
Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 400-406, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

400

**, NASEER ALWAN HUSSEIN

**Diyala Education Directorate, Ministry of Education, Diyala- Iraq
***Computer of engineering Networks, College of fine Arts, University of Diyala- Iraq

(Accepted for Publication: November 27, 2023)

ABSTRACT
Data compression using Huffman coding refers to decreasing the quantity of data without decreasing

the quality of original file. Besides that, it can retrieve original data in decompression process without losing

any details. In this research, an 9bit/8bit encoding and decoding process divide the block design. The input

transmission code consists of 9-bit which are variable in length coding and can be suitable for high-speed

applications. Coding and decoding blocks were designed separately. The encoder module gets the 9-bit data

used as input and delivers the 8-bit coded-output from encoder design. this output data used as input to the

decoder module to get the 8-bit as output form decoder design. In this research, the proposed design includes

encoder and decoder were achieved Compression Ratio up to 52% from original data size and saving

percentage up to 47.95%. The suggested design was implemented by using ASIC and FPGA design

methodologies to execute the compression and decompression architectures. The architecture of coding and

decoding process has been created using Verilog HDL language. Quartus II 11.1 Web Edition (32-Bit). In

addition, simulated using ModelSim-Altera 10.0c (Quartus II 11.1) Starter Edition. And it is implemented

using Altera FPGA (DE2) for real time implementation. Finally, all of the blocks were combined together

to have an integrated system.

KEYWORD: Data compression, Symbols, Encoding, Delays, Decoding

INTRODUCTION

sing Huffman coding, lossless data

compression reduces the amount of data

used to represent a file without lowering the

quality of the data source [1]. Furthermore, it may

retrieve original information during

decompression without missing any data. This

study will proceed by means of the strategy used

for designing and putting the coding and decoding

process into practice over the course of the work.

This project was well managed and organized. By

creating a Huffman architecture, which is

implemented based on the binary tree to extract

the codewords, the process for creating this

project was generalized. The HDL language

Verilog was used for creating the code for

Huffman, and every module's construction were

validated. Following that, to accomplish real-time

layout execution, an FPGA DE2 board was

utilized execution of the system [2]. It was

described how to develop a Huffman design. It

was also addressed how to implement an FPGA

and how to validate module-level and top-level

designs. Basically, there are numerous stages to

the design technique [3]. The first two steps

concern Huffman construction, whereas the third

step is unique to FPGA Huffman implementation.

Before the final ASIC implementation, all ASIC

designers have consistently employed FPGAs as

a tool to test and validate their designs. A matrix

of reconfigurable gate array logic circuitry is

found inside an FPGA. The internal circuitry of

an FPGA is coupled in such a way during

configuration that a hardware implementation of

the software program is produced. FPGAs

employ specialized hardware for using this

approach, ideas that process logic but lack an

operating system can be tested and verified in

hardware without having to go through the

drawn-out manufacturing process of a custom

ASIC design [4]. It is one of the greatest

techniques to simulate designs to obtain the actual

system behavior, and to make it more thorough, it

is confirmed by using an FPGA implementation.

Additionally, designers have access to ASIC

integrated circuit technology for the

implementation of digital logic. The final four

steps concern the investigation and improvement

of the Huffman design's power usage [5].

Steps of Building the Tree

U

https://doi.org/10.26682/csjuod.2023.26.2.37

HIGH PERFORMANCE OF CODING AND DECODING PROCESS FOR

DATA COMPRESSION USING VARIABLE IN LENGTH CODING

*Ministry of Water Resources, State Commission for Reservoirs and Dams, Diyala- Iraq
MAAN HAMEED* , AHMED LATEEF HAMEED

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 400-406, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

401

The Huffman code generation process, which

uses the technique of exchanging fixed length

codes for input data ASCII by VLC, has been

shown to be advantageous in cutting down on the

total length of the information. The Huffman

coding algorithm is simple and may be

understood using the Huffman code tree. By

simply traversing the binary tree from root to

node after creating a Huffman tree, the algorithm

generates a codeword for each symbol from the

text. It gives right hand branches a value of 1 and

left hand branches a value of 0. For each symbol

in the text, the static Huffman method as shown

above needs a specific number of frequencies. It

is necessary to record the output codes, Huffman

tree, and data frequency. This information is

saved in the compressed file's header and is used

throughout the decompression process. The first

step in creating a Huffman tree is to arrange the

text data according to each character's frequency

in order to extract its code. Each node starts out

with a symbol and its probability [6].

Queue of Data
Both the encoder and the decoder use the

Huffman tree. The uppercase letters and the space

make up the alphabet. The following assumed

frequencies form the basis of the Huffman tree.

The frequency of each character is represented by

each number. 180 spaces are present every 1000

letters. For the purpose of creating a Huffman

tree, arrange the alphabetic characters in

ascending order by their frequencies. Each leaf on

a list of available leaves should be assigned to an

alphabetic symbol and listed in ascending order

of frequency. The binary tree with branches

labeled with bits 0 and 1 is created during the

coding process. Figures 1 depict the node's block

construction. Figure 2 shows the top-level

Huffman design in RTL.

 Fig.(1): -Explanation a construction of nodes

Fig.(2):-RTL viewer of top-level Huffman design

4.2. Codewords Generating

The best compression rate for compressed

block length magnitude is achieved by the

Huffman coding procedure, which generates

Variable Length Codes (VLC) [7]. The

recommended approach is to indicate a bigger

number of bits for codewords that occur

infrequently and a smaller number of bits for

those that do. It is possible to create Huffman

codes by creating a Huffman tree, which displays

the Huffman tree for a sequence of data (all

English alphabets), starting from the highest

frequency (E=130), and ending with the lowest

frequency (Z=1). The tree has annotated

frequencies, and the generated codewords of the

Huffman encoder are displayed in Table 1.

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 400-406, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

402

Table (1): -Codewords size

4.2.1. Specifications of Huffman Tree

Huffman design based on the binary tree used

to generating codeword bits for compressed text

data. Binary tree consist of number of nodes and

leaves, each node connected by two leaves or

nodes. This is illustrated in Table 2.

New size Codeword bits Codeword Frequencies Characters No

540 3 110 180 Space 1

390 3 010 130 E 2

372 4 1111 93 T 3

312 4 1011 78 N 4

308 4 1010 77 R 5

296 4 1000 74 I 6

296 4 1001 74 O 7

292 4 0111 73 A 8

252 4 0010 63 S 9

220 5 11100 44 D 10

175 5 01100 35 H 11

175 5 00111 35 L 12

150 5 00011 30 C 13

140 5 00010 28 F 14

135 5 00001 27 P 15

135 5 00000 27 U 16

150 6 111011 25 M 17

114 6 011011 19 Y 18

96 6 011010 16 G 19

96 6 001101 16 W 20

91 7 1110101 13 V 21

63 7 1110100 9 B 22

40 8 00110011 5 X 23

24 8 00110010 3 K 24

24 8 00110000 3 Q 25

18 9 001100011 2 J 26

9 9 001100010 1 Z 27

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 400-406, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

403

Table (2): -Specifications of Huffman tree
Levels Depth Nodes Characters

Level 1 0 26 _

Level 2 1 16, 25 _

Level 3 2 11, 15, 19, 24 _

Level 4 3 10, 7, 14, 17, 18, 23 E, SPEACE

Level 5 4 8, 9, 6, 13, 22 S, A, I, O, R, N, T

Level 6 5 5, 12, 21 U, P, F, C, L, H, D

Level 7 6 4, 20 W, G, Y, M

Level 8 7 2, 3 B, V

Level 9 8 1 Q, K, X,

Level 10 9 _ Z, J

Fig.(3):- Comparison of compressed and uncompressed data sizes

As it could be summarized from Table 2,

Huffman tree consists of 26 nodes, 27 leaves and

10 levels with different depths. The minimum

depth was 0 while the maximum was 9-segments.

All nodes and leaves are distributed in these 10

levels in such a way that high compression ratio

could be achieved. Moreover, the difference in

data sizes before and after compression is clear in

Figure 3. The saving percentage in high

frequency is increased by increasing the

frequency of characters and vice versa.

Measuring Performance of Compression

Process

There are various models for gauging the

execution of the coding process, depending on the

nature of the implementation [8]. Space

efficiency will be the key consideration when

judging the quality. It is challenging to gauge the

general effectiveness of a coding method because

compression behavior is dependent on the

recurrence of characters in the source text. the

degree of quality determined by the model and the

source of the compressed data. Additionally,

coding mode is determined by the type of

compression used. By calculating the size of the

uncompressed data (original data), the

compressed size was calculated. This is the same

as adding all of the table 1's letter frequencies.

The process of determining the overall size for

original then follows.

0

200

400

600

800

1000

1200

1400

1600

1
8
0

1
3
0

9
3

7
8

7
7

7
4

7
4

7
3

6
3

4
4

3
5

3
5

3
0

2
8

2
7

2
7

2
5

1
9

1
6

1
6

1
3 9 5 3 3 2 1

S
iz

e

Frequency
Orginal size compressed size

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 400-406, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

404

Total Frequencies = 180 +130 +93 +78 +77 +74 +74 +73 +63 +44 +35 +35 +30 +28 +27 +27 +25 +19

+16 +16 +13 +9 +5 +3 +3 +2 +1 = 1180

The size of original data is now multiplied by 8-bit ASCII to generate the representatives of the

characters in Table 1 as follows:

Original Data Size = Total Frequency *ASCII Length (1)

Original Data Size: 9440 bits (1180 x 8).

For compression of the data in Table 1, the following is done:

Compressed Data Size = Codeword Bits * Frequency (2)

= 540+ 390+ 372+ 312+ 308+ 296+ 296+ 292+ 252+ 220+ 175+ 175+ 150+ 140+ 135+ 135+ 150+

114+ 96+ 96+ 91+ 63+ 40+ 24+ 24+ 18+ 9.

Compressed Data Size= 4913 bits.

Next are the measurements that utilized to

estimate the quality of lossless Huffman coding

[9].

Compression Ratio: It is defined as the ratio of

the compression file's and the initial file's

information sizes.

𝐂𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐑𝐚𝐭𝐢𝐨 = (
Size after compression

Size before compression
) ∗ 100% (3)

=
4913

9440

= 52.04%

Compression Factor: it defines as the inverse

of the data compression ratio. Represent the ratio

between original file and the size of new

compressed file.

𝐂𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐅𝐚𝐜𝐭𝐨𝐫 = (
Size before compression

Size after compression
) (4)

=
9440

4913

= 1.92143

proportion of savings This is obtained by

computing the source file's percentage shrinkage

as shown below. It is commonly recognized as a

percentage-based indicator of how effective a

coding method performs

.

𝐒𝐚𝐯𝐢𝐧𝐠 𝐏𝐞𝐫𝐜𝐞𝐧𝐭𝐚𝐠𝐞 = (
Size before compression−Size after compression

Size before compression
) 100% (5)

= (
9440 − 4913

9440
) 100%

= 47.95%

A significant amount of data size can be saved

with the Huffman design method, up to 47.95%.

VLC which is capable of achieving the

shortest possible code word length for a particular

symbol which can be greater than its entropy [10].

Using balancing Huffman binary tree and

dictionary-based coding. The proposed technique

based on the type and structure of the input data.

Variable length codes for compressed size have

been derived in a particular way based on the

depth of binary tree proposed, entropy based

coding, and non-balancing tree.

The computed chance of happening for any

potential value of the source file has been used to

determine how to get variable length codes for

compressed size. Additionally, constructing a

Huffman tree to generate codewords and

evaluating the performance of the suggested

approach for compression based on the kind and

structure of the input data.

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 400-406, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

405

Simulation of Huffman Results

A Clk signal and 8-bit ASCII are used as

encoder inputs to represent input data. 9-bit

output data with variable length coding was

produced by Huffman. As shown in Figure 2, the

range of codeword lengths for representing

encoder outputs ranged from 3-bit codewords for

the highest frequency to 9-bit codewords for the

lowest frequency. In contrast, the decoder module

used a Clk signal with 9-bits of data as input to

produce 8-bit ASCII to represent the decoder. on

the basis of the validation waveform in Figure 4.

The output of the encoder and decoder modules'

Huffman approximated output is turned off when

the e-d signal is set to a high level. In this

instance, the frequency scaling state affects the

encoder output signal.

Fig.(4): -Huffman waveform validations

CONCLUSION

A Huffman coding for data compression has

been proposed using binary trees for compressing

and uncompressing text data without sacrificing

any features in order to fully utilize lower size in

data compression. The frequency of the input data

determines the length of the codewords produced

by the coding process, which produces 3-bit

codewords for the highest frequencies across all

series of data frequencies. Following that,

increase the frequency till the codeword length

reached 9 bits at the lowest data frequency. As can

be seen, static Huffman coding was used to

reduce data from 9440 bits to 4913 bits, which

resulted in a reduction of 47.95% from the

original size with a compression ratio of 52.04%

and a compression factor of 1.9214. The length

and Huffman algorithm were accomplished.

REFERENCES
M. Hameed., A. Khmag., F.Z. Rokhani., A. R. Ramli,

“VLSI Implementation of Huffman Design

Using FPGA with A Comprehensive Analysis

of Power Restrictions”, International Journal of

Advanced Research in Computer Science and

Software Engineering (IJARCSSE), 5(6): 49-

54. (2015).

M. Hameed, “Low Power Approach for

Implementation of Huffman Coding”, ISBN-

13: 978-620-2-31711-5 & EAN:

9786202317115 & Book language: English &

Publishing house: Scholars' Press & Website:

http://www.scholars-press.com & Number of

pages: 56 & published on: 2018-09-20. (2018).

R. Stasinski and G. Ulacha, "Mixed Huffman codes for

on-line and off-line applications," 2022 Data

Compression Conference (DCC), Snowbird,

UT, USA, 2022, pp. 483-483, doi:

10.1109/DCC52660.2022.00094.

A. Fruchtman, Y. Gross, S. T. Klein and D. Shapira,

"Weighted Adaptive Huffman Coding," 2020

Data Compression Conference (DCC),

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 400-406, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

406

Snowbird, UT, USA, 2020, pp. 368-368, doi:

10.1109/DCC47342.2020.00059.

M. Hameed., A. Khmag., F.Z. Rokhani., A. R. Ramli.

“A New Lossless Method of Huffman Coding

for Text Data Compression and Decompression

Process with FPGA Implementation”, Paper

presented at the International Conference of

Computer Science Engineering and Technologi

(COMSCET), (2016).

Chen, C.-Y., Pai, Y.-T., &Ruan, S.-J.(2006). Low

power Huffman coding for high performance

data transmission. Paper presented at the 2006

ICHIT'06, International Conference on Hybrid

Information Technology: 71 – 77.

M. Hameed., H. Shakor., I. Razak, “Low Power Text

Compression for Huffman Coding using Altera

FPGA with Power Management Controller”,

Paper submitted at the 1st International

Scientific Conference of Engineering Sciences

- 3rd Scientific Conference of Engineering

Science (ISCES). 978-1-5386-1498-3/

18/31.00$©2018 IEE. . (2018).c

J. Yan and L. Wang, "The Novel Improving

Algorithms on DRA Audio Entropy Coding,"

2020 IEEE International Conference on Signal

Processing, Communications and Computing

(ICSPCC), Macau, China, 2020, pp. 1-4, doi:

10.1109/ICSPCC50002.2020.9259450.

R. Pal, "Speech Compression with Wavelet Transform

and Huffman Coding," 2021 International

Conference on Communication information

and Computing Technology (ICCICT),

Mumbai, India, 2021, pp. 1-4, doi:

10.1109/ICCICT50803.2021.9510116.

Y. Jianjun and L. ChunQuan, "Research and

Improvement of Huffman Compression

Method Based on Linear Linked Forest," 2021

International Conference on Education,

Information Management and Service Science

(EIMSS), Xi'an, China, 2021, pp. 495-499, doi:

10.1109/EIMSS53851.2021.00112.

M Hameed, F Zaman, AR Ramli, A Khmag.” CMOS

technology using clock gating techniques with

tri-state buffer”, Walailak Journal of Science

and Technology (WJST), V(14)4, 2017. [1]

