 
This implies that D is Borel measurable (a 

countable union of closed sets). Since D is dense 

in X, X \ D is nowhere dense Borel (The 

complement of a Borel set is also Borel). Since µ 

is residual, so µ(X \ D) = 0. Therefore µ(X) = 

µ(X \ D)+µ(D) = 0, which contradicts to our 

assumption that µ is nontrivial nonatomic 

residual measure. This completes the proof.  

Definition 2.8. [1] A measure   on a 

topological space X is said to be uniformly 

regular if there is a countable family G of open 

subsets of X such that for every open set U ⊆ X 

and every  > 0, there is  with G ⊆ U such 

that 
   

Proposition 2.9. Let µ be a strictly positive 

uniformly regular measure on a space X. Then X 

is separable. 
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Proof. Let G = {Gn : n ∈ N} be a family of open 

subsets of X that makes µ uniformly regular. For 

every Gn choose an element xn ∈ Gn. Set D = {xn : 

n ∈ N}. Obviously, D is countable. It remains to 

show that this set is dense in X. Suppose 

otherwise that  So X \ Cl(D) is a 

nonempty open subset in X. By assumption, 

there is a nonempty open set Gn such that xn ∈ Gn 

⊆ X \ Cl(D), which is contraction. Hence X = 

Cl(D). This proves that X is separable.  

Theorem 2.10.  Let (X, τ) be a topological space. 

Then there is no nontrivial (strictly positive) 

nonatomic uniformly regular measure µ on X that 

is also residual. 

Proof. Suppose contrary that there exist a 

nontrivial nonatomic uniformly regular µ on X. 

By Proposition 2.9, X is a separable space and by 

Theorem 2.7, µ = 0, contradiction! The proof 

follows.  

Proposition 2.11. On discrete spaces, every 

measure is residual. 

Proof. Follows from the fact that the only 

nowhere dense set in a discrete space is ∅, and 

µ(∅) = 0 for all measures µ.  

Theorem 2.12. Let  be a residual measure on a 

topological space (X, τ). Then the support of µ (if 

exists), supp(µ), is a regular closed set in X. 

Proof. Let F = supp(µ). Then Int(F) ⊆ F and F is 

closed by Remark 1.1 (1). Therefore Cl(Int(F)) 

⊆ F. Consider F\ Cl(Int(F)) is nowhere dense. 

By assumption µ(F\ Cl(Int(F))) = 0. By Remark 

1.1 (3), µ(X \ Cl(Int(F))) = 0. Again by Remark 

1.1 (1), the complement of F, X \ F, is the largest 

open set, which implies that X \Cl(Int(F)) ⊆ X \ 

F and so F ⊆ Cl(Int(F)). Hence F = Cl(Int(F)). 

Thus F is regular closed.  

 

3. A CHARACTERIZATION OF 

RESIDUAL MEASURES 

 

Lemma 3.1. For any open set G of a topological 

space X, Int(Cl(G)\ G) = ∅. 

Proof. Let G be an open set. To show that 

Int(Cl(G)\ G) = ∅, suppose otherwise that there 

exists a nonempty open set H such that H ⊆ 

Cl(G)\ G. Then G ⊆ Cl(G)\ H and Cl(G)\ H is 

closed. Therefore Cl(G) ⊆ Cl(G)\ H which is 

contradiction.  

Theorem 3.2. Let (X, τ) be a topological space 

and let µ be a regular Borel measure on X. The 

following are equivalent: 

(1) Every open subset U of X is Jordan 

measurable. 

(2) Every closed subset F of X is Jordan 

measurable. 

(3) Every (Borel) measurable subset E of X is 

Jordan measurable. 

(4) Every real-valued measurable function f is 

continuous over an open set of full measure. 

(5) Every real-valued measurable function f is 

continuous almost everywhere. 

(6) Every nowhere dense (Borel) subset N of X is 

null. That is µ is residual. 

(7) The closure of every nowhere dense (Borel) 

subset N of X is null. 

(8) Every meager (Borel) subset M of X is null. 

Proof. (1) ⇔ (2) Let F be a closed set. Then 

µ(∂(F)) = µ(∂(X \ F)) = 0. Set U = X \ F. Thus U 

is open and Jordan measurable. 

(2) ⇒ (3) Let E be a measurable set. Since µ is 

regular, for every e > 0, there is a closed set F 

with F ⊆ E such that µ(E \ F) < . By (2), µ(F) 

= µ(Int(F)), so µ(E \ Int(F)) = µ(E \ F) < . 

Hence µ(E \ Int(E)) < . Since  was selected 

arbitrarily, let . Therefore, 

µ(E) = µ(Int(E)) . . . . . . (∗) 
By the same way above using the 

complement of 

(2), we can get 

µ(E) = µ(Cl(E)) . . . . . . (∗∗) 
It follows from (∗) & (∗∗) that µ(Cl(E)) = 

µ(Int(E)). This implies that µ(∂(E)) = 0. Hence E 

is Jordan measurable.  

 

(3) ⇒ (4) Let  be a measurable 

function. For p, q ∈Q, where Q is the set of 

rational numbers, set Ep,q = ∂(f
−1

(p, q)), F = 

p,q∈Q Ep,q and D = Cl(F). Since f
−1

(p, q) is 

measurable, by (3) Ep,q is of measure zero 

(because Ep,q is Jordan measurable). Again, by 

(3) µ(D) = 0 for the countable set Q. Let x ∈ X \ 

D and p, q ∈ Q such that p < f(x) < q. 

Eventually, x ∈ Int(f
−1

(p, q))). If not, we would 

have x ∈ ∂(f
−1

(p, q)) = Ep,q ⊆ D, which is 

impossible. As      X \ D is open and µ(X \ D) = 1, 

we have shown that for every f is continuous at 

every x ∈ X \ D. This completes the proof.  

 

(4) ⇒ (5) Suppose that (4) is true. Let G be such 

open set with µ(G) = 1. Set D = X \ G. Then µ(D) 

= 0. By (4) f is continuous at every x which is 

not in D. This is exactly the definition of 

continuity almost everywhere. We are done.  
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(5) ⇒ (6) Let N be a Borel measurable subset of 

X. The indicator function  of N is measurable. 

By (5)   is continuous almost everywhere. Let 

 and 

 where U is a 

neighborhood. Since {0} and {1} are open 

(because the topology on range of χN is discrete), 

so A0 and A1 are open. Let C be the set of points 

of continuity of χN. We have that C ⊆ A0 ∪ A1. 

Clearly, A1 ⊆ N and A0 ⊆ X \ N. If N is also a 

nowhere dense set, then A1 = ∅ and so C ⊆ A0 ⊆ 

X \ N. Since µ(C) = 1, therefore µ(X \ N) = 1. But 

N ⊆ X \ C and µ(X \ C) = 0. Thus µ(N) = 0. This 

shows that µ is residual.  

(6) ⇔ (7) This follows from that fact that a set is 

nowhere dense if and only if its closure is 

nowhere dense.  

(7) ⇔ (8) This equivalence can be found by the 

definition of meager sets and σ-additivity of µ. 

 

(8) ⇒ (1) Let U be an open subset of X. By 

Lemma 3.1, Cl(U)\ U is nowhere dense 

(meager). By (8), µ(Cl(U)\ U) = 0. Hence 

µ(∂(U)) = 0, i.e., U is Jordan measurable.  

 

We shall remark that a part of the above 

characterization was proved by Zindulka in [11, 

Proposition 2.6] for a measure called Jordan that 

is stronger than the residual measure. We follow 

his proof and provide additional improvements. 

It is worth saying that the Jordan measure 

employed his characterization is not the classical 

one otherwise it would be false. There is a 

measurable set that does not satisfy (2), see [1, 

Page 68]. 
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