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ABSSTRACT 

In this study, we surveyed many strategies for picking relevant variables in high-dimensional MLR 

analyses. Parameters in linear regression are often estimated using traditional approaches like the 

Ordinary Least Squares (OLS) methodology. However, OLS estimates do not fare well when the dataset 

contains outliers or when the assumption of normality is broken, as in the case of heavy-tailed errors. 

Huber Lasso (Rosset and Zhu, 2007) and quantile regression (Koenker and Bassett, 1978) are two 

examples of resilient regularized regression techniques presented as solutions to this issue. This study 

examines the differences between the Whitening Lasso (WLasso) estimates, adaptable Huber Lasso 

(HLasso) estimates, adaptive LAD Lasso (ALasso) estimates, genLasso (generative least squares) 

estimates, gamma (gam) estimates, and Split Regularized Regression (SRR) estimates. 
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1. INTRODUCTION 

 
any fields of study, including biology, 

collaborative filtering, and signal 

processing, variable choice is crucial. When 

doing a microarray experiment, for instance, one 

may test hundreds of variables all at once (genes, 

proteins). The data sets generated by these trials 

are often vast in terms of the number of 

predictors (𝑝), but typically limited in terms of 

the number of biological samples themselves 

(𝑛 ). Commonly referred to as the “big p and 

small n problem” ( 𝑝 ≫ 𝑛 ), this issue is a 

significant barrier to conventional statistical 

approaches in regression analysis. Over the 

course of many decades, several statistical 

approaches have been created in response to the 

growing database volumes caused by the 

proliferation of computers and other data 

gathering technology. Parameter estimates, 

model choice, and variable identification present 

especially difficult problems. A variety of strong 

regression techniques are presented with the goal 

of fitting different regression models, 

particularly in the scenario where ≥ 𝑛  . 

According to Lasso (Least Absolute Shrinkage 

and Selection Operator), proposed by Tibshirani 

(1996), this makes the sum of squares conform 

to a L 1-norm requirement. When using the 

Lasso penalty, certain coefficients are estimated 

as zero, which serves as a proxy for both 

estimation and variable selection. Different 

extensions of the Lasso, such as the adaptive 

Lasso (Zou, 2006), Smoothly Clipped Absolute 

Deviation (SCAD) (Fan and Li, 2001), etc., were 

created after Tibshirani's (1996) foundational 

article. Koenker and Bassett (1978) introduced 

quantile regression, which may be used to 

estimate several quantiles of the conditional 

distribution, including the median. This allows 

us to see and contrast how different quantiles of 

the response variable are affected by different 

predictor factors. 

In order to carry out variable selection in 

high-dimensional data containing outliers, 

several of the approaches use a combination of 

regularized and robust regression techniques. 

The Huber Lasso technique, proposed by Rosset 

and Zhu (2007), combines the Lasso penalty 

with Huber's criteria loss, to provide just one 

example. Combining Least Absolute Deviance 

(LAD) with the concept of adaptive Lasso, 

Wang et al. (2007) introduced the LAD-adaptive 

Lasso approach. Huber's loss function was 

combined with an adaptable Lasso penalty, and 

Lambert-Lacroix and Zwald (2011) produced 

M 
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Huber's Criterion with an adjustable Lasso. The 

gamma divergence for regression was first 

proposed by Fujisawa and Eguchi (2008). It 

quantifies the dissimilarity between two 

conditional probability density functions. With 

the R package genLasso, Arnold and Tibshirani's 

(2016) dual algorithm may be used. The gamma 

Lasso (GL) technique, proposed by Taddy 

(2016), is a multi-convex relaxation of optimal 

variable selection that is computationally more 

appealing. To improve the speed and scalability 

of computing the solution routes of penalized 

quantile regression, Yi and Huang (2016) 

devised a method called Semismooth Newton 

Coordinate Descent (SNCD). Maximum Tangent 

Likelihood Estimation was proposed by Qin et 

al. (2017). (MTE). The Split Regularized 

Regression (SRR) technique, developed by 

Christidis et al. (2020), is a multi-convex 

relaxation of optimal split selection that is 

computationally more appealing. After applying 

a whitening modification to the data, the 

extended Lasso criteria developed by Tibshirani 

and Taylor may be used to get rid of the 

correlations, as proposed by Zhu et al. (2021). 

(2011). This study will summarize many 

regularized and resilient approaches to variable 

selection in linear regression in the next part. 

 

2.MATERIAL AND METHOD 

 
We start from the multiple linear regression 

standard model to define the methods of 

regression regularization. Let the data 

(𝑥1, 𝑦1), .   .    . , (𝑥𝑛, 𝑦𝑛),  and the design matrix 

denoted by 𝑿 = (𝑥1
𝑇 , .  .  , 𝑥𝑛

𝑇 )𝑇  , the general 

linear model is usually represented as 

 𝑦 = 𝑿𝛽 + 𝜖                                     (1) 

 Here 𝛽 = (𝛽1, .   .    .  , 𝛽𝑝)
𝑇  are the regression 

coefficients  𝜖 = (𝜖1, .  .  . , 𝜖𝑛 )
𝑇~ 𝑁(0, 𝜎2𝐼𝑛) are 

the random errors,  𝑥𝑖  are the regressors for 

observation 𝑖 , 𝑖 = 1,.  .   . , 𝑛  and 𝑦 =
(𝑦1  , .   .   .  , 𝑦𝑛)

𝑇 .  The ordinary least squares 

(OLS) method estimates 𝛽  by minimizing the 

residual squared error, i.e.  𝛽̂𝑂𝐿𝑆 = 𝑚𝑖𝑛
𝛽
{(𝑦 −

𝑿𝛽)𝑇(𝑦 − 𝑿𝛽)}. 
OLS estimates often have modest biases, but 

big variances and improved prediction accuracy 

are sometimes gained by lowering the variance 

with a little higher bias. 

2.1 Lasso Regression 

Tibshirani (1996) proposed the Lasso 

penalty, a regularization technique for 

simultaneous estimation and variable selection 

for large data sets. The Lasso estimate 𝜷̂ is well-

defined by: 

 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽
{∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )

2𝑛
𝑖=1 }  ,   s. t.    ∑ |𝛽𝑗|

𝑝
𝑗=1 ≤ t,   t ≥ 0.            (2) 

An equivalent form of the Lasso is, 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽
{∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )

2𝑛
𝑖=1 + λ∑ |𝛽𝑗|𝑗 } ,          (3) 

or 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽
‖𝑦 − 𝑥𝛽‖2

2 + λ‖𝛽‖1 .                                   (4) 

 

The relative importance of the penalty term to 

the total absolute value of the coefficients is 

determined by a parameter called lambda. 

As the absolute value of the coefficients 

makes up the punishment term, lambda is the 

parameter that determines the relative 

importance of lowering the RSS and the penalty 

term. 

As long as the absolute value of the 

coefficients is smaller than a constant, the Lasso 

algorithm will minimize the sum of squares of 

the residuals. For models with many variables 

but few data points, Lasso is a regression 

shrinkage approach often used. Lasso's primary 

function is to carry out variable selection when a 

regression line is being fitted to the data. We do 

this by reducing the values of certain coefficients 

and also by setting others to zero. In order to 

achieve a 𝐿1  regularization, Lasso imposes a 

penalty on the target aim. Which coefficients are 

reduced and by how much is determined by this 

penalty, which is the total of the absolute values 

of the coefficients. 

2.2 Adaptive Lasso 

        The adaptive Lasso, as proposed by Zou 

(2006), is an improved version of the original 

Lasso. With the adaptive Lasso, the penalized 

least squares are precisely defined as 

𝛽̂adaptive Lasso = 𝑚𝑖𝑛
𝛽
{∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )

2𝑛
𝑖=1 +

λ∑ 𝑤̂|𝛽𝑗|
𝑝
𝑗=1 }                        (5) 

Adaptive weights are introduced to penalize 

distinct coefficients in a variety of ways, rather 
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than relying just on the absolute value of the 

parameters. The use of approximated weights, as 

recommended by Zou (2006), 𝑤̂𝑗 =
1

|𝛽̂𝑗|
𝛾 , where  

𝛽̂𝑗 comes from reducing the OLS or Lasso and 𝛾 

is a user-chosen constant. The choice of 𝑤̂𝑗  is 

very significant and Zou (2006) proposed using 

OLS while 𝛾  can be chosen by K -fold cross-

validation. The adaptive Lasso chooses the 

accurate set of nonzero coefficients with 

possibility tending to one.  

2.3 Huber Lasso 

Lasso's effectiveness decreases when outliers 

are present in the regression answer. Rosset and 

Zhu (2007) discuss the Huber loss function as an 

alternative to the least-squares loss function of 

traditional Lasso. 

𝛽̂𝐻𝑢𝑏𝑒𝑟 𝑙𝑎𝑠𝑠𝑜 = min
𝛽
∑ 𝜌(𝑦𝑖 − 𝑥𝑖

𝑇𝛽)𝑛
𝑖=1 +

𝜆∑ |𝛽𝑗|
𝑝
𝑗=1  ,                          (6) 

where  𝜌(𝑡) = {
𝑡2                          𝑖𝑓     |𝑡| ≤ 𝑀

2𝑀|𝑡| − 𝑀2       𝑖𝑓     |𝑡| > 𝑀
. 

The robustness of the predictions produced 

by the model is controlled by the tuning constant 

𝑀, with smaller 𝑀 values yielding more accurate 

predictions. 

2.4 Adaptive Huber Lasso 

Although the LAD loss function is quite 

stable, Lambert-Lacroix and Zwald (2011) noted 

that it is not as effective when used with data 

that follows a normal distribution. What they 

suggested was employing As the loss function, 

Huber's Criterion with a concurrent scale 

𝛽̂𝐻𝑎𝑑𝑙 = min
𝛽
 ℒ 𝜌(𝛽, 𝑠) + 𝜆∑ 𝑤̂𝑗

𝐻𝑎𝑑𝑙𝑝
𝑗=1 |𝛽𝑗|  

where 𝑤̂𝑗
𝑙𝑎𝑑𝑙 = (𝑤̂1

𝐻𝑙𝑎𝑑𝑙 , .  .  . , 𝑤̂𝑝
𝐻𝑙𝑎𝑑𝑙)  are a 

known weights vector and Huber’s criterion is 

defined by

 

 

ℒ 𝜌(𝛽, 𝑠) =

{
 
 

 
 𝑛𝑠 + ∑  𝜌 (

𝑦𝑖−∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1

𝑠
) 𝑠            𝑖𝑓   𝑠 > 0,𝑛

𝑖=1

2𝑀∑ |𝑦𝑖 −∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 |𝑛

𝑖=1               𝑖𝑓    𝑠 = 0,

+∞                                                      𝑖𝑓    𝑠 < 0,

  

 

 

In this context, 𝜌(𝑡) is definite as (6), 𝑠 >  0 

is a scale limit for the distribution. The 𝜌(𝑡) is a 

function controlled by M that uses a combination 

of absolute errors for relatively big mistakes and 

squared errors for lesser errors. The rank loss 

functions are resistant to responses from 

influential locations in the same way that the 

check loss function and its variations are. The 

value of M, a constant, is often determined by 

the amount of noise and outliers present in the 

data 𝑀 =  1.345.  

2.5 LAD -Lasso 

By combining the popular Lasso approach for 

shrinkage estimation and variable selection with 

the Least Absolute Deviation (LAD) regression 

technique, Wang et al. (2007) created a new 

method known as LAD-Lasso that is especially 

useful for robust regression. Wording options for 

the LAD-Lasso include (Wang et al., 2007). 

 𝛽̂𝐿𝑎𝑑 𝑙𝑎𝑠𝑠𝑜 = min
𝛽
∑ |𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1 |𝑛

𝑖=1 +

𝜆∑ |𝛽𝑗|
𝑝
𝑗=1                   (7) 

Realizing that the LAD- criteria combines the 

Lasso penalty with the LAD criterion, it follows 

that the resulting estimator is likely to be both 

sparse and robust against outliers. 

2.6 Adaptive LAD-LASSO 

For datasets that are prone to heavy-tailed 

errors or outliers, the LAD estimator is preferred 

over the OLS due to its greater stability. The 

shrinkage estimation method Lasso is commonly 

used. Adaptive LAD-Lasso proposes a robust 

detection approach for estimating change points 

in the mean-shift model by connecting the two 

classical notions. The fundamental concept is to 

reformat the change point estimation issue as a 

penalized variable selection problem. The 

notation for the Adaptive LAD-Lasso looks like 

this: (Lambert-Lacroix and Zwald, 2011). 

𝛽̂𝑙𝑎𝑑𝑙 = min
𝛽
∑ |𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1 |𝑛

𝑖=1 +

𝜆∑ 𝑤̂𝑗
𝑙𝑎𝑑𝑙𝑝

𝑗=1 |𝛽𝑗|                                   (8) 

where 𝑤̂𝑗
𝑙𝑎𝑑𝑙 = (𝑤̂1

𝑙𝑎𝑑𝑙 , .  .  . , 𝑤̂𝑝
𝑙𝑎𝑑𝑙)  is a 

recognized weights vector. In this current model, 

the estimator is robust to outliers since the 

squared loss is replaced by the 𝑙1-loss. 

2.7 Genlasoo Method: 

Arnold and Tibshirani (2016) modified the 

original goal function by including a tiny ridge 

penalty for the increasingly common high-

dimensional scenario where 𝑛 <  𝑝. 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
‖𝑦 − 𝑋𝛽‖2

2 + 𝜌                            (9) 

Subject to          𝐴𝛽 = 𝑏 and 𝐶𝛽 ≤ 𝑑       

Where 𝑦𝜖𝑅𝑛  is the response vector, 𝑋𝜖𝑅𝑛×𝑝  

is the design matrix of 

predictors/covariates,  𝛽𝜖𝑅𝑝  is the vector of 

unknown regression coefficients, and 𝜌 ≥ 0 is a 

tuning parameter that determines the level of 

regularization. The constraint matrices, 𝐴, and 𝐶 

are assumed to have full row rank. When this 

occurs, the issue is 

 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
‖𝑦 − 𝑋𝛽‖2

2 + 𝜌‖𝛽‖1 +
𝜀

2
‖𝛽‖2

2                             (10) 

 

 

Subject to          𝐴𝛽 = 𝑏 and 𝐶𝛽 ≤ 𝑑   

where  𝜀  is some small constant. Note that 

objective (10) can be re-arranged into standard 

constrained Lasso form (9) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
‖𝑦∗ − (𝑋∗)𝛽‖2

2 + 𝜌‖𝛽‖1                                             

(11)    

 Subject to          𝐴𝛽 = 𝑏 and 𝐶𝛽 ≤ 𝑑 

using the augmented data 𝑦∗ = ( 𝑦
0𝑝
) and  𝑋∗ =

( 𝑋

√𝜀𝐼𝑝
)  

The column rank of the improved design 

matrix is complete. The dual algorithm was 

implemented by Arnold and Tibshirani in 2016 

and may be found in the genLasso R package. 

To conduct our analysis, we make use of the 

genLasso utility found within the package. 

2.8 The Gamma Lasso  

Recent work by Taddy (2016) developed the 

gamma Lasso (GL) approach, which can be 

thought of as a multi-convex relaxation of 

optimal variable selection that is more appealing 

from a computational standpoint. In order to 

accommodate nonconvex cost functions in the 

𝐿0  and 𝐿1   norms, the gamma Lasso algorithm 

generates regularization pathways that map to 

these values. Similar to the glmnet package 

(which performs the same function for 

penalization between 𝐿1  and  𝐿2  norms), this 

package's usage is as close as possible to that of 

the 𝑔𝑙𝑚𝑛𝑒𝑡 . The dual algorithm was 

implemented by Taddy (2016), and their code 

can be found in the 𝑔𝑎𝑚𝑙 r R package. To 

perform the evaluation, we make use of the 

𝑔𝑎𝑚𝑙r built-in to the package. 

2.9 Split Regularized Regression (SRR) 

The Split Regularized Regression (SRR) 

method, recently published by Christidis et al. 

(2020), can be viewed as a computationally 

more appealing, multi-convex relaxation of 

optimum split selection. The suggested method 

for high-dimensional regression creates an 

ensemble of models by partitioning the set of 

covariates into distinct, though sometimes 

overlapping, classes. Model stacking is utilized 

to make reliable predictions, and a penalty term 

is incorporated to promote variation between 

groups. 

A variable is considered to be part of a 

particular cluster if its coefficient in the related 

coefficient vector is nonzero, even if SRR does 

not perform an explicit search for variable 

clusters. This method can detect overlapping 

clusters, and it does not need that the coefficients 

of variables inside the same cluster converge on 

the same value. SRR's end goal is 

𝐽(𝑏1,  .   .    . , 𝑏𝐾) = ∑ {
1

2𝑛
‖𝑦 − 𝑋𝑏𝑘‖2

2𝐾
𝑘=1 +

𝛿[𝛼∑ |𝑏𝑗𝑘|
𝑝
𝑗=1 + (1 − 𝛼)∑ 𝑏𝑗𝑘

2𝑝
𝑗=1 ] +

𝜆∑ ∑ |𝑏𝑗𝑘||𝑏𝑗𝑔 |
𝑝
𝑗=1𝑔≠𝑘 }  

The matrix 𝐵 = [𝑏1,  .   .    . , 𝑏𝐾] is essentially 

a cluster membership matrix, where variable 𝑗 
belongs to cluster 𝑘  if 𝑏𝑗𝑘 ≠ 0 . Variables can 

belong to multiple clusters, but hard clusters 

𝐶1,  .   .    . , 𝐶𝐾 can also be defined such that 

𝐶𝑘: {𝑗|𝑘 = 𝑎𝑟𝑚𝑎𝑥𝑙|𝑏𝑗𝑙|} . Maximal diversity is 

achieved when the rows of 𝐵 contain only one 

nonzero element and thus each variable belongs 

to a single cluster (i.e. |𝑏𝑗𝑘||𝑏𝑗𝑔 | = 0 ∀ 𝑗, 𝑘, 𝑔). 

The final vector of regression coefficients used 

for prediction is an average across all vectors 𝑏𝑘:  

 𝑏̅ =
1

𝐾
∑ 𝑏𝑘
𝐾
𝑘=1  . 

 2.10 Whitening Lasso(WLasso) Method 

By first performing a whitening treatment to 

the data, Whitening Lasso (WLasso), suggested 

by Zhu et al. (2021) removes correlations before 

running the analysis through the generalized 

Lasso criterion developed by Tibshirani and 

Taylor (2011). By include the covariance matrix 

in the penalty function, the WLasso mitigates the 

impact of high correlation on variable selection. 

Since the WLasso needs a decomposition of 

covariance matrices, it can be computationally 

time-consuming. Additionally, the predicted 

covariance matrix ∑ is provided with two blocks 

based on the assumption of a robust connection 
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between the active and inactive variables (one 

block including mainly active variables and the 

other one including mainly inactive variables). 

However, the block structure's partitioning may 

lead to erratic variable selection and other 

problems. 
 

3. SIMULATION STUDY 
 

The author examines the performance of 

several standardized regression techniques in 

low-dimensional with sparse and non-sparse 

coefficients (𝑝 = 15 ,  𝑛 =  100) and high-

dimensional with sparse coefficients (𝑝 =  100 

,   𝑛 =  50)  environments. Researchers often 

employ a traditional simulation environment 

when working with sparse data. For a non-sparse 

environment, we use _j=0.2 for every j, as in 

Bradic and Fan (2011), where 𝑦 =  𝛽0 +  𝑥𝛽 +
 𝑢 , with 𝛽0 =  0  and  𝛽 =
 (3, 1.5, 0, 0, 2, 0, . . . , 0) . In this study, 𝑥  is 

selected at random from a multivariate normal 

distribution   𝑁(0, Σ𝑥). By assigning  𝑥𝑖 and 𝑥𝑗 is 

set to be  (Σ𝑥)𝑖𝑗 = 𝑟
|𝑖−𝑗|  as the pairwise 

covariance, we may study their relationship in 

greater detail. We choose non-normal 

distributions for the error u to test the robustness 

of the techniques. We focus on the following 

special cases: : 𝑢  ∼  𝑁(0, 1) , Double 

Exponential  (𝐷𝐸), Gamma distribution 𝐺(3,1), 
t-distribution (𝑡3 )  with 3 degrees of freedom, 

and Chi-squared distribution  (𝜒(3)
2 ) . The 

adaptive LAD Lasso, Huber adaptive Lasso (Xu 

and Ying, 2010; Lambert-Lacroix and Zwald, 

2011), genlasoo method (Arnold and Tibshirani, 

2016), gamma Lasso (Taddy, 2016), Split 

Regularized Regression (SRR) (Christidis et al., 

2020), and Whitening Lasso (WLasso) method 

are all defined in the previous (Zhu et .al, 2021). 

To implement the 𝑔𝑒𝑛𝑙𝑎𝑠𝑜𝑜 approach, we pull 

in the genlasoo R package, the gamma Lasso 

from the 𝑔𝑎𝑚𝑙  R package, and the adaptive 

LAD Lasso and adaptive Huber Lasso from the 

𝑝𝑎𝑟𝑐𝑜𝑟  R package, modifying a few of its 

functions. 𝑆𝑝𝑙𝑖𝑡𝑅𝑒𝑔 is a R package used for the 

SRR method, and WLasso is a R package used 

for the WLasso method. 

3.1 Example A.Low –dimesional with sparse 

coefficients 

The researcher takes into account 𝑝 =
 15 and 𝑛 =  100  data. The results of the 

simulation are presented in Table 1A, Table 1B, 

and Figure 1. We analyse scenarios where the 

predictors have a low 𝑟 =  0.5 and a high 𝑟 =
 0.95 degree of correlation. The model error is 

computed as (𝛽̂ − 𝛽)
𝑇
𝑆𝑥(𝛽̂ − 𝛽), where 𝛽̂ is the 

expected parameter and 𝑆𝑥  is the sample 

covariance, and the median model error after 

500 iterations is reported in the top panels (same 

results for the mean error). The true positives, or 

the number of non-zero coefficients that were 

accurately identified, are reported in the bottom 

panels. In this situation, three indicates that the 

detection of all non-zero coefficients was 

successful. 

We find that the adaptive Huber Lasso 

technique underperforms when the predictors are 

complex, while the adaptive LAD and gamma 

Lasso (𝑔𝑎𝑚𝑙𝑟) methods perform better for the 

vast majority of error distributions.
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Table (1A): Average Median Model Error over 500 replications for the case: p = 15, n = 100, r =
0.5, and β values as in example 1, Best method indicated in bold. 

 

 

 

 
 

 

 

 

Table (1B): Average Median Model Error over 500 replications for the case: p = 15, n = 100, r =
0.95, and β values as in example 1, Best method indicated in bold. 

 

 

 

 
 

 𝐖𝐋𝐚𝐬𝐬𝐨 𝐆𝐞𝐧𝐥𝐚𝐬𝐬𝐨 𝐆𝐚𝐦𝐥𝐫 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐋𝐀𝐃 𝐒𝐩𝐥𝐢𝐭𝐑𝐞𝐠 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐇𝐮𝐛𝐞𝐫 

𝑁(0,1) 0.345 0.088 0.042 0.041 0.069 2.594 

𝐷𝐸 0.191 0.124 0.087 0.034 0.133 2.166 

𝑡3 0.268 0.155 0.120 0.049 0.185 2.531 

𝐺(3,1) 0.976 0.596 0.137 0.107 0.214 1.359 

𝐶ℎ𝑖(3) 1.246 0.858 0.292 0.174 0.453 1.744 

 𝐖𝐋𝐚𝐬𝐬𝐨 𝐆𝐞𝐧𝐥𝐚𝐬𝐬𝐨 𝐆𝐚𝐦𝐥𝐫 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐋𝐀𝐃 𝐒𝐩𝐥𝐢𝐭𝐑𝐞𝐠 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐇𝐮𝐛𝐞𝐫 

𝑁(0,1) 0.068 0.077 0.050 0.056 0.061 5.061 

𝐷𝐸 0.138 0.104 0.147 0.047 0.123 4.611 

𝑡3 0.197 0.142 0.183 0.080 0.149 2.959 

𝐺(3,1) 1.414 0.564 0.217 0.187 0.186 3.433 

𝐶ℎ𝑖(3) 0.400 0.368 0.381 0.317 0.331 3.107 
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Fig. (1): Comparison of variable selection methods under different error distributions, for low  

(left) and high (right) correlated predictors. The top panels plot the median model error over 500 replications for 

instance 1 and the bottom panels the average true positives when  p =  15  and  n =  100. 

 

Example B.  high-dimensional with sparse 

coefficients 

A scenario like simulation 3.1 is considered, 

but with different parameters and a smaller 

sample size. A high-dimensional example with 

sparse coefficients 𝑝 =  100    and 𝑛 =  50  is 

given special attention by the researcher. With 

the current simulation setup, this is a somewhat 

sparse problem. one when very many 

coefficients are zero. The outcomes of the 

simulations are displayed in Tables 2A and 2B, 

as well as in Figure 2. The model error was 

estimated with over 500 repetitions as an 

Example 1, with the results displayed in the 

upper panels. The true plus, which is the count 

of non-zero coefficients that were correctly 

labelled, is displayed in the bottom panels.

 

 

 
Table (2A): Average Median Model Error over 500 replications for the case: p = 100, n = 50, r =

0.5, and β values as in example 2, Best method indicated in bold. 
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 𝐖𝐋𝐚𝐬𝐬𝐨 𝐆𝐞𝐧𝐥𝐚𝐬𝐬𝐨 𝐆𝐚𝐦𝐥𝐫 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐋𝐀𝐃 𝐒𝐩𝐥𝐢𝐭𝐑𝐞𝐠 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐇𝐮𝐛𝐞𝐫 

𝑁(0,1) 0.479 0.379 0.123 0.097 0.295 1.261 

𝐷𝐸 0.681 0.401 0.247 0.081 0.502 1.054 

𝑡3 0.866 0.536 0.295 0.103 0.630 1.249 

𝐺(3,1) 2.619 2.129 0.510 0.218 0.687 1.451 

𝐶ℎ𝑖(3) 3.137 3.022 1.116 0.706 1.577 3.900 
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Table (2B): Average Median Model Error over 500 replications for the case: p = 100, n = 50, r =
0.95, and β values as in example 2, Best method indicated in bold. 
 𝐖𝐋𝐚𝐬𝐬𝐨 𝐆𝐞𝐧𝐥𝐚𝐬𝐬𝐨 𝐆𝐚𝐦𝐥𝐫 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐋𝐀𝐃 𝐒𝐩𝐥𝐢𝐭𝐑𝐞𝐠 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐇𝐮𝐛𝐞𝐫 

𝑁(0,1) 0.347 0.164 0.252 0.124 0.177 3.475 

𝐷𝐸 0.725 0.313 0.498 0.146 0.362 2.621 

𝑡3 0.661 0.376 0.829 0.346 0.438 2.431 

𝐺(3,1) 2.056 2.148 1.081 0.461 0.509 2.293 

𝐶ℎ𝑖(3) 2.255 1.815 1.678 0.602 0.909 1.907 
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Fig. (2): Comparison of variable selection methods under different error distributions, for low (left) and high 

(right) correlated predictors. The top panels plot the median model error over 500 replications for example 2 and 

the bottom panels the average true positives when p =  100  and  n =  50. 
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The results back up the efficacy of the 

approaches: adaptive Huber Lasso and WLasso 

don't work well when dealing with highly 

correlated predictors, while adaptive LAD and 

the Split Regularized Regression (SRR) methods 

perform best of all when dealing with increasing 

deviations from normality. This is especially 

clear in the case of highly correlated predictors 

and the 𝐺(3,1 ) and 𝜒(3)
2  simulation, both of 

which display a significant departure from 

normalcy. 

3.3 Example C. low- dimensional with non-

sparse coefficients 

To consider the variable selection methods 

performance in example 1, the researcher 

conducts a new simulation where 𝛽𝑗 = 0.2  for 

all 𝑗, which is a non-sparse situation. Table 3A, 

Table 3B, and Figure 3, all report the median 

model error over 500 replications for the case 

𝑝 =  15   and 𝑛 =  100
 

 

 

Table (3A): Average Median Model Error over 500 replications for the case: p = 15, n = 100, r =
0.5, and β values as in example 3, Best method indicated in bold. 

 

 

 

 
 

 

 

 

 

 

Table (3B): Average Median Model Error over 500 replications for the case: p = 15, n = 100, r =
0.95, and β values as in example 3, Best method indicated in bold. 

 

 

 

 

 𝐖𝐋𝐚𝐬𝐬𝐨 𝐆𝐞𝐧𝐥𝐚𝐬𝐬𝐨 𝐆𝐚𝐦𝐥𝐫 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐋𝐀𝐃 𝐒𝐩𝐥𝐢𝐭𝐑𝐞𝐠 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐇𝐮𝐛𝐞𝐫 

𝑁(0,1) 0.078 0.085 0.090 0.262 0.054 3.526 

𝐷𝐸 0.222 0.120 0.150 0.311 0.090 2.473 

𝑡3 0.426 0.159 0.193 0.300 0.120 2.300 

𝐺(3,1) 0.869 0.352 0.231 0.302 0.137 2.024 

𝐶ℎ𝑖(3) 0.425 0.344 0.362 0.373 0.234 2.219 

 𝐖𝐋𝐚𝐬𝐬𝐨 𝐆𝐞𝐧𝐥𝐚𝐬𝐬𝐨 𝐆𝐚𝐦𝐥𝐫 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐋𝐀𝐃 𝐒𝐩𝐥𝐢𝐭𝐑𝐞𝐠 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐇𝐮𝐛𝐞𝐫 

𝑁(0,1) 0.969 0.247 0.142 0.807 0.099 1.257 

𝐷𝐸 0.794 0.311 0.251 0.863 0.180 1.260 

𝑡3 0.644 0.345 0.333 0.775 0.240 1.053 

𝐺(3,1) 1.029 0.915 0.363 0.872 0.259 1.281 

𝐶ℎ𝑖(3) 0.885 1.189 0.647 0.972 0.457 1.359 
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Fig. (3): Comparison of variable selection methods under different error distributions, for low (left) and high 

(right) correlated predictors. The plot shows the median model error over 500 replications for example 3 when 

p =  15  and  n =  100. 
 

Our simulation analysis shows that the Split 

Regularized Regression (SRR) technique 

performs best when deviation from normality 

increases (see Table 3A, Table 3B, and Figure 

3). When the predictors are highly associated, 

this fact becomes especially clear. 

 

4. CONCLUDING REMARKS 

 

Many established statistical methods rely on 

the normalcy assumption. These methods are not 

well suited for data that exhibits substantial non-

normality. This is a common result of working 

with tainted data, which might cause unexpected 

results. Recent advances in robust regularized 

regression techniques, such as the LAD 

approaches and the Split Regularized 

Regression, are taken into account in this study 

(SRR). When dealing with large numbers of 

dimensions 𝑝 ≥  𝑛. In a simulation analysis, we 

demonstrate that the adaptive Least Absolute 

Deviation (LAD) and Split Regularized 

Regression (SRR) approaches outperform the 

other resilient methods, especially when there is 

a considerable departure from normality. 
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