
Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

skala.kamaran@ukh.edu.krd

satar.dawood@ukh.edu.krd,

nyan.najat@ukh.edu.krd,

aveen.zuber@ukh.edu.krd

tarik.ahmed@ukh.edu.krd

hussein.mohammed@tiu.edu.iq

mahmood.yashar@tiu.edu.iq

379

COMPARATIVE ANALYSIS: EXPLORING ENCAPSULATION IN JAVA AND

PYTHON PROGRAMMING LANGUAGES

SKALA KAMARAN OMER*, STAR DAWOOD MIRKHAN *, NYAN NAJAT HUSSEIN*, AVEEN ZUBER ALI*,

TARIK AHMED RASHID *, HUSSEIN MOHAMMED ALI**, MAHMOOD YASHAR HAMZA** and POORNIMA

NEDUNCHEZHIAN***
*Computer Science and Engineering, University of Kurdistan Hewler, Kurdistan Region- Iraq
**Computer Engineering Department, Tishk International University, Kurdistan Region, Iraq

***School of Computer Science and Engineering, Vellore Institute of Technology, Vellore- India

(Accepted for Publication: November 27, 2023)

ABSTRACT

Encapsulation is a fundamental principle of object-oriented programming, which allows for the hiding

of implementation details and the protection of data from unauthorized access. This paper evaluates the

concept of encapsulation in the programming languages Java and Python. The study examines the ways in

which encapsulation is implemented in each language, including access modifiers and methods of data

hiding. This research paper’s findings demonstrate that while both languages support encapsulation, the

syntax and specific implementation vary in each of them. In particular, Java's use of access modifiers such

as private, protected and public allows for a stricter level of encapsulation compared to Python's use of the

'_' and '__' prefix to denote private variables and methods.

KEYWORDS: Encapsulation; Java; Python; Object-oriented programming; Security

1. INTRODUCTION

ncapsulation plays a role, in OOP by

serving as a shield that prevents

programs from directly accessing data. It offers

advantages, such, as isolating data, improving

flexibility, promoting reusability, and ease of

testing. Access modifiers are used to encapsulate

data. Encapsulation allows a structured data

object's values or state to be held privately within

a class, preventing unauthorized users from

having direct access to it. As one of the principles

of OOP languages, which offers encapsulation,

the technique of implementation can differ. In this

article, the Java and Python programming

languages will be compared in terms of providing

encapsulation. To accomplish encapsulation in

Java language, a class must be declared as private,

and both public (Setter and Getter) methods must

be used to access and update the values of private

variables in the private class. However, this is not

the case in Python. Python and Java vary in terms

of simplicity for both (Setter and Getter) methods,

debugging and testing efficiency, and the number

of standard libraries, but both languages may

match in terms of security, readability, and many

other criteria that will be covered in this article.

In this study, the utilization of encapsulation is

done by using Java version 17 and Python version

3.11 to investigate the implementation of

E

https://doi.org/10.26682/csjuod.2023.26.2.35

mailto:skala.kamaran@ukh.edu.krd
mailto:nyan.najat@ukh.edu.krd
mailto:aveen.zuber@ukh.edu.krd
mailto:tarik.ahmed@ukh.edu.krd
mailto:hussein.mohammed@tiu.edu.iq
mailto:mahmood.yashar@tiu.edu.iq

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

380

encapsulation in both languages. The primary

objective of this research is to compare both Java

and Python languages by highlighting their

differences in encapsulation methods. The

structure of the paper follows as: background of

encapsulation for both languages is presented in

Section 2, the code implementations of

encapsulation for both Java and Python, as well

as advantages and disadvantages are represented

in Section 3, and the conclusion of this paper is

briefly presented in Section 4.

2. BACKGROUND

2.1 History of Encapsulation in Java and

Python

Even though various languages might be

useful for programmers, this article will describe

and compare two languages with the intention of

simplicity. Java and Python are well-known and

highly rated programming languages on reliable

websites. They are popular, and there is a high

demand for them in the job market. A beginner's

programming language should include

characteristics such as credibility, simplicity,

accessibility, and ease of learning. Encapsulation

is the process of enclosing data in a single class.

It is the technique that links the code to the data

that it manipulates (Khoirom, Sonia, Laikhuram,

Laishram, and Singh, 2020). Encapsulation is also

a barrier that prevents programs from outside the

barrier from accessing the data. Variables or data

in a class are concealed from all other classes and

may only be accessible through public methods of

the class in which they were defined (Ma and

Foster, 2007). James Gosling, Mike Sheridan, and

Patrick Naughton created the Java programming

language in June 1991 at Sun Microsystems,

which was a multinational company known for its

computer hardware, software, and network

technologies, released it as a significant product

in 1995 in which it was renamed from Oak to Java.

Many of the popular tools and applications that

operate at Sun Microsystems are powered by Java

(Johnson and Chandran, 2021).

The concept of encapsulation is used in OOP

to create abstract datatypes that restrict

modifications to their external interface. The

outcome is the development of programs that

possess enhanced maintainability and

troubleshooting capabilities. The use of different

access modifiers, such as private or public, when

declaring variables could aid the management of

encapsulation to a certain degree. Nevertheless, it

is important to note that in programming

languages such as Java, only the names of the

variables are protected, but the actual objects

being referred to by these variables are not

secured. It is possible for an external object to get

references to objects stored in the private

variables of a compound object via method calls

(Skoglund, 2003).

Encapsulation is a fundamental principle in the

Java programming language since it controls the

accessibility of data. It serves many purposes,

including:

 Adapting the code to meet specific needs.

 Facilitating loose coupling between

components.

 Simplifying the application to effectively

accomplish its objectives.

 Permits the modification of a code section

without affecting other program features or lines

of code.

In the late 1980s, Guido van Rossum created

Python at the Central Wiskunde & Informatica

(CWI) in the Netherlands (Rossum & Guido,

2007), where it was implemented in December

1989. Python has been proposed as an alternative

to the ABC programming language that can

handle exceptions and interact with the Amoeba

operating system. Python could be a good choice

for both learning and global programming.

Python is a high-level, OOP language. In recent

years, Python has earned a reputation as an

extremely user- and beginner-friendly

programming language (Johnson & Chandran,

2021). The primary benefit of implementing

encapsulation in Python is that users do not need

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

381

to understand the method and data design and can

instead concentrate on utilizing these useful,

encapsulated entities within their applications.

Consequently, the code becomes more structured

and well-arranged. Additionally, the user

experience has been greatly improved, making

applications easier to understand. Encapsulation

serves as a safeguard, against alterations or

removals. It offers the advantage of protecting

data and methods, from changes. In Python

encapsulation is achieved through access

modifiers. These modifiers provide users with a

level of security by ensuring that access

conditions are not violated.

2.2 Previous Related Works

In the world of OOP, developers have long

recognized the importance of encapsulation and

information hiding. These principles have the

potential to enhance software development

improve software quality and make maintenance

easier. This section presents an overview of

studies that delve into the implementation and

effectiveness of encapsulation and information

hiding in OOP languages. It offers insights, into

the difficulties and subtleties associated with

these principles.

2.2.1 Guidelines and Best Practices

Many coding conventions and guidelines

stress the significance of encapsulation and

concealing information. For example, the "Java

Programming Language Code Conventions"

which is publicly available in their official

website, advise, against declaring instance or

class variables as public unless there is a

justification. The purpose of these guidelines is to

encourage programmers to be disciplined and

enhance code quality by advocating

coding practices.

2.2.2 Empirical Studies

Numerous real-world software development

studies have delved into the implementation and

adherence, to encapsulation and information-

hiding principles. (Menzies & Haynes, 1996)

analyzed Smalltalk applications to assess the

information hiding's prevalence. They posited

that if programs adhere to the principle of

encapsulation, there should be fewer calls to other

classes. However, their examination of 2,000

classes across five applications revealed a

relatively low incidence of information

concealment. (Elish, Omar, & Offutt, 2002)

delved into the adherence to coding standards and

practices within open-source Java classes. They

reported that prohibiting the creation of public

member variables was the third most problematic

coding technique, suggesting that maintaining

encapsulation can be challenging, even for

experienced programmers. (Fleury & E, 2001)

conducted a study involving 28 students studying

OOP. Interestingly, many students prioritized

reducing the number of classes and lines of code

over encapsulation. This perspective underscores

the need for improved education and awareness

regarding encapsulation's benefits and principles.

2.2.3 Challenges and Critiques

While encapsulation and information hiding

are lauded in theory, their practical application

can be complex and subject to various challenges:

 Language Support: Some programming

languages may not provide robust support for

encapsulation and information hiding. For

example, C++ cannot separate the declaration of

public and private member variables, potentially

hindering the practice of encapsulation.

 Inheritance Implications: The inheritance

model in certain languages, such as Smalltalk, can

compromise encapsulation by granting subclasses

full access to superclass member variables. This

can make it challenging to update superclass code

without impacting clients.

2.2.4 Impact on Software Quality

Despite the empirical evidence suggesting that

encapsulation and information hiding are not

universally observed, their precise impact on

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

382

software quality remains an open question. Few

studies have rigorously examined whether

adherence to these principles leads to higher-

quality software or whether deviations have

noticeable consequences.

This research article (Pizarro-Vasquez,

Barahona, & Mig, 2021), has shown that the

software quality has been improved when

encapsulation is implemented, also, for the

runtime speed, the output of the system is faster

and more robust, which is presented in their

results, in many research articles, such as

(Arvanitou, Ampatzoglou, Chatzigeorgiou, &

Carver, 2020). In terms of debugging,

encapsulation has shown remarkable results in

several ways, including isolation of the code,

which makes it easier to check and debug for the

programmers, also, in terms of testing, especially

unit testing, have an effective approach for error

handling. In addition, encapsulation can be used

for debugging to maximize code robustness

(Arvanitou, Ampatzoglou, Chatzigeorgiou, &

Carver, 2020).

Table (1 (Nilsen, 2007), represents an in-

depth evaluation of how encapsulation is carried

out in both Java and Python programming

languages, with a particular focus on the

differences between these two languages. It

describes important things including access

modifiers, the benefit of the Getter and Setter

methods, the amount of difference

implementation, and the creation of properties,

and gives a brief example for each language. It

also addresses how encapsulation affects

inheritance and how both Java and Python handle

the appearance of classes across class hierarchies

(Nilsen, 2007).

Table (1) :- Comparison of encapsulation in Java and Python.

Table(2 (Khoirom, Sonia, Laikhuram,

Laishram, & Singh, 2020), provides a summary

of the benefits and drawbacks of encapsulation, in

Java. It outlines the advantages, such as improved

data security, precise control over attribute access,

flexibility, easy maintenance, and simplified

debugging. At the time it acknowledges the

disadvantages like verbosity caused by Getter and

Setter methods, performance overhead lack of

flexibility, and the potential for excessive code

duplication, due to boilerplate code (Khoirom,

Sonia, Laikhuram, Laishram, & Singh, 2020).

Aspect Java Python

Access Modifiers Public, Private, Protected, Default Public, Private

(Getter and Setter) Functions Common practice Less common, direct attribute access

Encapsulation Enforcement Strong (Compiler enforces access) Weak (interpreter)

Properties JavaBeans for creating properties property decorator

Example private int age

Getter and setter methods

property and attribute setter functions

Inheritance Impact Subclasses access protected members Subclasses access private members

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

383

Table(2) :- Advantages and disadvantages of Java encapsulation.

Advantages Disadvantages

Improved data security and integrity More code due to (Getter and Setter) methods

Have Control access to private classes Performance overhead

Easily can adapt and modify the code Not flexible in some designs

Enhanced maintainability This can lead to a lot of repetitive code

Enables debugging and error tracing There may be complicated inheritance hierarchies.

Table (3 (Khoirom, Sonia, Laikhuram,

Laishram, & Singh, 2020), illustrates the

summary which outlines the advantages and

disadvantages of encapsulation, in Python

language. It highlights the benefits, such as the

simplicity of using properties the reduction in

code, flexibility, dynamic attribute behavior

improved code readability and conciseness.

Moreover, it also discusses the drawbacks like the

lack of access control (no 'private' keyword)

potential misuse, stringent encapsulation

compared to Java decreased protection for

internal attributes and added complexity when

handling inheritance without the 'protected'

access modifier. These tables provide insights

into understanding how encapsulation works in

both Java and Python. They also allow for a

comparison between their approaches to this

concept, in OOP (Khoirom, Sonia, Laikhuram,

Laishram, & Singh, 2020).

Table (3) :- Advantages and disadvantages of Python encapsulation.

3. Implementation of Encapsulation in Java

and Python

This section will explore the practical

considerations involved in establishing

encapsulation in the Java and Python

programming languages. Both languages have

unique methods for accomplishing encapsulation,

and it will thoroughly examine these features of

the encapsulations.

3.1 Encapsulation in Java Language

In Java, the concept of encapsulation is

enforced by using access modifiers and Getter

and Setter methods. These access modifiers, such,

as public, protected, and default (package private)

provide developers with the ability to manage the

visibility of class members. By declaring

attributes as private and offering Getter and Setter

methods Java ensures that data encapsulation

remains intact. This approach enhances security

and control over data access, which results in

code integrity, due to the necessity of using Getter

and Setter methods (Khoirom, Sonia, Laikhuram,

Laishram, & Singh, 2020).

Advantages Disadvantages

Syntax made easier with properties Access control is limited (no "private").

Reduce the repetitive code Possible abuse (straight access to attributes)

Class characteristics that can be changed easily Separation is not as precise as it is in Java.

Supports the behavior of flexible attributes Less safety for objects on the inside

Made the code easier to read and simpler. There is no "protected" word when it comes to inheritance.

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

skala.kamaran@ukh.edu.krd

satar.dawood@ukh.edu.krd,

nyan.najat@ukh.edu.krd,

aveen.zuber@ukh.edu.krd

tarik.ahmed@ukh.edu.krd

hussein.mohammed@tiu.edu.iq

mahmood.yashar@tiu.edu.iq

384

3.1.1 Advantages of Encapsulation in Java

Fig. (1) :- Improved Control.

This Java example in Fig. (1, highlights the

benefits of encapsulation by making a Person

class with the name and age as private properties.

The class allows you to access and change these

characteristics in a specific manner. The get Name

method enables outside code to be able to get the

name attribute and guarantee that it only allows

for reading. The set Age method gives controlled

access to the age attribute, ensuring that it cannot

be set to a negative number. This separation

makes it easier to control who can access and alter

the data, therefore the changes that are not meant

or not valid will not take place (Khoirom, Sonia,

Laikhuram, Laishram, & Singh, 2020)

3.1.2 Disadvantages of Encapsulation in Java

The Java example below Fig. (2, demonstrates

a potential issue with encapsulation, which is that

it can make the code lengthy. The student class

has private variables for name and age while

offering each field its own Getter and Setter

methods. Encapsulation helps keep control over

how data is obtained, but it makes code lengthier

because each property needs a Getter and a

Setter method. This can make the code longer and

harder to understand, especially for classes with a

lot of properties (Khoirom, Sonia, Laikhuram,

Laishram, & Singh, 2020)

mailto:skala.kamaran@ukh.edu.krd
mailto:nyan.najat@ukh.edu.krd
mailto:aveen.zuber@ukh.edu.krd
mailto:tarik.ahmed@ukh.edu.krd
mailto:hussein.mohammed@tiu.edu.iq
mailto:mahmood.yashar@tiu.edu.iq

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

skala.kamaran@ukh.edu.krd

satar.dawood@ukh.edu.krd,

nyan.najat@ukh.edu.krd,

aveen.zuber@ukh.edu.krd

tarik.ahmed@ukh.edu.krd

hussein.mohammed@tiu.edu.iq

mahmood.yashar@tiu.edu.iq

385

Fig. (2) :- Increased Code Length.

3.2 Encapsulation in Python language

In Python encapsulation is approached in a

manner with conventions being relied upon rather

than strict enforcement. Though Python doesn't

have members it utilizes a single leading

underscore (e.g., _variable) to indicate that an

attribute is intended for internal use. Additionally,

developers can make use of the @property

decorator to define Getter methods. If required

@<attribute>. setter methods to manage attribute

access. This approach reduces code and simplifies

attribute access, but it depends on convention and

may not be as strict as Java's

enforcement (Khoirom, Sonia, Laikhuram,

Laishram, & Singh, 2020).

3.2.1 Advantages of Encapsulation in Python

The Python code example below illustrates in

Fig. (3, the Employee class with the private

variables with two properties including (_name

and _salary) which represents how prevention can

be useful for data privacy. Even though that

Python is not as strict about access rules as Java,

the use of a single underscore in front of a

property of the variables indicates that it is private

and should not be viewed through outside code.

The class also has a set salary method that makes

it impossible to change the salary negatively. This

separation makes the code easier to read and

protects it from people who shouldn't be able to

get to it (Khoirom, Sonia, Laikhuram, Laishram,

& Singh, 2020).

mailto:skala.kamaran@ukh.edu.krd
mailto:nyan.najat@ukh.edu.krd
mailto:aveen.zuber@ukh.edu.krd
mailto:tarik.ahmed@ukh.edu.krd
mailto:hussein.mohammed@tiu.edu.iq
mailto:mahmood.yashar@tiu.edu.iq

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

skala.kamaran@ukh.edu.krd

satar.dawood@ukh.edu.krd,

nyan.najat@ukh.edu.krd,

aveen.zuber@ukh.edu.krd

tarik.ahmed@ukh.edu.krd

hussein.mohammed@tiu.edu.iq

mahmood.yashar@tiu.edu.iq

386

Fig. (3):- Protection from Unauthorized Access.

3.2.2 Disadvantages of Encapsulation in Python

The Python code below in Fig. (4,

demonstrates a possible downside of

encapsulation which is the requirement for an

additional code. The student class, which has the

private properties __name and __age. Separate

Getter and Setter methods are required to access

or alter these properties. While encapsulation

protects attributes from direct outside

accessibility, it requires additional code to build

and preserve these methods, increasing code

length and possibly making the source code more

complicated as compared with languages that

allow direct attribute access (Khoirom, Sonia,

Laikhuram, Laishram, & Singh, 2020).

Fig. (4) :- Additional Coding Required.

mailto:skala.kamaran@ukh.edu.krd
mailto:nyan.najat@ukh.edu.krd
mailto:aveen.zuber@ukh.edu.krd
mailto:tarik.ahmed@ukh.edu.krd
mailto:hussein.mohammed@tiu.edu.iq
mailto:mahmood.yashar@tiu.edu.iq

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

387

Table (4 examines the context of OOP, in

which encapsulation is a mechanism that

manages the accessibility of a class's properties

and methods. Access to private variables is

restricted to the class inside which they are

declared. Subclasses are not permitted access to

private variables. Access to protected members is

restricted to the same class and its subclasses and

cannot be directly obtained via object instances.

In contrast, public members may be accessed

from any location, including the class itself, its

subclasses, and via instances of the class. The

below table presents a comprehensive overview

of the primary accessibility attributes associated

with various forms of encapsulation (Boyarsky,

Jeanne, & Selikoff, 2020).

Table (4):- Accessibility states of encapsulation.

 Table (5 presents the encapsulation syntax in

both languages, which is a key principle in

Python and Java programming languages and

serves as a mechanism for regulating access to

class members, including both attributes and

methods. In the Python programming language, it

is customary to represent private variables by

using a single underscore as a prefix (e.g.,

_VariableName). On the other hand, protected

variables are not expressly specified but are

indicated by the same underscore prefix.

Nevertheless, these norms do not constitute

stringent access control measures, rather, they

depend on the conscientiousness of developers. In

the Java programming language, however, access

control is implemented via explicit keywords.

Private variables are declared using the private

keyword, such as private String VariableName.

Similarly, protected variables are stated using the

protected keyword, for example, protected String

VariableName. Public variables are declared

using the public keyword, as seen by the public

String VariableName. The following table is a

concise overview of the syntax used for

encapsulation in the programming languages

Python and Java (Khoirom, Sonia, Laikhuram,

Laishram, & Singh, 2020).

 Table (5) :- Defining Syntax of Encapsulation in Python and Java.

Type Python Java

Private Varible-Name private String VaribleName

Protect _Varible-Name protect String VaribleName

Public Varible-Name public String VaribleName

3.3 The difference between Setter and Getter

methods for both Python and Java

In OOP, Getters and Setters methods are used

because of encapsulation, which is presented with

Type Use your class to access Use sub-class to access Use objects to access

Private Yes No No

Protect Yes Yes No

Public Yes Yes Yes

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

388

code examples in Fig. (5, for both languages. This

maintains the privacy of private variables to make

sure that only the Getters and Setters methods

may access and modify the variables. The Java

language should create two methods with

different names to implement Getters and Setters

but in Python, it can put the same name for

Getters and Setters but with different attributes

and properties (Farooq & Khan, 2023).

Fig. (5) :- Getters and Setters Methods Example for Python and Java.

4. CONCLUSION

This paper examines the notion of

encapsulation in both Java and Python,

underlining its importance in protecting data

integrity, simplifying code maintainability, and

regulating access to class attributes. By using

examples, we have shown the implementation of

encapsulation and its associated merits and

drawbacks in several codes. Nevertheless, the

domain of software engineering exhibits a

dynamic nature, whereby the advancements in

technology give conception to novel

encapsulation prospects and obstacles. Potential

areas for further investigation include the

exploration of methods to enhance the efficiency

of encapsulation strategies. This might include

the examination of automated code generation

tools that mitigate the length often associated with

encapsulation in the Python programming

language. Additionally, alternative mechanisms

in Java could be explored to achieve a balance

between control and code conciseness. In addition,

with the growing complexity and distribution of

software systems, there is a demand for study to

explore the application of encapsulation concepts

inside distributed and microservices architectures.

Furthermore, it is necessary to do additional

research on the effects of encapsulation on

performance and memory use in contexts with

limited resources. The notion of encapsulation is

an important aspect in the field of software

development since continuous research will

significantly contribute to its implementation in

future software systems.

REFERENCES

Arvanitou, E.-M., Ampatzoglou, A., Chatzigeorgiou,

A., &

 Carver, J. C. (2020). Software Engineering Practices

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 379-389, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

389

for Scientific Software. Journal of Systems and

Software.

doi:https://doi.org/10.1016/j.jss.2020.110848

Boyarsky, Jeanne, & Selikoff, S. (2020). Methods and

Encapsulation. In J. Boyarsky, & S. Selikoff,

OCP Oracle Certified Professional Java SE 11

Programmer I Study Guide: Exam 1Z0-815 (pp.

247-295). Wiley. doi:10.1002/9781119584773

Elish, Omar, M., & Offutt, J. (2002). The adherence of

open source Java programmers to standard

coding practices. 193-198.

Farooq, M. S., & Khan, T. z. (2023). Comparative

Analysis of Widely use Object-Oriented

Languages. arXiv e-prints.

Fleury, & E, A. (2001). Encapsualtion and reuse as

viewed by java students. ACM SIGCSE Bulletin,

33(1), 189-193.

Johnson, B., & Chandran, A. S. (2021).

COMPARISON BETWEEN PYTHON, JAVA

AND R PROGRMMING LANGUAGE IN

MACHINE LEARNING. International

Research Journal of Modernization in

Engineering Technology and Science, 3288-

3293.

Khoirom, S., Sonia, M., Laikhuram, B., Laishram, J.,

& Singh, T. D. (2020). Comparative Analysis of

Python and Java for Beginners. International

Research Journal of Engineering and

Technology (IRJET), 07(08), 4384-4407.

Ma, K.-K., & Foster, J. S. (2007). Inferring Aliasing

and Encapsulation Properties for Java.

OOPSLA’07,, 1-18.

Menzies, T., & Haynes, P. (1996). Empirical

Observations of Class-level Encapsulation and

Inheritance. Technical report, Department of

Software Development, Monash University, 1-

8.

Nilsen, K. (2007). Improving abstraction,

encapsulation, and performance within mixed-

mode real-time Java applications. Proceedings

of the 5th international workshop on Java

technologies for real-time and embedded

systems, 13-22.

Pizarro-Vasquez, G. O., Barahona, F., & Mig. (2021).

Encapsulation Component and Its Incidence

into Scientific Software Performance. In Smart

Innovation, Systems and Technologies.

Springer. doi:https://doi.org/10.1007/978-981-

16-4126-8

Rossum, V., & Guido. (2007). Python Programming

Language. USENIX annual technical

conference.

Skoglund, M. (2003). Practical Use of Encapsulation

in Object-Oriented Programming. Software

Engineering Research and Practice , 554-560.

