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ABSTRACT 

 In this work, we present a fast approximate method for solving the k-Clustering Minimum Bi-clique 

Completion Problem (KBCP), a problem belonging to the telecommunication and transportation do- 

mains. In KBCP, we are given a set of demands of services from customers and its goal is to determine a 

subset of k multicast sessions that is able to partition the set of the starting demands. Each of the 

considered service has to belong to a multicast session while each costumer can appear in more sessions. The 

KBCP is tackled by using a fast approximate method which is based on the principle of neighborhood 

search techniques. The method can search several solutions belonging to diversified sub-spaces aiming to find 

the best solution. The performance of the presented method is evaluated on benchmark instances taken from 

the literature, whereby the provided results are compared to those reached by the Cplex solver and recent 

methods described in the literature. The results show that, the proposed method is fast and competitive and 

it is able to reach new bounds. 
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1 INTRODUCTION 

 
ombinatorial optimization problems are of 

great interest both for fundamental research 

and industrial real-world. The research community 

has modeled several practical situations as 

combinatorial optimization problems. Among these 

problems, we can find a problem belonging to the 

telecommunication and transportation domains: 

k−Clustering Minimum Bi-clique Completion 

Problem (abbreviated to KBCP). Such a problem 

has been already discussed in Faure et al. [3], where 

an application dealing with telecommunications has 

been tackled. Indeed, the authors studied a multicast 

session application characterized by a subset of 

clients that needs the same information, where each 

of these clients can require some multicast sessions. 

Then, a telecommunication network cannot manage 

several multicast sessions at the same time. In this 

case, some sessions should be grouped into a limited 

subset of clusters and so, the goal of the problem is 

to limit the number of unnecessary information to 

send to the current clients. Hence, such a problem 

has been modeled in Faure et al. [3] as a biclique 

bipartite graph, where the subset of communications 

must be minimized. 

The KBCP can be graphically represented by a 

bipartite directed graph G (V, E). V is the set that 

contains n vertices such that V = S ∪ T and S ∩ T = ∅, 

where S (resp. T) is the first (resp. second) part of 

nodes of G. The set E contains the interconnected 

edges between S and T. On the one hand, the couple 

(S, T) is a bi-clique graph formed with k bi-partite 

graphs (named as clusters), i.e.,                    
On the other hand, all vertices of each 

couple        , where            , are 

interconnected with each others. However, the 

graph        is defined as a general directed 

graph, searching for a k-clustering. Hence, the aim 

of the problem is to determine a k bi-partite sub-

graph of G with a minimum additional edges that 

do not belong to the set E. Differently stated, the 

KBCP is equivalent to determine the best partition 

of the set S into k clusters realizing a minimum 

additional edges. 

Formally, KBCP can be stated as follows: 

C 
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where Equation (1)) represents the objective 

function in which the goal is to minimize the 

number of added edges (i.e. the total cost of the 

clusters). The first constraint (Equation (2)) 

imposes the link between the variables     and     
by making      is equal to 1 whenever the both 

other variables are fixed to 1. The second constraint 

(Equation (3)) imposes that each vertex i belonging 

to the set S should be assigned to one and only one 

cluster. The third constraint (Equation (4)) imposes 

each vertex j belonging to the set T , which is 

adjacent to another vertex i belonging to the set S 

and assigned to the     cluster, to be affected to the 

same cluster (we recall that some vertices of T can be 

assigned to several clusters). The Forth and last 

constraints (Equations (5 and 6)) impose the 

integrality of the variables. 

The rest of this paper is organized as following. 

Section 2, presents some previous works on KBCP. 

Section 3 introduces a fast method for approximately 

solving the KBCP. Section 4 studies the 

performance of the proposed method, where the 

given results are compared to those results obtained 

by the recent solution methods available in the 

literature. Finally, Section 5 concludes the 

contribution of the work. 
 

2 RELATED WORK 

 

The KBCP has been firstly addressed by Faure et 

al. [3], where they proved the hardness of the 

problem. The authors presented a mathematical 

model for optimizing to optimality instances with 

small sizes. They also presented a column 

generation-based heuristic, to optimize instances of 

large scale of the problem. 

Gualandi [4] proposed a hybrid method which 

combines constraint programming and semidefinite 

programming. Gualandi et al. [5] presented a 

method based upon branch-and-price. The method 

accelerates the search procedure, at the same time, it 

improves the upper bounds quality with the use of 

the Cplex solver. Hifi et al. [6] proposed an adaptive 

neighborhood search method. The method uses an 

intensification and diversification procedures in 

order to diversify the solution process and explore 

unvisited solutions’ spaces. It is based upon a 

greedy random walk procedure where two phases 

are used in order to iteratively improve the solutions 

at hand. Finally, Al-Iedani et al. [1] presented a 

variable neighborhood search heuristic, where the 

method starts with an initial solution with moderate 

quality. Then, an iterative solution procedure is used 

to improve a current solution in its neighborhood. In 

the experimental part of Al-Iedani et al. [1], the 

authors demonstrated experimentally the superiority 

of the neighborhood search when comparing its 

results to those achieved by the method proposed in 

Hifi et al. [6]. In this paper, a fast approximate 

method is proposed for solving the KBCP. It is 

based upon neighborhood search techniques that 

tries to converge to high quality solutions (high 

upper bounds) within short average runtime. Such a 

method explores iteratively a series of sub-solution 

spaces, with the aim of finding the optimal solution 

through the search process. We recall that, an 

instance of the KBCP is described as a bipartite 

directed graph. The objective of the problem is to 

divide the S vertices into k clusters, such that the 

number of adding edges to form the k bi-cliques is 

minimize (i.e., minimize the cost of the problem). 

 

3. A FAST APPROXIMATE METHOD FOR 

SOLVING THE KBCP 

 

Neighborhood search techniques are of high 

interest techniques that have shown to be so efficient 

for optimizing a large variety of combinatorial 

optimization problems (cf., Shaw [9], Dasgupta et al. 

[2]). Although such techniques produce approximate 

solution methods, they allow us to present fast 

algorithms that yield high quality solutions within a 
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short average runtime. In general, neighborhood 

search-based algorithms consists of two 

complementary procedures: a building procedure and 

an exploring procedure. The building procedure 

used some techniques to yield a reduced solution 

spaces, while the aim of the exploring procedure is to 

search the yielded space to find a local optimum 

solution. 

This section presents our proposed method for 

approximately solving the KBCP. The used method 

is based on the principle of exploring a series of sub- 

solution spaces with the aim of exploring a more 

promising search space and reaching better 

solution. In fact, the proposed method is 

composed of three main steps (cf., Hifi et al. [7]): 

1. The first step yields a fast feasible solution. 

2. The second step is used in order to enhance the 

solution at hand, by using what is known as 

intensification strategy. The intensification strategy 

presented used a combination of neighborhood search 

techniques, such as exchanging, 2-opt, and 3-opt 

procedures. 

3. The third and last step diversifies the search process, 

by using what is known as diversification strategy. 

The diversification strategy introduces two strategies: 

degrading and re-optimizing strategies. 

Both intensification and diversification strategies are 

used in order to explore more promising feasible 

solution spaces with the aim of escaping from a 

series of local optimum solution.

 

 

Algorithm 1 A starting feasible solution  

Require: PKBCP  An instance of the problem.  

Ensure: SKBCP  A feasible solution. 

1: Initialization: 
2: Let Si be the set services, where i = {1, 2, 3... m}, m is the number of services. 3: Let Kk be the set 

clusters, where k = {1, 2, 3... n}, n is the number of clusters. 4:  Set St  ← S, Kk = ∅, and counter = 0; 

5: Sort all services of (S’) in decreasing order of their degrees; 

6: while S’   ∅ do 

7: Let             
    

    
        

8:          if (counter = n) then 

9:          counter = 0; 

10:         end if 

11:        counter = counter + 1; 

12:        Set                     ∪      

13:         Remove i from St. 

14: end while 

15: Each cluster k is completed with the additional edges to form the k-bicliques. 16: Compute the cost. 

17: SKBCP ←  Kk 

18” return SKBCP as a feasible solution of PKBCP 

 

 

3.1 An initial solution for KBCP 
The first step involves the use of a greedy 

procedure in order to provide a quick starting feasible 

solution. We recall that, greedy solution procedures 

are a type of 

heuristics that construct a fast solution piece by 

piece focusing on an immediate improvement without 

looking ahead (i.e., without considering the 

consequences). Generally, this type of approach does 

not ensure the optimality of the solution but it is 

very fast for determining a starting feasible 

solution. For this reason, we considered a simple 

greedy procedure, which can be viewed as a variation 

of the well- known Johnson’s algorithm (cf., Johnson 

[8]). The main steps of this procedure in given in 

Algorithm 1. It illustrates the main steps of the 
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proposed greedy method. Where a solution is 

constructed sequentially. However, the algorithm starts 

by sorting the services in decreasing order according to 

their degrees. Lines 6-14 is the main loop, which 

describes the main steps of the method, where the 

clusters Kk are iteratively filling with the services 

belonging to Sl. Such that, the service realizing the 

greatest degree is selected and inserted into a cluster 

Kk , then, the next service into another cluster and 

so on. Such a process is iterated until all services 

in S’ are inserted into Kk. After that, each cluster is 

completed by adding edges to form the k-bicliques of 

the graph G (cf., Line 15). Then, the objective value 

is evaluated (the cost of the feasible solution). 

3.2 Minimizing the cost of the solution 
Minimizing the cost of a given solution is 

equivalent to enhance the solution’s quality achieved 

by the greedy procedure (cf., Algorithm 1). For 

this reason, the second step is introduced which 

explores a series of neighborhoods of a solution at 

hand with the aim of improving its quality. In fact, 

a combination of neighborhood search techniques are 

used which work together as an intensification 

procedure. In other words, a number of local search 

techniques are used to improve the quality of 

solutions at hand, including: k-exchanging and a k-

opt strategies. The main idea of both strategies 

consists of replacing some services (vertices) by 

others. This is allowed if the current solution is 

improved. However, the k-exchanging strategy 

performs swapping between some services of the cur- 

rent clusters, while the k-opt strategy performs many 

moves of services between clusters. However, the 

aforementioned strategies are performed as the 

following sequence: 

1. K-exchanging strategy: swap k-vertex in a 

cluster with other k-vertex in an- other cluster; this 

is allowed when the resulting solution improves the 

best neighborhood solution. 

2. The best solution obtained from the previous step 

is modified by introducing a k-opt procedure as 

following: (a) select a set of k-vertices from a 

cluster then move them to other clusters (if it is 

possible) and then, (b) recombine the clusters and 

provide a KBCP’s feasible solution. 

3.3 Diversifying the search process 
Local search procedures (cf., Section 3.2) can 

improve a solution, when they try to search a series 

of neighborhoods in a sub-solution space, where the 

neighborhoods are close to the current solution. 

Thus, the obtained solutions from such methods are 

not of high quality, because they are local optimum. 

Further- more, it is necessary to diversify the solution 

procedure, i.e., change the search space which 

induce the exploration of new neighborhoods and 

so, some other new and better solutions may arise. 

Thus, a diversification process is introduced for 

searching a series of new solutions and escape from a 

series of local optimum solutions. The diversification 

process diversifies the search process by degrading the 

quality of the solution. This is done by applying a 

random destroying strat- egy that removes randomly 

a percentage of services from the current clusters 

and produces a reduced problem. The reduced 

problem is then optimized using the greedy 

procedure presented in Section 3.1 and the local 

search strategies presented in Section 3.2. 

Now we are going to present an overview of the 

proposed heuristic for approximating the KBCP. 

The main steps of the proposed method are 

illustrated in Algorithm 2.

 

 

Algorithm 2 : A fast heuristic algorithm for the KBCP 

Require:  SKBCP, a starting solution of PKBCP. 

Ensure:      
 , alocal optimum solution of PKBCP. 

 

1: Set      
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2: while (the time limit is not performed) do 

3:Apply a random destroying strategy (remove α% of services) in order to find a reduced problem    

     
  according to      

   

4: Call Algorithm 1 in order to complete and optimize      
  solution and reaching a new solution 

SKBCP. 

5: Apply 1-exchanging, and 2-exchanging strategies in order to Improve SKBCP.  

6: Apply 2-opt, and 3-opt procedures in order to Improve SKBCP. 

7: Update        
   with the best solution. 

8: end while 

9: return      
  

 

 

Note that, Algorithm 2 can be viewed as an 

iterative yield that iteratively pro- duce a series of 

degraded solutions of the KBCP and their 

optimized ones. That is, the diversification 

process. First, the algorithm starts with an initial 

solution obtained from Algorithm 1. The main 

loop (line 2-line 8) presents the degrading and re-

optimizing procedures which are used in order to 

end the search process when the sopping criteria is 

satisfied; herein, a limited runtime is considered (as 

shown in the experimental part). In line 3, a 

random degrading strategy is used where α% of 

services are randomly removed from random 

cluster; in this case a reduced problem      
  is 

obtained. In line 4, the reduced problem is first 

treated by using Algorithm 1. Then, the obtained 

solution is optimized using k-exchanging and k-

opt (cf., line 5 and line 6). Finally, the best 

solution obtained is updated. 

 
4 COMPUTATIONAL RESULTS 

 

This section evaluates the effectiveness of the 

proposed heuristic: Fast Method for solving the 

KBCP (noted FM-KBCP). We first describe some 

benchmark instances extracted from the literature 

(taken from Gualandi et al. [5]). Next, we have 

already mentioned that Al-Iedani et al.’s [1] 

algorithm outperformed Hifi et al.’s [6] algorithm, 

especially when comparing the quality of the 

achieved results by both algorithm. We then 

decided to evaluate the performance of the 

proposed method by comparing its achieved 

results to those reached by Al- Iedani et al.’s [1] 

algorithm (noted VNS). Finally, the results 

obtained by the proposed FM-KBCP are 

compared to the best results of the literature (cf., 

Al- Iedani et al. [1]), and to those reached by the 

Cplex solver version 12.5, where the time limit is 

fixed to 3600 seconds and with the default setting. 

The proposed FM-KBCP was coded using C++ 

and tested on Pentium Core i5, 2.8GHz. 

Table 1 shows the set of instances obtained 

from the literature (cf., Gualandi et al. [5] and 

Al-Iedani et al. [1]) for testing. Column 1 

indicates the in- stance label. Columns 2 and 3 

indicate the cardinalities of the set S (services) and 

the set T (costumers), respectively. Column 4 (k) 

displays the number of clusters required. Finally, 

column 5 (d) indicates the graph density related 

to each instance. One can see that, the instances are 

varied in their number of services S, costumers T, 

clusters k, and density of the graph d.
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Instanc

e 

S    T   k   d 

IA.1 

IA.

2 

IA.

3 

15  15  2  0.3 

15  15  2  0.5 

15  15  2  0.7 

IB.1 

IB.

2 

IB.

3 

15  15  5  0.3 

15  15  5  0.5 

15  15  5  0.7 

IC.1 

IC.

2 

IC.

3 

18  18  2  0.3 

18  18  2  0.5 

18  18  2  0.7 

ID.1 

ID.

2 

ID.

3 

18  18  5  0.3 

18  18  5  0.5 

18  18  5  0.7 

IE.1 

IE.

2 

IE.

3 

20  20  5  0.3 

20  20  5  0.5 

20  20  5  0.7 

IF.1 

IF.

2 

IF.

3 

50  50  5  0.3 

50  50  5  0.5 

50  50  5  0.7 

IG.1 

IG.2 

IG.3 

50  50 10 0.3 

50  50 10 0.5 

50  50 10 0.7 

 

 
Table ( 1): Instances’ characteristics. 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.1 Effect of the parameter α 
In this section, we evaluate the behavior of the 

proposed heuristic when varying the parameters used 

by such a heuristic. Indeed, FM-KBCP involves two 

parameters: the stopping criteria and the percentage 

α%. The first parameter represents the runtime limit, 

where it is fixed to 30 seconds for FM-KBCP. This 

fixation is for computational purposes (in the 

literature, the cpu-time is fixed to 100 second). The 

second parameter α%, which is the percentage of the 

removed vertices belonging to the solution at hand, 

from different clusters. For this parameter, the 

behavior of FM-KBCP is evaluated by varying the 

value of α in the discrete interval: α   {5; 10; 20; 30; 

40}, as shown in Table 2. 

Table 2 illustrates the average bounds (solution 

values) reached by FM- KBCP over all tested 

instances by limiting the runtime to 30 second (on 

average). The first column represents the instance 

label. Columns from 2 to 6 tally the average results 

when varying α from 5% to 40%, according to the 

discrete interval used. From Table 2, one can observe 

that the best average solution value is reached when 

α equals to 30. Indeed, in this case the average upper 

bound is equal to 351.0 which represents the smallest 

average value when compared to the rest of the 

bounds. Because FM-KBCP seems to give better 

results for α = 30, we then tune proposed heuristic 

with such value for the rest of the paper.
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Table (2): The effect of the parameter α on the solutions’ quality. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 Effect of the degrading and re-optimizing 

procedures 

In this section, we evaluate the behavior of the 

proposed FM-KBCP on the in- stances considered in 

the last section. Its obtained bounds are displayed 

and compared to those reached by the best results 

available in the literature (extracted from Al-Iedani 

et al. [1]) and to those achieved by the Cplex solver 

12.5.

 

  

 

 

 

 

 

 

 

 

 

 
#Inst 

Variation of α 
5%    10%    20% 30%  40% 

IA.1 
IA.2 

IA.3 

IB.1 

IB.2 

IB.3 

IC.1 

IC.2 

IC.3 

ID.1 

ID.2 

ID.3 

IE.1 

IE.2 

IE.3 

IF.1 

IF.2 

IF.3 

IG.1 

IG.2 

IG.3 

125   126     115      115      117 

99   95     95       95    95 

64   64     63       61    63 

60   56     52       52        56 

54   54     51       51        54 

47   42       40       40    40 

186   184     184     180       184 

146     126     126  126       126 

91   91        89       89          91 

    135 109      101       98        101 

108   106       90       90          96 

77   68        63       63          68 

131   131      130     130        130 

137     137 123 123       132 

104   98        98        90         96 

 1508   1501   1490   1490     1501 

 1120   1104   1104   1104    1104 

703   680      680      678       680 

 1185   1185   1175   1175    1185 

958    930     930    930       930 

605      605    605   591       591 

Av Sol 364.0    356.8   352.6    351.0   354.3 
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Table (3): Performance of FSA-KBCP vs VNS and Cplex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 3 displays the results achieved by FM-

KBCP and those reached by the algorithm proposed 

in Al-Iedani et al. [1] (noted VNS), and those 

realized by the Cplex solver (noted Cplex). The 

Cplex solver solves the problems to optimality, 

therefore, in order to use the method as a heuristic, 

the runtime limit of the Cplex was extended to 3600 

second. Column 1 illustrates the instance label. 

Column 2 shows the bounds realized by the Cplex 

solver. Column 3 (VNS) displays the best upper 

bounds reached by VNS when the runtime limit 

was fixed to 100 seconds (using an equivalent 

computer). Columns from 4 to 8 display five trials 

representing the bounds achieved by FM-KBCP 

when fixing the runtime limit to 30 seconds. 

Columns 9 shows the average bounds over the five 

trials. Finally, Column 10 reports the best bounds 

reached by the five trials for FM-KBCP. From 

Table 3, one can observe what follows: 

1. The average solution values (bounds) achieved 

by FM-KBCP over the five trials are generally 

better than those reached by both VNS and Cplex 

(see the last line of Table 3). Indeed, on the one 

hand, FM-KBCP is able to realize an average value 

of 350.8 over all the five trials, whereas VNS 

realizes an average bound of 361.5. On the other 

hand, FM-KBCP performs better than the Cplex 

since the last method achieved also a greatest 

bounds (361.3). 

2. According to the runtime limits, FM-KBCP 

requires an average runtime smallest than those 

needed by both VNS and Cplex. Indeed, FM-

KBCP requires only 30 seconds to achieve its 

bounds whereas VNS and Cplex needed 100 and 

3600 seconds, respectively to achieve their bounds. 

3. According to the best solutions achieved, 

FAS-KBCP is able to provide eleven new bounds 

out of the 21 tested instances, which represents a 

 
 

  #Inst 

 

Cplex 

3600s 

 

VNS 

100s 

FM-KBCP’s solutions 

 

     1          2       3        4          5 

 

      Av Sol    Best 

IA.1 156 123 113      117    113    113    117 114.6    113 

IA.2 93 95     93    92       92      93      93 92.6 92 

IA.3 63 63     63    63       61      63      63 62.6 61 

IA.1 52 73     54      52       52      52     52 52.4 52 

IA.2 51 62     52      52       51      52      52 51.8 51 

IA.3 41 47     42    42       40      40      40 40.8 40 

IA.1 180 190  182    182     180    182    180 181.2    180 

IA.2 127 136   128   126     128    126    126 126.8    126 

IA.3 89 89     91   89       89       91     89 89.8 89 

IA.1 94 126     92      92         94      94      94 93.2 92 

IA.2 87 98     87    86        86      86      86 86.2   86 

IA.3 63 67     63    65       63      65      63 63.8   63 

IA.1 120 174 126     129    126    126    126 126.6      126 

IA.2 124 132 132     128    128    132    123 128.6      123 

IA.3 92 90     82    82       82      82       96 84.8 82 

IA.1 1485 1507  1490   1490   1490  1490  1501 1492.2    1490 

IA.2 1100 1090  1104   1104   1104  1104  1104 1104    1104 

IA.3 685 681   678    678     678    678    680 678.4      678 

IA.1 1151 1213   1175  1175   1175  1175  1175 1175    1175 

IA.2 936 928    930    930      930    930    930 930      930 

IA.3 588 607    591    591      591    591    591 591      591 

Average 351.3 361.5   350.9 350.7 350.1 350.7 351.5 350.8    349.7 
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percentage of more than 50% of the best solution 

values (see column 10). 

5 CONCLUSION 

 
In this paper, we proposed a fast heuristic for 

optimizing a problem belonging to the 

telecommunication domain, known as the k-

clustering minimum biclique completion problem. 

The proposed method is based upon the principles 

of neighborhood search techniques. The main idea 

is that, search several solutions belonging to 

diversified sub-spaces aiming to find the global 

optimum.  First, the method starts with a greedy 

procedure for constructing an initial feasible 

solution. Second, a combination between local 

search techniques is used as an improvement 

procedure in order to improve each solution at 

hand. Third and last, a random destroying strategy 

is used as a diversification procedure for jumping 

toward un-searched spaces. Finally, computational 

results showed that the pro- posed method remains 

competitive and it is able to reach new solution 

values within small average runtimes. 
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