SYNTHESIZED, CHARACTERIZATION, AND INVESTIGATED ANTIOXIDANT PROPERTIES OF NOVEL HYDRAZON COMPLEXES OF MANGANES(II), COBALT(II), NICKEL(II), COPPER(II), AND ZINC(II)

VEYAN TAHER SULEMAN^{*} and ABDUL GHANY M. AL-DAHER^{**} *Dept. of Chemistry, College of Science, University of Dohuk, ,Kurdistan Region-Iraq **Al-Noor University College, Mosul-Iraq

(Received: July 4, 2023; Accepted for Publication: August 23, 2023)

ABSTRACT

A series of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes of hydrazones derived from dibenzoyl methane and aroylhydrazines namely benzoyl hydrazine(DBMBH), 2-furoyl hydrazine (DBMFH) and picolinoyl hydrazine(DBMPH), were synthesized and characterized by elemental and thermal analysis, molar conductance, magnetic properties, IR, ¹H-NMR, ¹³C-NMR, and UV-Vis spectra measurements. Spectroscopic analysis showed that the ligands acted as tridentate ONO donors to the central metal ion. Physio-chemical investigations indicate that complexes with Mn(II), Co(II), Ni (II), Cu (II), and Zn (II) have octahedral, tetrahedral, and square-planar geometries. The measurement of the molar conductance of these compounds in DMSO and in methanol revealed that they are non-electrolytic in nature. The ligand and its metal complexes were tested with DPPH to determine whether or not they have anti-oxidant action. Based on the data that was gathered, it was clear that the ligand has stronger antioxidant properties than its metal complexes.

KEYWORD: Transition metals, Antioxidant activity, Hydrazones, Complexes.

1. INTRUDUCTION

The condensation reaction of acid hydrazide with ketones or aldehydes produces hydrazones, which serves as a ligands in the synthesis of transition metal complexes. Because of their structural flexibility and their ability to coordinate with metals in a variety of ways, hydrazones stand out as notable domestic ligands [1]. Hydrazones are a sort of multidentate ligand because they may coordinate with a wide range of metal ions in either protonated or deprotonated species, resulting in a wide range of stable chelates with distinctive geometrical shapes [2].

Biological, clinical, medical, analytical, and pharmacological are just a few of the sectors that have benefited from the discovery and development of novel derivatives of hydrazones [3]. Numerous studies and analyses of biological activities have been conducted on hydrazone compounds with the NH-N=CH structure because of their importance in medication development [4] Depending on the nature of the hetercyclic ring substitutes linked to the hydrazone unit, the N- and O-donor atoms in acyl and aroyl hydrazones may coordinate with metal ions as bidentate, tridentate, tetradentate, or pentadentate ligands. The metal's coordination may be tuned by using the keto or enol versions of these ligands, which display easy keto-enol tautomerization[5].

This study is a follow-up to previous investigations into aroylhydrazones and related complexes [6], and its goals include the synthesis and characterization of novel complexes bearing the ligand term "hydrazone." Acylhydrazone contains ONO donor atoms that can be coordinated to metal ions acting as tridentates depending on the nature of the substituent attached to the hydrazone unit. These ligands exhibit an enol form, which can modulate the coordination of the metal as a dinegative ligand in enol form, as well as an assessment of their antioxidant potential.

2- EXPERIMENTAL

2.1 Equipment

The CHN analysis were carried out at the microanalytical unite elemental analyzer, CHN mode, of the university of Iran. Perkin-Elmar (AA500G) atomic absorption spectrometer photometer was used to obtain metal content. FT-IR spectra were recorded in the 4000-400 cm⁻¹ region fom KBr discs of the organic ligands and their complexes using Perkin-Elmer FT-IR 660 spectrophotometers. The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra of organic ligands were acquired on a Bruker Advance II 400. In DMSO d_6 or CDCl₃, a superconducting NMR spectrometer operating at 13000-64 MHz was used, with TMS serving as the internal standard. The UV-visible absorption spectra were measured in a quartz cell with a diameter of 1 cm and a concentration of 10^{-3} M in dimethylsulfoxide in the range of 1100-200 nm Unicam **HEIOS UV-VIS** using а spectrophotometer. At a temperature of 298.5 degrees Celsius, magnetic susceptibility readings were obtained using a Johnson Matthey MSB/AUTO balance. Conductivity assessments for compounds were performed at a

$$R = \bigcirc \\ C = O = CH_2CH_3 + NH_2 - NH_2 H_2O$$

Ester Hydrazine hydrate
$$R = \bigcirc , \bigvee , \bigvee$$

2.2.2 Preparation of Dibenzoylmethan Hydrazone Ligands (DBMBH, DBMFH, and DBMPH)

The ligands were prepared by refluxing a mixture of acid hydrazide (0.01mole; 1.36g, 1.26g, 1.37g, of BH, FH, and PH respectively) and dibenzoylmethan (2.24g, 0.01 mole) in 50 ml absolute ethanol for 6 hours. The volume of the solution was then reduced to 25 mL by

concentration of 10^{-3} M in both DMSO and methanol solvents at a temperature of 25 degrees Celsius, utilizing a conductivity meter with a pH of 430. The thermal analyses were performed at department of chemistry, college of basic education, Mosul university using METTLER TOLEDO TGA\DSC with STARe evaluation software virgin (16.3) at 25-600°C with heat ramping rate of 5°C/min .

2.2 Synthesis of hydrazone ligands

2.2.1 preparation of acid hydrazide (BH, FH, and PH)

The hydrazide compounds benzoyl hydrazine(BH), 2-furoyl hydrazine(FH), and picolenoyl hydrazine(PH) were made by refluxing the corresponding ester of (0.1 mole; 15.0g, 14.0g, 15.1g, Ethylbenzoate, Ethyl-2furate and Ethylpicolenate respectively) with a slight excess of hydrazine hydrate NH2NH2.H2O (6.0 g, 0.12 mole) in 50 ml of ethanol for 5 hours. The compounds were filtered and rinsed with ethanol and ether after standing overnight in freezer. The purified hydrazides were obtained by recrystallizing from hot ethanol, equation [7].

evaporating the solvent and finally cooling it in freezer. The pale yellow precipitate obtained was separated and filtered, rinsed many times with cold ethanol, and then dried in a vacuum desiccator over anhydrous CaCl2. The ligands were recrystallized from absolute ethanol, and the reactions were confirmed using TLC on silica gel plates, Scheme (1):[8]

Scheme(1): synthesis of hydrazone ligands (DBMBH, DBMFH, DBMPH)

2.3 Synthesis of metals complexes

To produce metal complexes, stoichiometric ratios (1:1) metal to ligands were combined. triethylammine (0.23g, 0.002 mole) was added to a heated solution of ligands (0.001mole) in 25 ml methanol, the color of solution turned yellow. A solution of metal acetate hydrate (0.001mole) in 25 ml methanol was then added.

The reaction mixtures were refluxed for 4hours, after which the volume of the solution was reduced to 20 mL and cooled in ice overnight. As shown in the equations below, the colored precipitate was separated and filtered, washed many times with cold methanol and ether, and desiccated in a vacuum desiccator over anhydrous CaCl₂ (Scheme 2).[9]

Scheme (2)

Scheme (2): synthesis of metal complexes

2.4 Antioxidant activity of the prepared compounds:

The compounds' ability to scavenge DPPH radicals was used to determine how effective they were as antioxidants. A fresh methanol solution of DPPH (0.5mmol) was combined with the various concentrations of the investigated substances (20, 40, and 60 ppm). After 30 minutes of being held in the dark and violently shaken, the samples were analyzed.

Spectrophotometric analysis of sample absorbance at 517 nm. The following formula was used to determine the level of radical scavenging activity [10].

DPPH scavenging ability (%) = (Abs control - Abs sample /Abs control)* 100

Where: Abs control = Absorbance of the DPPH radical + methanol.

Abs sample = Absorbance of the tested sample with DPPH after 30 minutes.

No	Compounds	M.p.°C	Color	Yiel d (%)	Ω ohm¹cm²mo I ⁻¹		Metals % calcu./foun d	Elemental analysis Calcu /found			
					DMS O	Me OH		C%	H%	N%	
L1	DBMBH (C ₂₂ H ₁₈ N ₂ O ₂)	155-158	Pale yellow	87.4				77.19/77.1 2	5.26/5.21	8.18/8.15	
1	[Mn(DBMBH- 2H)(H ₂ O) ₃].H ₂ O	234-236	Black	74.2	14.9	15.6	11.75/11.61	56.54/56.3 2	5.14/5.02	5.99/5.64	
2	[Co(DBMBH-2H)(H ₂ O) ₃]	182-185	Yellowish- brown	62.3	9.6	11.1	13.00/12.85	58.29/58.4 1	4.85/4.11	6.18/6.10	
3	[Ni(DBMBH-2H)(H ₂ O) ₃]	250-252	Pale brown	65.1	12.2	10.2	12.96/12.45	58.31/58.0 1	4.85/4.10	6.18/6.02	
4	[Cu(DBMBH- 2H)(H ₂ O)].H ₂ O	296 d	Olive green	85.4	9.8	14.3	14.44/14.30	60.06/59.8 5	4.55/4.12	6.37/6.21	
5	[Zn(DBMBH-2H)(H ₂ O) ₃]	136-138	Yellow	65.8	13.9	16.0	14.21/14.11	57.47/57.1 1	4.78/4.35	6.09/6.10	
L2	DBMFH (C ₂₀ H ₁₆ N ₂ O ₃)	118-120	Pale yellow	85.2				72.28/72.1 7	4.81/4.65	8.43/8.40	
6	$[Mn(DBMFH-2H)(H_2O)_3]$	235-238	Dark brown	75.8	18.4	18.0	12.50/12.11	54.68/54.3 1	4.55/4.11	6.37/6.13	
7	[Co(DBMFH- 2H)(H ₂ O) ₃].H ₂ O	162-164	Pale green	84.6	17.9	16.7	12.77/12.13	52.07/52.0 0	4.77/4.13	6.07/6.01	
8	[Ni(DBMFH-2H)(H ₂ O)]	269-272	Yellow-brown	87.1	19.5	13.1	14.43/14.07	59.01/58.7 8	3. 93/3.33	6.88/6.04	
9	[Cu(DBMFH-2H)(H ₂ O) ₃]	298 d	Pale green	74.3	18.5	10.1	14.18/14.00	53.63/53.0 2	4.46/4.32	6.25/6.06	
10	[Zn(DBMFH- 2H)(H₂O)₃].H₂O	227-229	Pale yellow	64.0	14.6	14.0	13.97/14.00	51.35/51.0 0	4.70/4.71	5.99/5.10	
L3	DBMPH (C ₂₁ H ₁₇ N ₃ O ₂)	160-161	Pale yellow	78.2				73.46/73.2	4.95/4.76	12.24/12.2 4	
11	[Mn(DBMPH- 2H)(H ₂ O) ₃].H ₂ O	217-210	Olive-green	69.7	12.6	18.1	11.73/11.73	53.85/53.9 1	4.91/4.45	8.97/8.44	
12	[Co(DBMPH- 2H)(H ₂ O)].H ₂ O	158-159	Green-yellow	78.0	15.8	11.2	13.51/13.51	57.81/57.1 2	4.35/4.21	9.63/9.51	
13	[Ni(DBMPH-2H)(H ₂ O) ₃]	288d	Pale brown	75.0	18.4	12.1	12.93/12.45	55.54/55.3 1	4.62/4.24	9.25/9.10	
14	[Cu(DBMPH- 2H)(H ₂ O) ₃].H ₂ O	>300	pale olive- green	71.3	14.10	5.6	13.32/13.10	52.88/52.9 8	4.82/4.11	8.81/8.90	
15	[Zn(DBMPH-2H)(H ₂ O) ₃]	155-158	White -yellow	74.0	12.6	18.0	14.18/14.00	54.74/54.0 6	4.56/4.33	9.12/9.01	

 Table (1): Physical properties and analytical data of ligand and metal complexes

 D=decomposed

3. REASULTS AND DISSCUSSION

The hydrazones of dibenzoylmethane (DBMBH, DBMFH and DBMPH) were synthesized in good yields by direct condensation with benzoyl hydrazine,2-furoyl hydrazine and picolinoyl hydrazine respectively in (1:1) molar ratio in absolute ethanol (Scheme1). The reaction of these hydrazones

with metal(II) acetate in the presence of triethylamine in a molar ratio of (1:1:2) molar ratio in methanol yield 1:1 complexes in which the ligands enolized and doubly deprotonated during complexation (Scheme 2) as indicated by analytical data (Table 1). All the complexes are colored non-hygroscopic solids, stable to air and moisture at room temperature. They are generally insoluble in water and non-polar organic solvents, soluble in ethanol, methanol, DMF and DMSO. The low molar conductance values of the complexes in methanol solutions (5.6-18.1 ohm ⁻¹mol⁻¹ cm²) and in DMSO solutions (9.6-19.5 ohm ⁻¹mol⁻¹ cm²) indicating the non-electrolytic nature of the complexes [11].

3.1 Infrared spectra studies

The IR spectra of the coordination compounds showed a range of information that was really helpful. The unique band frequencies of the ligands and the complexes containing them are listed in Table 2.

To understand the manner of bonding and the influence of the metal ion on the ligand, the IR spectra of the free ligands and their metal complexes were recorded, examined, and compared in the range 4000-400 cm⁻¹. Bands at (3300, 3261, 3302), (1668, 1697, 1678) and (1635, 1646, 1656) cm⁻¹ are observable in the IR spectra of the free ligands (DBMBH, DBMFH, DBMPH) are attributed to the v(N-H), v(C=O)ketone and v(C=O)hydrazide, respectively. These were absent in the spectra of the metal complexes suggesting coordination of the enolate-form of the ligand by deprotonation of the (N-H), and (CH₂) group during the complexation in basic medium caused by triethylamine. Carbonyl group enolization during complex formation causes this phenomenon. Evidence for the production of a new (C-O) bonds at ranges (1131-1184)cm⁻¹ is consistent with the ligands being coordinated in its enolate state. Additional strong bands at (1593-1617) cm⁻¹ in the infrared spectra of the free ligands are attributed to the azomethine(C=N) stretching frequency, but are shifted to lower frequency ranges (1541-1570)cm⁻¹ in their complexes, showing the involvement C=N group in coordination with metal [12,13]. Coordination of nitrogen to the metal atom reduces the electron

density in the azomethine group causing a shift in the v(C=N) band to lower frequencies. However, the (N-N) stretching vibration at (993, 928, 976,) cm^{-1} in the spectra of the free ligands respectively shifts to a higher frequency by (13-46) cm⁻¹ in their complexes another indication of coordination between the metal and the nitrogen of the azomethin group [14]. The shift of (N-N) stretching vibration to higher frequencies is owing to the diminution of the lone pair electrons repulsion which comes from the two adjacent nitrogen atoms, by sharing the electrons out to the metal ion. The faint absorption bands at 617cm⁻¹, which are caused by the pyridine ring's (py) deformation vibration in free ligand(DBMPH) spectrum, were observed at almost the same or lower frequencies, indicating that the pyridine nitrogen atom was not involved in coordination in DMBPH complexes [15]. The existence of non-ligand bands in the spectra of the complexes in the ranges (457-547) cm⁻¹ and (418-462) cm⁻¹, which may be tentatively assigned to (M-O) and (M-N), respectively, is another evidence that the ligand is attached to the metal ions.[16].

All complexes exhibit a broad band in their spectra centered on (3240-3392) cm⁻¹ due to the symmetric and asymmetric stretching modes of the coordinated water molecules. Coordinated water molecules, furthermore gave weak bands in the (843- 940) cm⁻¹ and (640- 689) cm⁻¹ may represent the bending and deforming modes of coordinated water .Broad bands have also been seen in the range (3614-3736) cm⁻¹ may attributed to stretching modes of uncoordinated water molecules . All the complexes had water molecules in their lattices and/or coordinated, as confirmed by thermal studies, however they all lose water when heated to 50-600°C [17, 18]. Figs 2) (1,

|--|

No	Chemical formulla	ט(N-H)	vC=O) _{keton}	ບ(C=O)	υ(C=N)	υ(C-O) enolic	ט(N-N)	υ(M- Ο)	ט(M-N)	(py)b_{end} ing	υ(H₂O)
L1	DBMBH (C ₂₂ H ₁₈ N ₂ O ₂)	3300 m	1697s	Hydrazide 1656s	1617 sh		993 w				
1	$[Mn(DBMBH-2H)(H_2O)_3].H_2O$				1545sh	1172m	1015m	520m	443m		3372br, 3734br
2	[Co(DBMBH-2H)(H ₂ O) ₃]				1543s	1176m	1022m	528m	447m		3390br.
3	[Ni(DBMBH-2H)(H2O)₃]				1550s	1180w	1022m	520w	428w		3320br
4	[Cu(DBMBH-2H)(H ₂ O)].H ₂ O				1553sh	1180m	1023m	543m	428w		3322br, 3649br
5	[Zn(DBMBH-2H)(H ₂ O) ₃]				1550s	1182m	1024m	524m	432w		3431br.
L2	DBMFH (C ₂₀ H ₁₆ N ₂ O ₃)	3261m	1668s	1646s	1614sh		928m				
6	[Mn(DBMFH-2H)(H ₂ O) ₃]				1541s	1184m	941m	457m	418m		3447br

-												
_	7	[Co(DBMFH-2H)(H ₂ O) ₃].H ₂ O				1549s	1131m	942m	518m	418w		3392br,3736br
_												
_	8	[Ni(DBMFH-2H)(H ₂ O)]				1551s	1182m	941m	524m	484w		3392br
_	9	[Cu(DBMFH-2H)(H ₂ O) ₃]				1544s	1184m	945m	547m	418w		3462br
_	10	[Zn(DBMFH-2H)(H ₂ O) ₃].H ₂ O				1549s	1132m	939m	520m	418w		3391br,3650br
_	L3	DBMPH (C ₂₁ H ₁₇ N ₃ O ₂)	3302m	1678m	1635s	1593s		976m			616m	
	11	[Mn(DBMPH-2H)(H ₂ O) ₃].H ₂ O				1552s	1172m	933m	516m	462w	613m	3355br ,
_												3645br
	12	[Co(DBMPH-2H)(H ₂ O)].H ₂ O				1570s	1165m	1018m	520m	459w	614m	3265br,
_												3664br
_	13	[Ni(DBMPH-2H)(H ₂ O) ₃]				1555s	1138m	1015m	532m	462m	615m	3246br
	14	[Cu(DBMPH-2H)(H ₂ O) ₃]H ₂ O				1562sh	1180m	1022m	520w	459w	617w	3240br,
_												3615br
	15	[Zn(DBMPH-2H)(H ₂ O) ₃]				1565s	1182m	1020m	525w	443w	617m	3205br

Fig. (1) IR spectrum of free ligand DBMBH

Fig.(2) IR spectrum of [Mn(DBMBH-2H)(H₂O)₃].H₂O

3.2 ¹H and ¹³C HNMR of the ligands:

In DMSO-d₆ and CDCl₃, the ¹H and ¹³C NMR spectra of the hydrazone ligands (DBMBH, DBMFH, and DBMPH) were recorded, Fig. (3 and 4). The NH proton signal (1H,s,NH) was detected at 10.90 -11.20 ppm, while the CH₂ proton signal (2H,s,CH₂) was seen at 4.51- 4.63 ppm. Multiple signals, corresponding to the ligands' aromatic protons in the benzene, furan, and pyridine rings, are

identified in the 6.45 -8.64-ppm range. Based on ¹³C-NMR spectroscopy, CH_2 group signals are located in the range 50.4–47.3 ppm. The signals within a range of 112.0 - 148.6ppm corresponding to the ligands' aromatic carbons in the benzene, furan, and pyridine rings. Whereas C=N and 2(C=O) are responsible for the 145.6 - 153.7ppm and 194.8–157.8ppm signals, respectively, these findings are in line with those of previously reported compounds [19, 20].

The electronic absorption spectra for all compounds were recorded in DMSO solution at

room temperature within the range 200-1100 nm, and the data are given in Table (3). The electronic spectral bands of free ligands

DBMBH, DBMFH, and DBMPH observed maximum absorption bands at (30030-33112) cm⁻¹ and (32154–29239) corresponding to $n \rightarrow^* \pi$ and $\pi \rightarrow^* \pi$ respectively, as shown in Fig.(5)[21].

The spectra of the Mn(II) complexes 1, 6, and 11 appear as bands in the UV region at (27855, 26543 and 26595) cm⁻¹ respectively . These bands may be assigned to $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transition of the ligands, however, d-d transitions were not seen. These were matched with magnetic moment values of (5.7-5.9) BM, corresponding to the presence of five unpaired electrons of d⁵ high spin, suggesting octahedral Mn(II) complexes. [22,23].

The electronic absorption spectra of Co(II) complexes 2 and 7 visible three bands at 10344, 9794 cm⁻¹, 19607, 20241cm⁻¹ and 21012, 22809cm⁻¹ was assigned $to^4T_1g(F)$ \rightarrow ⁴ $T_2g(F)(v_1)$, ⁴ $T_1g(F) \rightarrow$ ⁴ $A_2g(F)(v_2)$ and ${}^{4}T_{1}g(F) \rightarrow {}^{4}T_{1}g(P)(v_{3})$, respectively which consists of high-spin octahedral Co(II) complexes. The magnetic moment values (5.1 and 4.6)BM for these complexes are more consistent with octahedral complexes [24,25]. Whereas the Co(II) complex (12) show band in the visible region due to d-d transitions. The band at 16949 cm⁻¹ is assigned to ${}^{4}A_{2}(F) \rightarrow {}^{4}T_{1}(P)$ (V_3) , while the other transitions are not observed as they are out of the range of the used spectrophotometer. These transitions, together with a magnetic moment of $\mu_{eff} = 4.0$ BM, reveal

that the geometry around the Co(II) ion is tetrahedral [4,26]

For the Ni(II) complexes (3) and (13), display Three bands at 9090,1015 cm⁻¹, 17094, 19010 cm⁻¹, and 25641, 27777cm⁻¹ correspond to ${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g(F)(v_{1})$, ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(F)(v_{2})$, and ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(P)$ (v₃) transitions. This was consistent with (3.3 and 3.1) BM magnetic moment values confirming two unpaired electrons in an d⁸ octahedral Ni(II) complex [27].

The diamagnetic moment for Ni(II) complex (8) is reported for a square planar structure. Its electronic spectra show two bands at 22578 and 28760 cm⁻¹ assigned to ${}^{1}A_{1}g \rightarrow {}^{1}A_{2}g(v_{1})$ and ${}^{1}A_{1}g \rightarrow {}^{1}B_{1}g(v_{2})$, respectively. these transitions reveal that the Ni(II) complexes possess a square planar geometry [28, 29].

Aboard peak observed in the visible region for Cu(II) complexes (9) and (14) within (14285, 15384) cm⁻¹. The band position with magnetic moment values (2.2 and 2.1) BM confirms the octahedral geometry of the Cu(II) ion, as shown in Fig.(6)[30]. Complex (5) display bands at 14430 and 20150 cm⁻¹are corresponding to²Eg \rightarrow ²T₂g transitions, respectively. This is confirmed with magnetic value (1.9) BM consistent with a square planer geometry around Cu(II) [31,32].]. In the electronic spectra of Zn(II) complexes (6, 10, and 15) the only bands were observed due to LMCT transition[33].

No	lo Compound		Band position cm ⁻¹			Assignment	Geomet
1	[Mn(DBMBH-2H)(H ₂ O) ₃].H ₂ O	5.7	27855			n→π*	Oh
6	[Mn(DBMFH-2H)(H ₂ O) ₃]	5.9	26543				0.11
11	$[Mn(DBMPH-2H)(H_2O)_3]$	5.7	26595				
2	[Co(DBMBH-2H)(H ₂ O) ₃]	5.1	10344	19607	21012	4 T ₁ g → 4 T ₂ g(F)(υ ₁) 4 T ₁ g → 4 A ₂ g(F)(υ ₂)	Q.h
7	[Co(DBMFH-2H)(H ₂ O) ₃].H ₂ O	4.6	9794	20241	22809	${}^{4}T_{1}g(F) \rightarrow {}^{4}T_{2}g(P)(v_{3})$	
12	[Co(DBMPH-2H)(H ₂ O)].H ₂ O	4.0			16949	⁴ A₂(F)→ ⁴ T₁(P) (V3)	T.h
3	[Ni(DBMBH-2H)(H ₂ O) ₃]	3.3	9090	17094	25641	${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g_{(F)} (\upsilon_{1})$ ${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g_{(F)} (\upsilon_{2})$	Oh
13	[Ni(DBMPH-2H)(H ₂ O) ₃]	3.1	1015	19010	27777	$^{3}A_{2}g \rightarrow ^{3}T_{1}g_{(P)}$ (02)	0.11
8	[Ni(DBMFH-2H)(H ₂ O)]	Dia	22578	28760		$\label{eq:1} \begin{array}{ll} {}^{1}A_{1}g \rightarrow {}^{1}A_{2}g & (v_{1}) \\ {}^{1}A_{1}g \rightarrow {}^{1}B_{1}g & (v_{2}) \end{array}$	Sq.pl

 Table (3): Magnetic moments and electronic spectral data of the complexes

9	[Cu(DBMFH-2H)(H ₂ O) ₃]	2.2	14285		²Eg→²T₂g	
14	[Cu(DBMPH-2H)(H ₂ O) ₃]H ₂ O	2.1	15384			O.h
4	[Cu(DBMBH-2H)(H ₂ O)]H ₂ O	1.9	14430	20150	$^{2}B_{1}g \rightarrow ^{2}B_{2}g$ $^{2}B_{1}g \rightarrow ^{2}Eg$	Sq.pl
5	[Zn(DBMBH-2H)(H ₂ O) ₃].H ₂ O		26556.4			
10	[Zn(DBMFH-2H)(H ₂ O) ₃]	Dia.	243540.8		LMCT	O.h
15	[Zn(DBMPH-2H)(H ₂ O) ₃].H ₂ O	-	245670.6			-

Fig. (5) Electronic spectrum of prepared ligands

Fig.(6): Electronic spectrum of [Co(DBMPH-2H)(H₂O)].H₂O complex

3.4 Thermal analysis studies

The estimated results of thermal analysis of selected complexes was carried out at 50-600°C temperature, are shown in Table (4). The purpose of this analysis was to determine the conformation and water molecules present in the complexes as well as the type of their bonding.

Two distinct zones of losing weight can be seen in the thermograms of the undehydrated complexes (3 & 9) as in Fig (7). Three

coordinated water molecules and organic fragments, C_5H_4ON and $C_{10}H_9O_2N_2$ are released between 50-440°C, of complexes (3) and (9) ,respectively, as shown in the t.g.a. curves. The second stage of mass loss in these two complexes indicates that another organic component of the hydrzaone ligand is degraded in the 450–600°C region, with $C_{10}H_9N$ and C_5H_5 as fragments with C_7H_7NiO and C_4CuO as residuals, respectively. It was shown through these data that the complexes need a temperature of more than 600°C in order to obtain pure metal oxides. While there are three dissimilar areas of reduced mass in thermograms of hydrated complex (12). At low temperatures 50-115°C, complex (12) lose mass initially because 1H₂O hydrate molecules in the lattice evaporate. This second stage of decomposition is attributable to

the elimination of one coordinated water (H₂O) molecule and the organic fragment $C_{10}H_{10}ON_3$ at 120-420 °C. The third and final decomposition step for this complex (12) occurs above 450°C is metal-dependent and indicates that the organic fragment C₁₁H₅ finally decomposed to CoO, as corroborated by the weight-loss results Table (4) [34,35].

No	Complex		Estim	ated (calculated)		
•		Temp. range (°C)	Massloss (%)	Assignment		
3	[Ni(DBMBH-2H)(H ₂ O) ₃] C ₂₂ H ₂₂ O ₅ N ₂ Ni	50-440	31.0(32.6)	Loss of coordinated water $(3H_2O)$ and the fragment C_5H_4ON		
		450-600	29.3(31.5)	C10H9N Residue C7H7NiO		
9	$\begin{array}{l} [Cu(DBMFH-2H)(H_2O)_3] \\ C_{20}H_{20}O_6N_2Cu \end{array}$	50-440	53.0 (54.3)	Loss of coordinated water (3H ₂ O) and fragment of $C_{11}H_9O_2N_2$		
		450-600	15.0(14.5)	Loss of C_5H_5 and $\mbox{ residue } C_4CuO$		
12	[Co(DBMPH-2H)(H ₂ O)]H ₂ O C ₂₁ H ₁₉ O ₄ N ₃ Co	50–115	4.0(4.1)	Loss of hydrated (H ₂ O)		
		120-420	46.0(47.2)	Loss $1H_2O$ coordination and fragment of $C_{10}H_{10}ON_3$		
		450-600	32.0(31.4)	C₁₁H₅ Residue CoO		

o1 d n of Table (A). Th • , • atal aa mn1

Fig.(7): TGA and DT curves of weight (%) vs. temperature (50-600°C) (a) [Ni(DBMBH-2H)(H₂O)₃] (b) [Cu(DBMFH-2H)(H₂O)₃] (c) [Co(DBMPH-2H)(H₂O)].H₂O

3.5. Antioxidant activity of the ligand and metal complexes by DPPH

Compounds were assessed for their antioxidant activity using an evaluation technique [10]. It is generally agreed that the hydrazone compound's ability to scavenge DPPH radicals comes from its capacity to donate hydrogen.

The results effect of the free radical scavenge tested compounds at various concentrations are revealed in Fig. (8). Scavenging action of DPPH was expressed as IC_{50} the effective concentration at which 50% of the radicals were scavenged, have been calculated to assess the antioxidant activities. A lower IC_{50} indicates greater antioxidant activity. The scavenging effect of

the hydrazones and their complexes is given in Table (5). All of these compounds exhibited free radical scavenging ability different at concentrations of 20, 40, and 60 ppm as compared with the control sample (ascorbic acid). It is indicated that the ligand has much better activity of scavenging than its metal complexes. Whereas the [Mn(DBMBH-2H)(H_2O)₃] H_2O complex showed a strong interactive ability with DPPH among the examined complexes. While the least activity observed from [Cu(DBMPHwas $2H(H_2O)_3H_2O$ free [36]. The radical scavenging activity of compounds depends on the structure factors and other structural features as type and geometry of metal ions [37].

Absorbance											
	Compound	Concentration (µg ∠mL)			Antioxidant activity%			IC₅₀ (µg/ml)			
		20	40	60	20	40	60				
standar	Ascorbic acid	0.035	0.032	0.019	97	97	98	44.0454			
d											
L1	DBMBH ($C_{22}H_{18}N_2O_2$)	0.4260	0.384	0.309	56.75	61.01	68.69	33.6898			
1	[Mn(DBMBH-2H)(H ₂ O) ₃].H ₂ O	0.567	0.453	0.340	42.43	54.01	65.42	29.1307			
2	[Co(DBMBH-2H)(H ₂ O) ₃]	0.646	0.601	0.504	34.41	38.98	48.83	26.2336			
3	[Ni(DBMBH-2H)(H ₂ O) ₃]	0.652	0.602	0.540	33.80	38.88	45.17	26.2336			
4	[Cu(DBMBH-2H)(H ₂ O)].H ₂ O	0.546	0.502	0.445	44.56	49.03	54.82	29.853			
5	[Zn(DBMBH-2H)(H ₂ O) ₃]	0.456	0.421	0.400	53.70	57.25	58.98	32.7719			
L2	DBMFH (C ₂₀ H ₁₆ N ₂ O ₃)	0.367	0.243	0.230	62.74	65.17	66.49	35.4232			
6	[Mn(DBMFH-2H)(H ₂ O) ₃]	0.543	0.513	0.487	44.89	47.91	50.55	29.9633			
7	[Co(DBMFH-2H)(H ₂ O) ₃].H ₂ O	0.684	0.580	0.494	30.55	41.11	49.84	30.0566			
8	[Ni(DBMFH-2H)(H ₂ O)]	0.540	0.525	0.514	45.17	46.70	47.81	24.7184			
9	[Cu(DBMFH-2H)(H ₂ O) ₃]	0.456	0.432	0.412	53.70	56.14	58.17	32.7719			
10	[Zn(DBMFH-2H)(H ₂ O) ₃].H ₂ O	0.546	0.514	0.488	44.36	47.81	50.45	29.7859			
L3	DBMPH (C ₂₁ H ₁₇ N ₃ O ₂)	0.476	0.423	0.386	51.67	57.05	60.08	32.1465			
11	[Mn(DBMPH-2H)(H ₂ O) ₃].H ₂ O	0.587	0.543	0.511	40.40	44.87	48.12	28.4253			
12	[Co(DBMPH-2H)(H ₂ O)].H ₂ O	0.517	0.474	0.435	47.51	51.87	55.83	25.448			
13	[Ni(DBMPH-2H)(H ₂ O) ₃]	0.666	0.524	0.515	32.38	36.64	37.56	30.8253			
14	[Cu(DBMPH-2H)(H ₂ O) ₃].H ₂ O	0.677	0.660	0.640	31.26	32.99	35.02	25.004			
15	[Zn(DBMPH-2H)(H ₂ O) ₃]	0.435	0.413	0.400	40.10	42.43	45.68	28.3196			

Table (5): Ant	ioxidant activi	ty of the pr	repared comp	ounds
----------------	-----------------	--------------	--------------	-------

Fig.(8): Scavenging antioxidant activity of the prepared compounds

4. CONCLUSION

Several Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes were synthesized by reacting three hydrazone ligands with the corresponding metal ions in a basic solution. The metal-toligand ratio was maintained at 1:1. The ligands used in the synthesis were derived from dibenzoyl methane and benzoyl hydrazine (DBMBH), 2-furoyl hydrazine (DBMFH), or picolinoyl hydrazine (DBMPH). The proposed structures of the complexes can be found in Figure 9. In this study, we concluded that the hydrazone ligands acts as a dibasic tridentate in all prepared complexes (1-15) through ONO

atoms of the azommethine nitrogen, hydrazide carbonyl and ketonic carbonly oxygen atoms. The proposed geometry for most of the complexes is octahedral, except for complexes (4 & 8), $[Cu(DBMBH-2H)(H_2O)]H_2O)$ and ([Ni(DBMFH-2H)(H₂O)] which are expected to have square planar structures. Additionally, complex (12) $[Co(DBMPH-2H)(H_2O)].H_2O$ is proposed to have a tetrahedral geometry. The thermal stability of the compounds is closely related to their composition. Antioxidant activity against DPPH radical showed that the ligands exhibit higher radical scavenging activity than their metal complexes.

Complexes (1-15, except 4,8,12) M= Mn(II),Co(II),Ni(II), Cu(II),Zn(II) R= C₆H₅-, 2-C₄H₃O-, C₅H₅N-Octahedral

Fig. (9): Proposed structures for complexes

REFERENCES

- Balapoor, L., Bikas, R., & Dargahi, M. (2020). Catalytic oxidation of benzyl-alcohol with H_2O_2 in the presence of a dioxidomolybdenum (VI) complex. *Inorganica Chimica Acta*, 510, 119734.
- Abouzayed, F. I., Emam, S. M., & Abouel-Enein, S.
 A. (2020). Synthesis, characterization and biological activity of nano-sized Co (II), Ni (II), Cu (II), Pd (II) and Ru (III) complexes of tetradentate hydrazone ligand. *Journal of Molecular Structure*, *1216*, 128314.
- Aly, S. A., & Fathalla, S. K. (2020). Preparation, characterization of some transition metal complexes of hydrazone derivatives and their antibacterial and antioxidant activities. Arabian Journal of Chemistry, 13(2), 3735-3750..
- Al-Fulaij, O. A., Jeragh, B., El-Sayed, A. E. M., El-Defrawy, M. M., & El-Asmy, A. A. (2015).
 Chelation, spectroscopic characterization, biological activity and crystal structure of 2, 3-butanedione isonicotinylhydrazone: Determination of Zr4+ after flotation

separation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1834-1841.

- Hosseini-Monfared, H., Bikas, R., Sanchiz, J., Lis, T., Siczek, M., Tucek, J., ... & Mayer, P. (2013).
 Syntheses, structures and magnetic properties of azido-and phenoxo-bridged complexes of manganese containing tridentate aroylhydrazone based ligands. *Polyhedron*, 61, 45-55.
- Alfares, A.A., Alnuaimy, L.A. and Al-Daher, A.G.M., (2022). Synthesis and Characterization of Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) complexes with 2-Carboxy benzaldehyde Aroylhydrazones. *Egyptian Journal of Chemistry*, 65(1), pp.1-2.
- Al-Ne'aimi, M. M. (2012). Synthesis and characterization of bis-acylhydrazone derivatives as tetradentate ligands and their dinuclear metal (II) complexes. *Chem. Engineering*, 56, 83-90.
- El-Tabl, A. S., El-Saied, F. A., Plass, W., & Al-Hakimi, A. N. (2008). Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 71(1), 90-99.
- Al-Hakimi, A. N., El-Tabl, A. S., & Shakdofa, M. M. (2009). Coordination and biological behaviour of 2-(p-toluidino)-N'-(3-oxo-1, 3diphenylpropylidene) acetohydrazide and its metal complexes. *Journal of Chemical Research*, 2009(12), 770-774.
- Choudhary, A., Sharma, R., Nagar, M., Mohsin, M., & Meena, H. S. (2011). Synthesis, characterization and antioxidant activity of some transition metal complexes with terpenoid derivatives. *Journal of the Chilean Chemical Society*, 56(4), 911-917.
- Jeragh, B., & El-Asmy, A. A. (2014). Coordination of Fe (III), Co (II), Ni (II), Cu (II), Zn (II), Cd (II), Hg (II), Pd (II) and Pt (II) with 2, 5hexanedione bis (thiosemicarbazone), HBTS: crystal structure of cis-[Pd (HBTS)] Cl2 and 1-(2, 5-dimethyl-1H-pyrrol-yl)thiourea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 546-552.
- Bekheit, M. M., El-Shobaky, A. R., & Allah, M. T. G. (2017). Synthesis and characterization studies of new five member ring metal chelates derived from benzion phenoxyacetyl hydrazone (H2BPAH). Arabian Journal of Chemistry, 10, S1973-S1979.
- Sathyadevi, P., Krishnamoorthy, P., Jayanthi, E., Butorac, R. R., Cowley, A. H., & Dharmaraj, N. (2012). Studies on the effect of metal ions of hydrazone complexes on interaction with

nucleic acids, bovine serum albumin and antioxidant properties. *Inorganica Chimica Acta*, 384, 83-96.

- Hosny, N. M., & Shallaby, A. H. M. (2007). Spectroscopic characterization of some metal complexes derived from 4-acetylpyridine nicotinoylhydrazone. *Transition Metal Chemistry*, 32(8), 1085-1090.
- Mitu, L., Ilis, M., Raman, N., Imran, M., & Ravichandran, S. (2012). Transition metal complexes of isonicotinoyl–hydrazone-4diphenylaminobenzaldehyde: synthesis, characterization and antimicrobial studies. *E-Journal of Chemistry*, 9(1), 365-372.
- Patil, S. A., Unki, S. N., Kulkarni, A. D., Naik, V. H., & Badami, P. S. (2011). Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co (II), Ni (II) and Cu (II) complexes with ONOO donor coumarin Schiff bases. Journal of Molecular Structure, 985(2-3), 330-338.
- Hosny, N. M. (2011). Synthesis and Characterization of Transition Metal Complexes Derived from (E)-N-(1-(Pyridine-2-yl) ethylidiene) benzohydrazide (PEBH). Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41(7), 736-742.
- El-Tabl, A. S., El-Saied, F. A., & Al-Hakimi, A. N. (2008). Spectroscopic characterization and biological activity of metal complexes with an ONO trifunctionalized hydrazone ligand. *Journal of Coordination Chemistry*, *61*(15), 2380-2401.
- Singh, Y. P., & Patel, S. K. (2021). Molecular structures, spectral, electrochemical, DFT and antioxidant activities of copper (II) complexes with NNO donor Schiff base ligand. *Journal* of Molecular Structure, 1228, 129457.
- Zhang, L., Zhang, J. P., & Zhu, D. Y. (2005). Synthesis, characterization and antibacterial activities of (N-Oxide Pyridinyl-2-Aldehyde)-3, 5-Dibenzyloxybenzoylhydrazone and its complexes. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 35(4), 295-298.
- Sathyadevi, P., Krishnamoorthy, P., Alagesan, M., Thanigaimani, K., Muthiah, P. T., & Dharmaraj, N. (2012). Synthesis, crystal structure, electrochemistry and studies on protein binding, antioxidant and biocidal activities of Ni (II) and Co (II) hydrazone complexes. *Polyhedron*, 31(1), 294-306.
- Banerjee, S., Ray, A., Sen, S., Mitra, S., Hughes, D.
 L., Butcher, R. J., ... & Turner, D. R. (2008).
 Pseudohalide-induced structural variations in hydrazone-based metal complexes: Syntheses, electrochemical studies and structural aspects. *Inorganica Chimica Acta*, 361(9-10), 2692-2700.

- Devi, J., Batra, N., & Malhotra, R. (2012). Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 397-405.
- Mohapatra, R. K., Dash, M., Mishra, U. K., Mahapatra, A., & Dash, D. C. (2014). Synthesis, spectral characterization, and fungicidal activity of transition metal complexes with benzimidazolyl-2-hydrazones of glyoxal, diacetyl, and Benzil. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 44(5), 642-648.
- Kanchanadevi, S., Fronczek, F. R., David, C. I., Nandhakumar, R., & Mahalingam, V. (2021). Investigation of DNA/BSA binding and cytotoxic properties of new Co (II), Ni (II) and Cu (II) hydrazone complexes. *Inorganica Chimica Acta*, 526, 120536.
- Mangalam, N. A., Kurup, M. P., Suresh, E., Kaya, S., & Serdaroğlu, G. (2021). Diversities in the chelation of aroylhydrazones towards cobalt (II) salts: synthesis, spectral characterization, crystal structure and some theoretical studies. *Journal of Molecular Structure*, 1232, 129978..
- Singh, V. P., Singh, S., Singh, D. P., Singh, P., Tiwari, K., Mishra, M., & Butcher, R. J. (2013). Synthesis, spectral and single crystal X-ray diffraction studies on Co (II), Ni (II), Cu (II) and Zn (II) complexes with o-amino acetophenone benzoyl hydrazone. *Polyhedron*, 56, 71-81.
- Sharma, A. K., & Chandra, S. (2013). Synthesis, structural and fungicidal studies of hydrazone based coordination compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103, 96-100.
- Özdemir, Ü. Ö., Akkaya, N., & Özbek, N. (2013). New nickel (II), palladium (II), platinum (II) complexes with aromatic methanesulfonylhydrazone based ligands. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation. *Inorganica Chimica Acta*, 400, 13-19.
- Rakha, T. H., El-Gammal, O. A., Metwally, H. M., & El-Reash, G. A. (2014). Synthesis, characterization, DFT and biological studies of

(Z)-N'-(2-oxoindolin-3-ylidene)

picolinohydrazide and its Co (II), Ni (II) and Cu (II) complexes. *Journal of Molecular Structure*, *1062*, 96-109.

- Singh, P. K., & Kumar, D. N. (2006). Spectral studies on cobalt (II), nickel (II) and copper (II) complexes of naphthaldehyde substituted aroylhydrazones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64(4), 853-858..
- El-Motaleb, A., Ramadan, M., & Issa, R. M. (2005). Synthesis, characterization and ascorbic acid oxidase mimetic catalytic activity of copper (II) picolyl hydrazone complexes. *Transition metal chemistry*, 30, 471-480.
- Santiago, P. H., Santiago, M. B., Martins, C. H., & Gatto, C. C. (2020). Copper (II) and zinc (II) complexes with Hydrazone: Synthesis, crystal structure, Hirshfeld surface and antibacterial activity. *Inorganica Chimica Acta*, 508, 119632.
- Al-Hazmi, G. A., & El-Asmy, A. A. (2009). Synthesis, spectroscopy and thermal analysis of copper (II) hydrazone complexes. *Journal* of Coordination Chemistry, 62(2), 337-345.
- Elsayed, S. A., Butler, I. S., Claude, B. J., & Mostafa, S. I. (2015). Synthesis, characterization and anticancer activity of 3-formylchromone benzoylhydrazone metal complexes. *Transition Metal Chemistry*, 40, 179-187..
- Saleh, R. A., Mohammad, H. A., & Saber, S. N. A. (2020). New Mixed Ligand Cobalt (II), Nickel (II) and Copper (II) Complexes of 2, 2'-Bipyridine-3, 3'-Dicarboxylic acid (bpdc) with 2-Mercapto-5-Phenyl-1, 3, 4-Oxadiazole (phozSH) and Their Antioxidant activity. *Oriental Journal of Chemistry*, 36(5), 834.
- Zhang, L., & Tang, N. (2007). Synthesis and Characterization of Benzoyl Vanillin Hydrazone and its Complexes with Biological Activities. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 37(3), 185-188.