
Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

dildar.masood@dpu.edu.krd ,

subhi.rafeeq@dpu.edu.krd

rizgar.khuder@nawroz.edu.krd

,sagvan.saleh@uod.ac

zryan.rashid@spu.edu.iq ,

mohammed.abdulrazaq@dpu.edu.krd

416

SINGLE-THREADING BASED DISTRIBUTED-MULTIPROCESSOR-

MACHINES AFFECTING BY DISTRIBUTED-PARALLEL-COMPUTING

TECHNOLOGY

DILDAR MASOOD ABDULQADER*, SUBHI R. M. ZEEBAREE**, RIZGAR R. ZEBARI***, SAGVAN ALI

SALEH****, ZRYAN NAJAT RASHID*****and MOHAMMED A. M.SADEEQ******

*IT Dept., Technical College of Informatics Akre, Duhok Polytechnic University,

 Kurdistan Region-Iraq
**Energy Eng. Dept., Technical college of Engineering, Duhok Polytechnic University,

 Kurdistan Region-Iraq
***Computer Science Dept., College of Science, Nawroz University, Duhok,

Kurdistan Region-Iraq
****Electrical and Computer Engineering Dept., College of Engineering, University of Duhok,

Kurdistan Region-Iraq
*****Computer Network Dept., Sulaimani Polytechnic University, Sulaimani,

Kurdistan Region-Iraq
******ITM Dept., Technical College of Administration, Duhok Polytechnic University,

Kurdistan Region-Iraq

(Accepted for Publication: November 27, 2023)

ABSTRACT
The objective of this study is to propose a methodology for developing a distributed memory system

with multiple computers and multicore processors. This system can be implemented on distributed-shared

memory systems, utilizing the principles of client/server architecture. The presented system consists of two

primary components: monitoring and managing programs executed on distributed-multi-core

architectures with 2, 4, and 8 CPUs in order to accomplish a specific task. In the context of problem-

solving, the network has the capacity to support multiple servers along with one client. During the

implementation phase, it is imperative to consider three distinct scenarios that encompass the majority of

design alternatives. The proposed system has the capability to compute the Total-Task-Time (TTT) on the

client side, as well as the timings of all relevant servers, including Started, Elapsed, CPU, Kernel, User,

Waiting, and Finish. When designing User Programs (UPs), the following creation scenario is carefully

considered: The term "single-process-multi-thread" (SPMT) refers to a computing paradigm where a

single process is executed by multiple threads The results unequivocally indicate that an augmentation in

processing capacity corresponds to a proportional enhancement in the speed at which problems are

solved. This pertains specifically to the quantity of servers and the number of processors allocated to each

server. Consequently, the duration required to finish the assignment increased by a factor of 9.156,

contingent upon three distinct scenarios involving SPMT UPs. The C# programming language is utilized

for the coding process in the implementation of this system.

KEYWORDS: Distributed Systems, Single-Threading, Multiprocessor-Machines, Parallel-Computing,

Process, Thread.

1. INTRODUCTION

istributed systems consist of computers

and other components that may work

independently. Whether a "node" was a physical

component or a computer software method, they

had to function together. Both required

collaboration [1-3]. High-performance

distributed computing systems are also essential.

Cluster computing's central processing units, or

core machines, are a set of workstations and

other computers with high-speed LAN

D

https://doi.org/10.26682/csjuod.2023.26.2.39

mailto:dildar.masood@dpu.edu.krd
mailto:rizgar.khuder@nawroz.edu.krd
mailto:zryan.rashid@spu.edu.iq

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

417

connections. Each node runs the same OS [4, 5].

Due to their ubiquitous use in contemporary

computing, client-server architectures have

grown in popularity. The client and server are the

two main components of a client-server system.

This architecture has the client always submitting

requests and the server continually responding.

Both are continuing. Client-server architecture

lets processes exchange data. Design allows

this [6], [7].

Desktop computers, portable laptops, and

corporate servers now have several cores in their

central processor units, improving their

processing speed. These systems must be

lightweight, power-efficient, and heat-efficient

[8, 9]. Also, some of these systems are required

to achieve these requirements in order to be

certified. Traditional central processing units

(CPUs), also known as CPUs, are not completely

suited to fulfill these requirements [10, 11].

Multi-core processors have more computing

power per ounce, watt, and square inch than

traditional CPUs. One CPU is inadequate for

many tasks, causing poor performance and

delayed response times in many systems [12],

[13]. The system's efficiency and fairness depend

on how resources are distributed among

competing accounts. Resource allocation is

competitive. Even if we divide the computational

burden well across all CPUs, certain scenarios

need a system with several processors. Thus, it is

crucial to break the work down into smaller,

more manageable portions and organize the order

in which they will be done [14, 15]. However,

multi-processor computers may execute

specialized applications better and provide a

more secure environment. Thus, multiprocessor

planning is constantly studied. Each work runs

on its own processor, similar to single-processor,

central multiprocessor, and distributed

scheduling. Real-time planning requires load

complexity estimations. Multiprocessor systems

make planning algorithms harder to create [16],

[17]. This is because the system has more

processors. Multithreading means a software or

process may run many code threads at once.

Thus, a single-CPU computer may now do the

process in parallel [18], [19]. Multithreading lets

users break software operations into independent

"threads," expanding multitasking. This enables

multitasking. The operating system divides its

resources across all programs and each app's

threads. Many threads on proprietary hardware

may enhance CPU usage, reducing application

runtime [20], [21].

Parallel programming processes are evaluated

using floating-point operations per second,

execution density, and memory latency.

Hardware counters capture program-running

monitoring data. Performance monitoring

collects data on system and application use to

help identify bottlenecks. Whether the processor

unit has one core or several cores affects thread

(process) monitoring systems [22]. To solve

performance concerns like data placement,

process compatibility, and load distribution, this

concept must be grasped. Performance

improvement requires data analysis. We provide

a solution for thread and process migrations and

application tracking. To improve an application

that employs shared memory and parallel

objectives, this instrument gathers information

about all system processes and threads [23]. In

2018, V. Weinberg and colleagues [24] supplied

two well-known distributed computing and GPU

computing methods to help parallel computing

beginners. We will explore the requirements for

designing a SIMD-based matrix multiplication

algorithm and demonstrate an application in this

article. Parallel processing may be enhanced by

using data parallelism and parallel control,

among other methods. GPUs execute quicker

than other computer components due to their

specialized hardware and software. In 2019, Y.

Xu, et al. [25] faced a new and serious issue: the

CPU takes too long to apply computational

marine hydrodynamics tokens when private

clouds in containers have limited cloud

resources. Cloud resources were limited. By

matching task resources, the scheduling method

improves service provider-end user

communication. This saves time. The simulation

showed that our technique outperforms the

foundation algorithms in task planning time,

resource requirements, and performance.

Bianco et al. [26] in 2020, proposed this

architecture. This arrangement's ability to speed

packet delivery is attracting researchers. This

contributes to this growing interest. They

suggested adding routes and priority categories to

strengthen their plan. The NIC's resource

distribution unit may change roles throughout the

scheduling algorithm's response phase. This

makes a more sophisticated justice policy

possible.

Z. Lv, D. Chen, and A. K. Singh [27] in 2021,

Lexicographic breadth-first search, centre-

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

418

division zone distance-based shortest route length

approximation technique, area and principal

highway axis-vertex, and integrated link and

attribute were used. According to analysis, four

CPU threads (514.63 ms) calculate the

framework best. CPU cores linearly speed up

framework calculation. Each pair of processor

cores does one task. The arithmetic scale factor

should be 0.06 for simple networks and 0.2 for

complex ones. This method has the quickest

processing, average query, and total query times

across datasets at 49.67 milliseconds and 5.12

milliseconds, respectively. 2021 L. M. Haji and

his colleagues began developing a parallel

processing system with shared memory [28].

This technique provided users complete control

over computer processes and threads. Good

news: the system works with several multi-core

architectures. This effort's algorithms provided

server data, verified all running processes, and

ran all of a user's application's threads and

processes. These steps finish the

user's application.

2. METHODOLOGY

The Process/Threads Monitoring and

controlling distributed system (PTMCDS) that

has been described is made up of two primary

components—the client and the servers—and it

operates in three distinct scenarios in order to

deal with the load that is produced by the clients.

The client and the servers are the basic

components. Figure 1 reveals that this particular

component acts as the controller for the system

that is being suggested. Figure 2 depicts the data

message, and Figure 3 shows how the system

that has been proposed operates. Moreover,

Figure 2 depicts the data message. Throughout

the course of a communication session between

a client and a server, it is not uncommon for both

control and data-type messages to be sent back

and forth between the two entities.

Fig.(1):- Block Diagram of the control message

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

419

Fig.(2):- Block Diagram of data-messages

Fig.(3):- General diagram of proposed (PTMCDS) mechanism

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

420

2.1 Scenarios of the Proposed System

In order to illustrate the advantages of using

parallel processing methods, researchers

typically employ one or more scenarios that

explain parallel processing algorithms and obtain

findings faster than a single processing

approach. The procedures for sorting numbers

can also be used as an ideal case study

application to highlight the effects of Parallel

Processing on the amount of time it takes to

complete a processing technique and how

efficiently it does so. This can be done by

comparing the amount of time it takes to

complete the technique with the amount of time

it takes to complete the procedures for sorting

numbers. This investigation makes use of four

distinct methods for sorting numbers, all of

which are dependent on a large number of server

computers. The purpose of this investigation is

to demonstrate the benefits of the Parallel

Processing strategy in comparison to the more

traditional sequential processing method. The

Selective sorting method, the Insertion sorting

method, the Bubble sorting technique, and the

Shakar sorting technique are some examples of

the procedures that fall under this category.

To demonstrate how the mixed parallel

processing approach affects the growth of the

amount of work that needs to be completed, we

will sort the data using a variety of different

orders. This will allow us to demonstrate how

the method expands the amount of work that

needs to be completed. Core i7 computers have

been used throughout the whole of this

investigation, both as clients and hosts (8

processor). As a consequence of this, we are

only going to talk about the characteristics of the

server hosts themselves, which include the

following:

S1: 2 UP, SPMT on two servers, each with a

Core 2 Duo and a Core I3 CPU (total of 4

processors).

Core i3 servers (with four processors) and

Core i7 servers provide the computing capability

for S2's 2 UP SPMT setup (with eight

processors).

S3 is running with 2 UP and SPMT on two

servers, both of which have Core i7 processors

(8 CPUs).

2.2 Monitoring Implementation and Results

The system that was being considered at the

time was one that could work on anywhere from

one to one hundred UPs, each of which may

have either a single process or numerous

processes, and each of those processes may have

either one thread or many threads. Using the

system's MI component is one way to protect all

of the genuinely important parts of the system.

This may be achieved if the component is

configured properly. The results of running three

distinct scenarios are analyzed, and the findings

are presented in appropriate formats (Tables and

Plots), as can be seen in the accompanying

Tables (1 to 3) and Figures (4 to 6). In each of

these tables and figures, the outcomes of running

the scenarios are presented in suitable formats

(Tables and Plots) (4 to 6).

2.2.1 Scenario-1: Two servers, core two duo (2

processors) and core i3 (4 processors), used for

(SPMT).

The following configurations are available on

the server: CPU-Type = 2Duo; RAM = 4

Gigabytes; CPU-CoreCount = 2; CPU-

Frequency = 2.2 GHz; CPU-Type = i3-2350;

RAM = 4 Gigabytes; CPU-CoreCount = 4; CPU-

Frequency = 2.3 GHz; CPU-Type = 2Duo; RAM

= 4 Gigabytes; CPU-CoreCount = 4; CPU-

Frequency = 2.3 GHz; CPU The CPU-Table

provides the monitoring information that was

gathered during the whole of the execution of a

single UP process. This process makes use of

four threads. Figure 4 is a scatterplot that

compares the length of time that has elapsed to

the amount of time spent waiting by the user, by

the kernel, and by the total CPU.

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

421

Table (1): -Results of Scenario-1, two servers, core two duo and core i3
 Client Server1 Server2

IP 192.168.1.1 192.168.1.2 192.168.1.3

N_core 8 2 4

Proccess_Name startproccess SPMT11 SPMT12

Start_time 01:21:26:017 01:21:24:781 02:08:01:931

Elapsed_Time
(ms)

8356802 8357082 3741903

Kernel_Time
(ms)

2218 171 109

User_Time
(ms)

7325532 8355978 3741658

Total_CPU
Time (ms)

7327750 8356149 3741767

Waiting_Time
(ms)

1029052 933 136

End_time 03:40:42:819 03:40:41:863 03:10:23:834

Fig.(4):- Plotted results of scenario-1 (SPMT).

2.2.2 Scenario-2: Two servers core i3 (4

processors) and Corei7 (8 processors) used for

(SPMT)

The following is an itemized list of the

characteristics of the server: In addition to their

respective 4 gigabytes of memory, four cores,

and four total threads, the (CPU-Type= i3-2350)

and the (CPU-Type= i7-6600) both have a

processing speed of 2.3 gigahertz (GHz). The

research was conducted to determine how long it

takes for a single UP process to do its job when

employing four threads. Table 2 presents the

data that was gained from this study. Figure 5

depicts a scatter plot of the user, kernel, total

CPU, and waiting period’s vs the amount of time

that has already elapsed. This figure is given in

relation to the total CPU use.

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

422

Table (2): -Results of Scenario-2, two servers core i3 and core i7 (SPMT)

 Client Server1 Server2

IP 192.168.1.1 192.168.1.3 192.168.1.4

N_core 8 4 8

Proccess_Name start process SPMT11 SPMT12

Start_time 12:08:10:697 12:08:01:931 16:44:46:845

Elapsed_Time (ms) 3741997 3741903 2813290

Kernel_Time (ms) 1187 109 265

User_Time (ms) 3738453 3741658 2811225

Total_CPU_Time
(ms)

3739640 3741767 2811490

Waiting_Time (ms) 2357 136 1800

End_time 13:10:32:694 13:10:23:834 17:31:40:279

Fig.(5):- Plotted results of scenario-2 (SPMT)

2.2.3 Scenario-3: Two servers, both of them core i7 (8 processors), used for (SPMT).

Table (3): -Results of Scenario-3, two servers both of them core i7 (SPMT)

 Client Server 1 Server 2

IP 192.168.1.1 192.168.1.4 192.168.1.5

N_core 8 8 8

Proccess_Name start process SPMT11 SPMT12

Start_time 13:34:56:071 13:44:46:845 11:39:46:845

Elapsed_Time (ms) 2815211 2813290 2793434

Kernel_Time (ms) 256718 265 212

User_Time (ms) 830234 2811225 271103

Total_CPU_Time
(ms)

1086953 2811490 2791315

Waiting_Time (ms) 1728258 1800 2119

End_time 14:21:51:277 14:31:40:279 12:26:20:279

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

423

Fig.(6):- Plotted results of scenario-3 (SPMT)

The hardware of the server has the following

configurations: (CPU-Type=i7-10700, RAM=8

GB, No. of Core=8, CPU-Frequency=3.8 GHz)

and (CPU-Type=i7-6600, RAM=8 GB, No. of

Core=8, CPU-Frequency=2.7 GHz) respectively.

Both of these configurations are for eight cores.

A total of eight cores may be found throughout

both configurations. A study was carried out to

ascertain the amount of time required for a

single UP process to complete its task while

making use of four threads. The findings of this

research are summarized in Table 3, which can

be seen below. The results of a time-series

analysis that was performed on waiting times,

user times, kernel times, and total CPU times are

presented in Figure 6.

3. Discussion of Obtained Results from

PTMCDS Scenarios

 It is clear from looking at Tables (1), (2), and

(3) that the TTT of a single program executing

SPMT on a single server grows quicker as the

number of cores available on that server

increases. The total time to complete Scenario 1

was calculated to be 8,356,802 milliseconds

while utilizing a server with two cores.

Fig.(7):- The TTT of Scenarios (1, 2, and 3) for SPMT

Scenario 1 Scenario 2 Scenario 3

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

dildar.masood@dpu.edu.krd ,

subhi.rafeeq@dpu.edu.krd

rizgar.khuder@nawroz.edu.krd

,sagvan.saleh@uod.ac

zryan.rashid@spu.edu.iq ,

mohammed.abdulrazaq@dpu.edu.krd

424

In the meantime, the whole transaction time

in Scenario 2 with a core i3 server took

3,741,997 milliseconds to complete. When

Scenario 3 was run on a server equipped with a

core i7 CPU, the total transaction time took

2,815,211 milliseconds to complete. The TTT

(from Scenario 1 to Scenario 3) was reduced by

the same amount, as indicated in Figure 7,

despite the fact that the processing speed was

raised by 9.156 times.

I. COMPARISON WITH PREVIOUS WORKS

Based on the characteristics that are

presented in Table 4, one would be able to

deduce the following major differences between

the two groups:

Table (4): -Comparison with Previous Works.

 The PTMCDS that has been presented has

support for four different sorting algorithms; this

gives it the ability to manage an almost

unimaginably vast spectrum of task loads (and

the flexibility to support any number of new

sorting algorithms).

 The fact that Microsoft Windows is not an

open-source computer operating system was the

most difficult obstacle that the planned

PTMCDS system had to get through in order to

be successful. This problem has been fixed, and

the system has been adjusted so that it may work

correctly while still adhering to the requirements

of the operating system being used. This is in

spite of the fact that a significant portion of the

tasks described above were accomplished

through the use of open-source computer

operating systems.

 PTMCDS supported four distinct core types, in

contrast to prior implementations, which only

supported one or two cores each. These core

types were i7, i5, and i3, respectively. Previous

implementations only supported one or two

cores each. In previous versions, only CPUs with

a single core were supported. Moreover,

PTMCDS does not set any limitations on either

the number of servers or the kind of cores that

can work together in order to automatically carry

out jobs. Users get access to both of these

aspects of the product.

 The capability of the proposed PTMCDS to

make full use of the efficacy of shared memory

systems on each individual server, in addition to

taking advantage of the

 Capacity of distributed systems for performing

parallel processing, is an additional important

feature that sets it apart from the works that have

already been discussed. This ability

distinguishes the proposed PTMCDS from the

works that have been discussed previously. This

is one of the ways in which it stands out from the

other works, and it is one of the ways in which it

distinguishes itself. The key factor in PTMCDS's

improved performance was the use of this novel

method, which had not been used in any of the

earlier research. It is essential to keep in mind

Ref. Techniqu
e

Operating System
And Cores

Programin
g

Language

Significant Results

[24] matrix
multiplicati

on

Linux,
Dual core

Visual basic The number of process- 50, the execution time in system -
0.158426 seconds, the execution time in the cluster -

1.232802 seconds. The executed program in the system
group took less time in single system.

[25] scheduling
algorithm

Windows
server2016, Core (4

processor)

java The result is a 6 times improvement, a 44% volume
reduction, and an average defined satisfaction rate,

respectively

[26] scheduling
algorithm

Linux, PCI-X core LOGIC
design

It is processed and managed by the operating system in
software, reducing load performance.

[27] N-SPFA
algorithm

Linux, PCI-X core C#
language

The processing time, average query time, and total query
time of the algorithm are the shortest, being 49.67 ms, 5.12

ms, and 94.720 ms, respectively.

[28] Sorting
Algorithm

Windows 10, core
i5, core i7

C#
language

Controlling and monitoring Single/Multiple
Processes/Threads in multicomputer parallel processing

system. Reduce execution time for CPU.

This

System

Sorting
Algorithm

Windows 10, Core 2
Duo, core i3, core i7

C#
language

Controlling and monitoring Single/Multiple
Processes/Threads in multicomputer parallel processing
distributed system. Reduce the Client Total-Task-Time,

server (elapsed and CPU) times.

mailto:dildar.masood@dpu.edu.krd
mailto:rizgar.khuder@nawroz.edu.krd
mailto:zryan.rashid@spu.edu.iq

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

425

that determining whether or not parallel

processing is effective is necessary due to the

widespread use of this strategy for the purpose

of reducing the amount of time spent on the

resolution of difficult issues. Because of this, it

is essential to keep in mind that determining

whether or not parallel processing is

effective is necessary.

4. CONCLUSIONS

This work proposes using a Process/Threads

Monitoring Controlling Distributed System

(PTMCDS) to monitor and control UPs.

"Process Monitoring Controlling Distributed

System" is abbreviated "PTMCDS." In the

following paragraphs, the possible inferences or

conclusions from this thesis will be broken down

into their component parts, then presented in

their entirety. This will help readers grasp

probable implications and conclusions. Each

control mode may affect the CPU and report

real-time events. These control modes are

versatile. Mixing effects and logs is feasible.

Software developers no longer needed to work

with several operating system versions and

distributions to solve the issue. This resolved it.

This technique should work well with all

Windows versions. This technology is also

expected soon. Second, OpenMP

Communication (shared memory) and MPI

Communication (distributed memory) should be

integrated into the system for effective parallel

processing. This enabled efficient parallel

processing. This ensured effective parallel

processing. This was done to ensure the system

could do parallel processing. These measures

ensured that the computer system could parallel

process without issues. Scenario 1 outperforms

Scenario 3 in client-side task processing

by 9.156.

Acknowledgments

The authors would like to express full thanks

to Information Technology department at

Technical College of Informatics Akre, for

preparing the specific laboratories to perform the

real implementation for this research.

REFERENCES
Z. N. Rashid, S. R. Zeebaree, R. R. Zebari, S. H.

Ahmed, H. M. Shukur, and A. Alkhayyat,

“Distributed and Parallel Computing System

Using Single-Client Multi-Hash Multi-Server

Multi-Thread,” in 2021 1st Babylon

International Conference on Information

Technology and Science (BICITS), 2021, pp.

222–227.

Z. N. Rashid, S. R. Zeebaree, M. A. Sadeeq, R. R.

Zebari, H. M. Shukur, and A. Alkhayyat,

“Cloud-based Parallel Computing System Via

Single-Client Multi-Hash Single-Server Multi-

Thread,” in 2021 International Conference on

Advance of Sustainable Engineering and its

Application (ICASEA), 2021, pp. 59–64.

H. Shukur, S. Zeebaree, R. Zebari, D. Zeebaree, O.

Ahmed, and A. Salih, “Cloud Computing

Virtualization of Resources Allocation for

Distributed Systems,” Journal of Applied

Science and Technology Trends, vol. 1, no. 3,

pp. 98–105, 2020.

Z. N. Rashid, S. R. Zeebaree, and A. Shengul,

“Design and Analysis of Proposed Remote

Controlling Distributed Parallel Computing

System Over the Cloud,” in 2019 International

Conference on Advanced Science and

Engineering (ICOASE), 2019, pp. 118–123.

S. R. Zeebaree, K. Jacksi, and R. R. Zebari, “Impact

analysis of SYN flood DDoS attack on

HAProxy and NLB cluster-based web

servers,” Indonesian Journal of Electrical

Engineering and Computer Science, vol. 19,

no. 1, pp. 510–517, 2020.

 O. Alzakholi, L. Haji, H. Shukur, R. Zebari, S.

Abas, and M. Sadeeq, “Comparison Among

Cloud Technologies and Cloud Performance,”

Journal of Applied Science and Technology

Trends, vol. 1, no. 2, Art. no. 2, Apr. 2020,

doi: 10.38094/jastt1219.

H. S. Oluwatosin, “Client-server model,” IOSR

Journal of Computer Engineering, vol. 16, no.

1, pp. 67–71, 2014.

 H. Shukur et al., “A State of Art Survey for

Concurrent Computation and Clustering of

Parallel Computing for Distributed Systems,”

Journal of Applied Science and Technology

Trends, vol. 1, no. 4, pp. 148–154, 2020.

H. Shukur, S. Zeebaree, R. Zebari, O. Ahmed, L.

Haji, and D. Abdulqader, “Cache Coherence

Protocols in Distributed Systems,” Journal of

Applied Science and Technology Trends, vol.

1, no. 3, pp. 92–97, 2020.

R. Craig and P. N. Leroux, “Case study-making a

successful transition to multi-core processors,”

QNX Software Systems GmbH & Co, 2006.

Z. N. Rashid, K. H. Sharif, and S. Zeebaree,

“Client/Servers Clustering Effects on CPU

Execution-Time, CPU Usage and CPU Idle

Depending on Activities of Parallel-

Processing-Technique Operations “,”

INTERNATIONAL JOURNAL OF

Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 416 - 426, 2023

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue)

426

SCIENTIFIC & TECHNOLOGY

RESEARCH, vol. 7, no. 8, pp. 106–111, 2018.

J. Chang and G. S. Sohi, “Cooperative cache

partitioning for chip multiprocessors,” in

ACM International Conference on

Supercomputing 25th Anniversary Volume,

2007, pp. 402–412.

S. Zeebaree and I. M. Zebari, “Multilevel

Client/Server Peer-to-Peer Video Broadcasting

System,” International Journal of Scientific &

Engineering Research, vol. 5, no. 8, Art. no. 8,

2014.

G. P. Acharya and M. A. Rani, “FPGA Prototyping of

Micro-Blaze soft-processor based Multi-core

System on Chip,” International Journal of

Engineering & Technology, vol. 7, no. 2.16,

pp. 57–60, 2018.

A. A. Yazdeen, S. R. Zeebaree, M. M. Sadeeq, S. F.

Kak, O. M. Ahmed, and R. R. Zebari, “FPGA

implementations for data encryption and

decryption via concurrent and parallel

computation: A review,”Qubahan Academic

Journal, vol. 1, no. 2, pp. 8–16, 2021.

M. Ababneh, S. Hassan, and S. Bani-Ahmad, “On

Static Scheduling of Tasks in Real Time

Multiprocessor Systems: An Improved GA-

Based Approach.” International Arab Journal

of Information Technology (IAJIT), vol. 11,

no. 6, 2014.

S. R. M. Zeebaree et al., “Multicomputer Multicore

System Influence on Maximum Multi-

Processes Execution Time,” TEST

Engineering & Management, vol. 83, no. May-

June 2020, pp. 14921–14931, May 2020.

 A. S. Y. Subhi Rafeeq Mohammed Zebari,

“Improved Approach for Unbalanced Load-

Division Operations Implementation on

Hybrid Parallel Processing Systems,” Journal

of University of Zakho, vol. 1, no. (A) No.2,

Art. no. (A) No.2, 2013.

 D. M. Abdulqader and S. R. Zeebaree,

“Impact of Distributed-Memory Parallel

Processing Approach on Performance

Enhancing of Multicomputer-Multicore

Systems: A Review,” QALAAI ZANIST

JOURNAL, vol. 6, no. 4, pp. 1137–1140,

2021.

N. Goel, V. Laxmi, and A. Saxena, “Handling

multithreading approach using java,”

International Journal of Computer Science

Trends and Technology (IJCST), vol. 3, no. 2,

pp. 24–31, 2015.

 L. Haji, R. R. Zebari, S. R. M. Zeebaree, W.

M. Abduallah, H. M. Shukur, and O. Ahmed,

“GPUs Impact on Parallel Shared Memory

Systems Performance,” International Journal

of Psychosocial Rehabilitation, vol. 24, no. 08,

pp. 8030–8038, 21, May, doi:

10.37200/IJPR/V2418/PR280814.

O. H. Jader et al., “Ultra-Dense Request Impact on

Cluster-Based Web Server Performance,” in

2021 4th International Iraqi Conference on

Engineering Technology and Their

Applications (IICETA), 2021, pp. 252–257.

O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C.

Pichel, and F. F. Rivera, “Multiobjective

optimization technique based on monitoring

information to increase the performance of

thread migration on multicores,” in 2014 IEEE

International Conference on Cluster

Computing (CLUSTER), 2014, pp. 416–423.

 V. Weinberg, J. Duato, E. El-Araby, and V.

Narayana, “An Approach to Parallel

Processing,” International Journal on Recent

and Innovation Trends in Computing and

Communication, vol. 6, no. 2, pp. 126–128.

Y. Xu, P. Liu, I. Penesis, and G. He, “A task-resource

mapping algorithm for large-scale batch-mode

computational marine hydrodynamics codes

on containerized private cloud,” IEEE Access,

vol. 7, pp. 127943–127955, 2019.

 M. P. R. B. A. Bianco, “HERO: High-speed

Enhanced Routing Operation in Ethernet NICs

for Software Routers⋆,” 2020.

Z. Lv, D. Chen, and A. K. Singh, “Big data

processing on volunteer computing,” ACM

Transactions on Internet Technology, vol. 21,

no. 4, pp. 1–20, 2021.

 L. M. Haji, S. R. M. Zeebaree, O. M. Ahmed,

M. A. M. Sadeeq, H. M. Shukur, and A.

Alkhavvat, “Performance Monitoring for

Processes and Threads Execution-

Controlling,” in 2021 International Conference

on Communication & Information Technology

(ICICT), 2021, pp. 161–166.

