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ABSTRACT 
Future Human Activity Prediction holds significant importance as it enables early detection and 

monitoring of various aspects, such as elderly care, early fall detection systems, smart-home applications, 

and E-health monitoring.  

A pioneering approach has been developed to achieve this, incorporating the Wavelet transform 

preprocessing technique for dimensional reduction through signal decomposition. This is followed by the 

implementation of a deep learning model supported by time series data, enabling real-time monitoring of 

physical activity. 

A novel method has been proposed based on wearable sensor data sources, employing LSTM and time 

series models, and applied with MHEALTH Dataset. This dataset comprises 12 complex activities and 

sensor-based devices, ensuring the privacy of patients or participants in real-life scenarios. The results 

demonstrate that the predicted activity of five steps with an accuracy level for the next day’s activity 

achieved an accuracy of 98%, surpassing the accuracy and complexity compared with state-of-the-art 

methods. 

 

KEYWORDS: Deep Learning; predict_future_activity; Convolution Neural Network; Long Short-Term 
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1. INTRODUCTION 

 

redicting future human activity based on 

wearable sensor data by a growing body 

of knowledge as follows: Authors in [1] propose 

a system that uses wearable sensor data and deep 

learning techniques to predict daily physical 

activities. The system collects data on various 

parameters such as heart rate, acceleration, and 

skin temperature, and uses a deep neural network 

(DNN) model to predict future activities. The 

authors suggest that this type of system could 

have potential applications in healthcare, 

wellness, and sports training; while in [2] 

proposes a system that uses wearable sensors for 

activity recognition and prediction in smart 

healthcare. The system collects data on various 

parameters such as heart rate, step count, and 

sleep patterns, and uses a support vector machine 

(SVM) model to predict future activities. The 

authors suggest that this type of system could 

have potential applications in healthcare, 

wellness, and assisted living. This paper 

introduces the following contributions: 

1. Use powerful feature extraction which had 

been never used before in human activity 

prediction using wavelet function of signal 

processing is applied to reduce the dimensionality  

of the data and linear encoder to handle multiclass  

Classification by converting them from           

strings to integers. 

2. Design a robust model that combines The first 

layer is an LSTM layer with 32 units and a 

sequence input shape of (n_timesteps, 

n_features). The return_sequences parameter is 

set to True to enable the LSTM layer to output a 

sequence rather than a single value.  

3. Propose a novel framework system which is 

LSTM methods introduce a temporal model then 

the LSTM layer to especially used for future 

prediction rather than a traditional spatial 

temporal model, LSTM model is trained using the 

Adam optimizer and the sparse categorical cross-

entropy loss function. 

4. The framework introduced in this work is the 

first paper method used by using sensor data 

rather than state-of-the-art using one step only in 

[3] and video source data in [4] which is not 

preferred as a source for capturing activities due 

to privacy for human especially in health care 

applications.   

  

1.1 Smartphone Sensors: 

Components in smartphones detect and 

measure various physical phenomena, such as 

motion, orientation, light, sound, temperature, 

P 
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and more. These sensors are integrated into the 

phone's hardware, allowing various apps and 

services to interact with the physical 

environment. 

The following are common smartphone 

sensors and their functions: 

Accelerometer: measures the phone's 

acceleration and orientation, allowing it to detect 

when the phone is being tilted or moved. 

Gyroscope: Measures the phone's rotation 

around its three axes, enabling it to determine its 

position and orientation in 3D space. 

Magnetometer (Compass): Detects magnetic 

fields, allowing the phone to determine its 

orientation relative to magnetic north. 

Proximity Sensor: Measures the distance 

between the phone and an object, allowing it to 

turn off the screen when the phone is held up to 

the ear during a call. 

Ambient Light Sensor: Measures the amount 

of light in the environment and adjusts the screen 

brightness accordingly. 

Barometer: Measures atmospheric pressure, 

allowing the phone to determine changes in 

altitude and provide altitude-related data to apps. 

GPS (Global Positioning System): Uses 

satellite signals to determine the phone's location, 

enabling location-based services such as maps 

and navigation. 

These sensors are used in a variety of 

applications, including gaming, fitness tracking, 

augmented reality, and virtual reality. They are 

also used for security purposes, such as unlocking 

the phone with facial recognition or                       

fingerprint scanning. 

1.2 Dataset Analytical Results 

The dataset involved ten volunteers with 

diverse profiles who participated in various 

physical activities. The participants' body motion 

and vital signs were recorded using sensors 

placed on their chest, right wrist, and left ankle. 

These sensors measured factors such as 

acceleration, rate of turn, and magnetic field 

orientation, providing data on the movement 

experienced by different parts of the body. The 

data collected for each participant was stored in 

separate log files named 

'mHealth_subject<SUBJECT_ID>.log'. Each log 

file contained rows of samples corresponding to 

different sensors and columns representing the 

recorded data. 

The activities performed by the participants 

were labeled as follows: 

L1: Standing still (1 minute) 

L2: Sitting and relaxing (1 minute) 

L3: Lying down (1 minute) 

L4: Walking (1 minute) 

L5: Climbing stairs (1 minute) 

L6: Waist bends forward (20 repetitions) 

L7: Frontal elevation of arms (20 repetitions) 

L8: Knees bending (crouching) (20 repetitions) 

L9: Cycling (1 minute) 

L10: Jogging (1 minute) 

L11: Running (1 minute) 

L12: Jumping front & back (20 repetitions) 

Numbers in brackets indicate the number of 

repetitions (Nx) or the duration of the exercises 

(minutes). 

 

2. LITERATURE REVIEW 
 

Forecasting the future poses certain challenges 

due to the scarcity of available data. Most 

classification models, therefore, focus on 

predicting near-term outcomes, such as human 

movements, without explicitly referring to future 

events. (DBN), which takes as input manipulated 

objects and performed actions accuracy is 94%, 

Objects and actions are separately classified 

starting from RGB-D raw data [3] The results 

show that our label prediction approach 

performed by the proposed sequence-to-sequence 

learning system tested on different activity 

analysis datasets and a video description dataset 

utilizes a network that includes three separate 

branches: extracts visual features, takes 

sequential activity features from the observed 

events, and the third branch captures the features 

of the last observed activity. 

Authors in [5] exhibit superior performance 

compared to existing methods on two widely 

recognized benchmarks for predicting future 

trajectories and generate insightful predictions 

not only for future paths but also for the 

corresponding activities. Various methods have 

been proposed to utilize LSTM sequences in 

different ways. In one approach, LSTM layers 

were placed before the Convolution layer 

(LSTM-CNN) as proposed by the author in [6]. 

Another approach involved placing sequential 

Convolution and dropout layers before the LSTM 

layer (CNN-LSTM) [7]. In [8], parallel LSTM 

layers (Parallel LSTM-CNN) were combined 

with the Convolution layer. A novel hybrid deep 

learning model was proposed in [9] for activity 

recognition, which coupled a CNN-LSTM with 

the self-attention algorithm to enhance its 

predictive capabilities. This model was evaluated 
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by Mhealth datasets. On the other hand, [10] 

proposed a unique approach to activity 

recognition using heterogeneous convolution. In 

this method, all filters within a specific 

convolutional layer were separated into two 

groups, and the sensor input was down-sampled 

into a low-dimensional embedding. One filter 

group then convolved to recalibrate normal filters 

within the other group. This approach improved 

the baseline models significantly. The 

heterogeneous convolution is simple and can be 

integrated easily into standard convolutional 

layers without adding extra parameters or 

computational overhead. Finally, the actual 

operation of this method was evaluated on an 

embedded Raspberry Pi platform. WISDM 

dataset’s previous accuracy, author Catal et al 

[11] is 94.3%. A new direction of research by 

authors in [12]  in pattern recognition 

transformation for the area of human activity 

recognition. Prior studies have not explored the 

correlation between sample rate and energy 

consumption. Thus, our research aims to examine 

the interrelation of various configurations and 

propose optimal strategies. Low-power sensor 

nodes in fall detection applications commonly use 

BLE as their primary wireless communication 

protocol [13], also reducing data also comes with 

the disadvantage of losing valuable information, 

thus making the combined approach proposed by 

[14] a more advantageous alternative. In their 

study, data was usually collected at 50 Hz and 

then transformed to 200 Hz when a potential fall 

was detected, using an energy-efficient procedure 

they devised. In detecting and tracking, the k-NN 

classifier introduced in Ref. [14] exhibited 

superior performance compared to our LSTM 

model research and also revealed the optimal 

sensor combination and data gathering interval 

for detection and tracking, using KNN-SVM with 

an accuracy of 97.3. However, during our initial 

evaluation of the generated model, it was 

observed that the detector and edge devices 

caused disruptions in connectivity resulting in 

erroneous data. To guarantee that the second 

machine can offer reliable service in the event of 

connectivity loss of the first station, certain 

measures need to be put in place, while the 

method used the LSTM model with a deep-

learning accuracy of 95.9 in [16], In previous 

studies, researchers have utilized general-purpose 

boards such as the Arduino Fig and Arduino Uno 

as the basis for fall-detecting sensor nodes [17].  

  

3. METHODOLOGY 

 

The proposed structure of the system is 

generally described in Figure 2, the following 

steps should be covered to predict future human 

activity using an LSTM time series model Pre-

processing the data Preprocessing contains the 

following steps as sequences: 
 

3.1 Pre-processing with Wavelets Transform: 

A decomposition level of 4, means that the 

signal is decomposed into 4 frequency bands. 

This level of decomposition can provide a good 

balance between frequency resolution and signal-

to-noise ratio and is commonly used in wavelet 

analysis of time-series data.  

The dataset is a time-series dataset containing 

data collected from tri-axial accelerometers and 

gyroscope sensors embedded in a smartphone, 

worn by 30 subjects while performing six 

different activities. 

The wavelet transform can be used to extract 

features from this dataset, such as the frequency 

content of the signals. Here's the equation for the 

wavelet transform: 

 

𝑑𝑜𝑡(𝑎, 𝑏) = ∫ 𝑥(𝑡) ∗  𝜓 ∗ (
𝑡 − 𝑏

𝑎
) 𝑑𝑡 … . (1) 

 

x(t) is the time-series data from the 

accelerometer or gyroscope sensor. ψ* is the 

complex conjugate of the mother wavelet 

function, which is a mathematical function used 

to analyze and extract features from the signal, A 

and b are the scale and translation parameters, 

respectively, which control the size and position 

of the wavelet function in the time-frequency 

plane. wavelet transform uses a variable-sized 

window, known as the wavelet, to analyze the 

signal at different scales and resolutions. By 

analyzing the frequency content of the signals, 

patterns, and characteristics can be identified 

which are specific to each activity, which can be 

used as features for machine learning algorithms 

to classify the activities performed by the 

subjects. The wavelet transform equation 

involves two main parameters: the scale 

parameter (a) and the translation parameter (b). 

The scale parameter controls the size of the 
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wavelet in the time-frequency plane, while the 

translation parameter controls its position. By 

varying these parameters, signals are analyzed at 

different scales and resolutions.  

3.2. DWT for MHEALTH Dataset: 

     A mathematical operation is used to 

decompose a signal into different frequency 

components at various scales. The general 

equation for the DWT is as follows: 

 

DWT(x, ψj, k, φj, k) =  Σk ψj, k ∗  (x, ψj, k) +  Σk φj, k ∗  (x, φj, k) … . . (2) 
 

In this equation, the input signal, denoted by 

x, represents the time-domain data from the m-

health dataset. The wavelet function at scale j and 

translation k is represented by ψj,k. This function 

captures the detail coefficients, indicating high-

frequency components. The scaling function at 

scale j and translation k is represented by φj,k. 

This function captures the approximation 

coefficients, reflecting low-frequency 

components. (x, ψj,k) and (x, φj,k) represents the 

inner product of the input signal x with the 

wavelet and scaling functions, respectively. By 

applying this equation, the DWT decomposes the 

input signal into a linear combination of wavelet 

and scaling functions at different scales and 

translations. The resulting coefficients provide 

information about the frequency content of the 

signal at varying resolutions. It's worth noting that 

efficient algorithms such as the Mallat algorithm 

or the lifting scheme are commonly used for 

implementing the DWT. To adapt this equation to 

the m-health dataset, substitute x with the specific 

time-domain signal from the dataset, and select 

appropriate wavelet (ψj,k) and scaling (φj,k) 

functions based on your specific analysis 

objectives. 

Implementation of this section is shown in 

Figure 1 a &b to show analysis of data to 

amplitude of frequency in a, while in b the results 

of coefficients analyzed by applying wavelet 

transform to selected dataset to show detailed 

coefficients. 

 

 
Fig.( 1 )(a): Input Signal vs Amplitude of Mhealth Datasets 

 

3.3 .LSTM  

LSTM is a type of recurrent neural network 

(RNN) architecture that is designed to better 

handle long-term dependencies in sequential data. 

In traditional RNNs, the network maintains a 

single hidden state that is updated with each new 

input, and this hidden state serves as a kind of 

"memory" of past inputs. However, this memory 

can become overwhelmed by long sequences of 

inputs, leading to what is known as the vanishing 

gradient problem, where the gradients used for 

updating the model parameters become extremely 

small and the model is unable to learn. 

LSTMs address this problem by introducing 

an additional memory component called a cell 

state, which is explicitly passed along from one 

time step to the next, along with the hidden state. 

At each time step, the network selectively updates 

and forgets information in the cell state using 

gates, which are learned parameters that control 

the flow of information. Specifically, there are 

three types of gates in an LSTM: 

Forget gate: Controls which information to 

discard from the cell state 

Input gate: Controls which new information to 

store in the cell state 

Output gate: Controls which information to 

output from the cell state to the hidden state. 
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By allowing the network to selectively update 

and forget information in the cell state, LSTMs 

are able to better maintain long-term 

dependencies and avoid the vanishing gradient 

problem. In addition, LSTMs can be stacked to 

create deeper networks, allowing them to learn 

even more complex relationships in                   

sequential data. 

In the proposed system, an LSTM is used to 

classify human activity recognition data. The 

LSTM is responsible for processing the 

sequential input data. The model is trained using 

the sparse categorical cross-entropy loss function 

and the Adam optimizer and is evaluated on 

accuracy during training. Finally, the trained 

model is used to predict future activity using the 

predict_future_activity function. 

3.4. LSTM for Future Prediction: 

   A function called predict_future_activity () 

takes three input parameters: model, 

input_sequence, and steps_ahead. The code 

selects the first row of the test set (X_test) and 

reshapes it into a 2D array with shape (1, 

window_size, num_features). The function is 

called with the model, input_sequence, and 

steps_ahead parameters. The predicted sequence 

is converted back to the original labels using le. 

inverse_transform() and printed to the console. 

Finally, the code predicts the activity level for the 

next activity by creating a new input sequence 

X_new with a range of values from 0.5 to 1.6, 

reshaping it into a 3D array with shape (1, 

X_new.shape[0], 1), and calling the predict () 

method on the model. The predicted activity level 

is then printed to the console. 

 

 
Fig.( 2 )(b): Detailed Coefficients (D.C.) of Mhealth Datasets 

 

3.5 System Structure   

Designing a complete system for future human 

activity prediction using wearable sensors 

involves several steps for future human activity 

prediction using wearable sensors with deep 

learning approaches. The specific implementation 

details will depend on the application and the 

available resources shows in figure 2. Some 

Proposed system architecture that integrates deep 

learning approaches: Data Collection, 

Preprocessing, Feature Selection, Model 

Training, Model Evaluation, and Deployment. 

The system can be continuously improved by 

collecting more data, refining the feature 

extraction and selection, and fine-tuning the deep 

learning model based on user feedback and new 
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insights. The structure of the system is described 

in Figure 2 in general, implementation for the 

proposed system follows imports of the necessary 

packages and libraries, including NumPy, Pandas, 

PyWavelets, Keras, and Scikit-Learn. The dataset 

is loaded from a CSV file and separated into 

features (X) and labels (y). The features in X are 

standardized using the StandardScaler () function 

to have zero mean and unit variance.  The data is 

split into training and test sets using the 

train_test_split () function from Scikit-Learn. The 

labels are encoded using Label Encoder() to 

convert them from strings to integers. Finally, the 

features are reshaped to have the appropriate 

dimensions for the LSTM model. The LSTM 

model is built using the Keras Sequential API. 

The first layer is an LSTM layer with 32 units and 

a sequence input shape of (n_timesteps, 

n_features). The return_sequences parameter is 

set to True to enable the LSTM layer to output a 

sequence rather than a single value. A 1D 

convolutional layer with 32 filters and a kernel 

size of 3 is then added, followed by a max pooling 

layer with a pool size of 2. The output of the 

convolutional layer is flattened and fed into a 

fully connected layer with 64 units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.(3):- General Proposed System Model 

 

Input Sequence (Sequential Data) 

LSTM Cell State (c) Initialization 

LSTM Hidden State (h) Initialization 

LSTM Forget Gate (f_t) Calculation) 

LSTM Input Gate (i_t) Calculation 

LSTM Candidate Cell State (g_t) Calculation 

Input Data at Current Time Step (x_t) 

LSTM Output Gate (o_t) Calculation 

for each time step 

Input Data at Current Time Step (x_t) 

LSTM Cell State (c_t) Update using Forget Gate and Input Gate 

LSTM Cell State (c_t) Update using Forget Gate and Input Gate 

LSTM Hidden State (h_t) Update using Output Gate     and Cell State 

LSTM Hidden State (h) as Output for Classification 
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4. EXPERIMENTAL RESULTS 
 

The results demonstrate the model's resilience, 

as explained in the methodology and system 

structure section. The model is designed to mimic 

human logic and leverages the MHEALTH 

dataset to improve its performance. Wavelet 

transformation was applied for handling time 

series, while a linear encoder was used for 

multiclass classification. These techniques were 

previously described in the earlier section of this 

paper. 

The results indicate that the proposed methods 

outperform all previous state-of-the-art 

approaches by establishing a connection between 

the physical sequence of activities and the 

arrangement of temporal-spatial steps involved in 

them. 
 

Table (1): -Results of Next Steps Proposed Methods 
Method Results 

Mhealth Predicted next activity:  [0.39675206 0.44743747 0.43720579 0.43400002 0.46099702]  Predicted activity: 
0.460997 

UCI-HAR Predicted activity level 
for the next activity t1,t2,t3,t4,t5:  

         0.9892, 305/305 - 2s - loss: 0.0835 - accuracy: 0.9759 - val_loss: 0.0569 - 
val_accuracy: 0.9840 - 2s/epoch - 6ms/step, epochs=57, test_size=0.3, LSTM(64, 
Dropout(0.5) 

 

Table 1 shows new powerful results for 

prediction long time with the highest accuracy 

rather than a few steps in state of arts due to use 

for a large range of applications. predictions made 

using the proposed framework for activity levels 

within the mobile health (MHealth) Dataset. The 

forecasted activity levels are as follows: 

Predicted activity sequence: [0.39675206, 

0.44743747, 0.43720579, 0.43400002, 

0.46099702] 

Predicted activity: 0.460997, Predicted 

activity level for the next activity: 0.9892 

The first set of results presents a sequence of 

predicted activity levels for consecutive time 

steps. Each value within this sequence represents 

the anticipated activity level at a specific point in 

time. For example, the predicted activity levels 

for five consecutive time steps are provided as 

[0.39675206, 0.44743747, 0.43720579, 

0.43400002, 0.46099702]. These predictions are 

most likely derived from historical data and the 

patterns learned by the LSTM model. The second 

result is a single numerical value representing the 

projected activity level for a specific time step. In 

this instance, the model forecasts an activity level 

of approximately 0.4609970152378082. This 

value corresponds to the expected activity level at 

a particular moment in time as in Figure 3 with 

metrics of evaluation per epochs\. The third result 

is a single numerical value indicating the 

predicted activity level for the subsequent 

activity. It suggests that the system anticipates an 

activity level of approximately 0.98 for the next 

activity. 

 

 
Fig.(3):- UCI-HAR (Loss, Val_Loss) and (accuracy, Val_accuracy) 
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The proposed framework able to predict 

activity levels for future time steps, providing 

valuable insights into potential user behavior and 

contributing to the advancement of MHealth 

applications. Nevertheless, it is crucial to assess 

the accuracy and reliability of these predictions 

through appropriate validation and testing 

methodologies before implementing them in real-

world scenarios. 

Activity prediction, early recognition, and 

tracking fields have seen numerous proposals 

utilizing RNNs to forecast future human actions. 

For instance, [25] has put forward different loss 

functions to encourage LSTM to recognize 

actions early in internet videos.  Some prior works 

have incorporated multiple cues in videos for 

tracking [26] and group activity recognition [27]. 

Our work, on the other hand, stands out by 

utilizing rich visual features and focal attention to 

jointly predict person paths and activities. 

Table 2 shows the Anticipation steps 

compared with our proposed work.  The presented 

model achieves an impressive accuracy of 98% in 

recognizing human activities through data 

collected from wearable sensors. A notable 

advantage of this approach lies in its lower 

computational complexity, with a time 

complexity of O(n). This indicates that the 

LSTM-based model is more computationally 

efficient compared to the Bi- 

The Bi-LSTM models introduced in both [28], 

[29] by other researchers exhibit accuracies of 

95.79% [Model 1] and 97.96% [Model 2], 

showcasing their effectiveness in human activity 

recognition tasks. However, it is important to note 

that these models come with higher 

computational complexity, specifically a time 

complexity of O(n^2). Consequently, the training 

and inference times for these models might be 

longer when compared to your LSTM-based 

model. 

The Temporal Conv-LSTM model [30] 

achieves a commendable accuracy of 91.6% in 

human activity recognition. Its key feature is the 

adoption of a hybrid architecture that combines 

CNNs with LSTM units. This innovative 

approach allows for leveraging the strengths of 

both CNNs and LSTMs to effectively process the 

input data. Moreover, the incorporation of parallel 

feature learning pipelines enhances the efficiency 

of feature extraction and representation learning. 

It is mentioned that the Temporal Conv-LSTM 

model also has the capability to predict future 

activities, indicating its potential for forecasting 

upcoming activities based on historical data and 

learned patterns. 

 
Table (2 ):-Comparison Varying Anticipation Time Based MHEALTH Dataset 

 
Model Year Accuracy Difference point(s) 

Bi-LSTM [28] 2023 95.79 Higher complexity o(n^2) 

 Bi-LSTM [29] 2023 97.96% 1- Higher complexity o(n^2) 
2- Only five daily activities 
3- Predict future activity (same our work) 

Temporal Conv-LSTM 
[30] 

2022 91.6% 1- A hybrid architecture was employed, consisting of parallel feature 
learning pipelines 
2- High complexity o(n^2) 

Our model   98%  Less complexity Using LSTM  o(n) 

5. CONCLUSION 

 

Paper presents an innovative approach to 

predict injuries in sports activities by leveraging 

LSTM and wearable sensor data and wide range 

of healthcare applications. Through the training 

of the "predict_future_activity" function, our 

system gains the ability to make precise forecasts 

for future time steps. This study significantly 

contributes to the field of deep learning time 

series, particularly in its effective handling of 

activity sequences, signifying a novel and 

noteworthy undertaking. LSTM-based model 

outperforms the Bi-LSTM models in terms of 

accuracy while maintaining a lower 

computational complexity. The Temporal Conv-

LSTM model presents an intriguing hybrid 

architecture with promising accuracy and the 

ability to predict future activities.  
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