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ABSTRACT 
This paper intends to study, investigate and optimize the effect of aspect ratio such as width and height 

on the dynamic behavior of a plate in terms of frequency and mode shapes.The research involves 

simulating and building plate models using ANSYS software. Modal analysis is adopted to predict the 

dynamic behavior of the plate. MATLAB code is developed to estimate the natural frequency values 

mathematically. Numerical results are compared with mathematically calculated frequency values. A total 

of 25 ANSYS models are built. The study has investigated up to eight dynamic modes shapes. The effects 

of the aspect ratios are presented in this article. Increasing the width can slightly increase the natural 

frequency values however increasing the thickness can significantly increase the values of the natural 

frequency. The range of the width values was from 40, 45, 50, 55, and 60 mm. The range of thickness 

values was from 10, 15, 20, 25, and 30 mm. This effect was seen to take place more in flexural (bending) 

modes. Flexural, Lateral, torsional, and buckling mode types were observed during the modal analysis. 

The rank of these modes for each model was dependent on the width and height of the plate.  
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1. INTRODUCTION 

 

late structures are essential building 

blocks that are widely used in a wide 

range of engineering applications, from 

mechanical systems to aeronautical and civil 

engineering. It is crucial to understand and 

improve the dynamic behavior of plates since it 

directly affects their stability, structural integrity, 

and overall performance. The aspect ratio, which 

is the ratio of a plate's length to its breadth and 

one of the important geometric elements 

controlling the dynamic properties of plates, is 

essential in defining the plate's vibrational 

response and overall dynamic performance. 

Numerous studies on plate dynamics have 

been conducted, including inquiries into how 

aspect ratio affects several dynamic 

characteristics such as natural frequencies, mode 

shapes, damping ratios, and modal involvement 

factors. Numerous computer methodologies and 

numerical optimization techniques have been 

used to date to study the dynamic behavior of 

plates under various aspect ratios. These 

methods enable academics to effectively 

examine complex structural systems and provide 

knowledge on how engineers and designers may 

improve plate designs for better performance. 

 By providing a thorough numerical 

optimization analysis on the impact of aspect 

ratio on the dynamic performance of plates, this 

research seeks to support this continuing effort. 

This work aims to uncover the complex links 

between aspect ratio changes and important 

dynamic parameters using meticulous numerical 

simulations and optimization techniques, 

offering useful insights for the design and 

engineering of high-performance plate-based 

systems. 

To build upon a strong theoretical foundation, 

this investigation incorporates significant work 

in the fields of plate mechanics, numerical 

optimization, and structural dynamics. The 

creation of the governing equations for plate 

dynamics at different aspect ratios is based on 

the classical theories of Timoshenko and 

Woinowsky-Krieger (Timoshenko and 

Woinowsky-Krieger 1959) on plate mechanics. 

Michell's (Michell 1904) and more recent 

(Svanberg  2002) efforts on numerical 

optimization methods, as well as research on 

structural optimization concepts, were used to 

construct the aspect ratio optimization 

framework. 

There is a wealth of literature on the 

dynamics of plates under various loading and 

boundary conditions, which aids in 

understanding the complex interplay between the 

P 
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aspect ratio and dynamic properties. The 

vibrational behavior of plates is extensively 

discussed in the works of Leissa (Leissa  1973) 

and Meirovitch (Meirovitch  1986), while Reddy 

(Reddy 2004) investigates the mechanics of 

laminated composite plates and shells. 

Furthermore, early research by Zienkiewicz and 

Belytschko (Zienkiewicz 2000 and Belytschko 

2014) served as the foundation for numerical 

techniques like finite element analysis (FEA), 

which is widely used in structural analysis. 

The fields of structural analysis and 

numerical optimization have seen a revolution in 

modern engineering practices because of strong 

computer tools and software. This work makes 

effective use of the capabilities of top simulation 

programs, including Ansys (Structural Analysis 

Software, 2023), Abaqus (Finite Element 

Analysis Software, 2023), and COMSOL 

(Multiphysics Simulation Software, 2023), to 

carry out dynamic analysis and optimization 

methods. A robust and precise evaluation of the 

dynamic performance of plates under various 

aspect ratios is made possible by the inclusion of 

these software tools in numerical studies. 

For the purpose of creating a methodical 

strategy for optimizing the aspect ratio of plates, 

the knowledge gleaned from earlier work on 

structural optimization and dynamic response 

assessments by Spyridon and Bendsoe (Spyridon 

2023 and Bendsoe 2003) serves as an invaluable 

resource. We attempt to determine the ideal 

aspect ratio that optimizes certain performance 

metrics while taking into account realistic 

technical restrictions by using optimization 

techniques influenced by Michell's work on 

frame structures (Michell 1904). 

This study adds something new and 

significant to the fields of plate dynamics and 

numerical optimization. By figuring out how 

aspect ratio affects the dynamic performance of 

plates, this study hopes to make it easier to 

design new, high-performance structures that can 

stand up to different kinds of loads and are more 

efficient and safer in a wide range of engineering 

applications. 

With the use of a thorough analysis of the 

effects of numerical optimization, we hope to 

better understand the dynamic behavior of plates 

in this work. We aim to shed light on the 

complex interactions between aspect ratio 

fluctuations and important dynamic factors by 

using fundamental theories of plate mechanics, 

numerical optimization approaches, and cutting-

edge computational tools. This introduction's 

extensive list of cited sources provides a wealth 

of knowledge that serves as a strong foundation 

for our research. The knowledge gained from 

this study is anticipated to enable engineers and 

designers to optimize the aspect ratio of plates 

for improved structural performance in a variety 

of engineering applications. 

This examination uses finite element analysis 

(FEA), a popular numerical technique in 

structural mechanics, as the primary numerical 

simulation tool to accomplish the research goals 

(Belytschko 2014). By discretizing the plate 

domain into smaller components, FEA makes it 

possible to analyze complicated systems and 

their dynamic behavior with accuracy and 

efficiency. COMSOL, Abaqus, and other well-

known commercial software programs that 

provide sophisticated structural analysis and 

optimization capabilities are used to conduct the 

simulations (COMSOL AB, 2021, Dassault 

Systèmes, 2021, Ansys, Inc, 2021). 

Natural frequencies, which are crucial 

determinants of a plate's vibrational properties 

(Tran et al. 2021), are the study's first emphasis 

on basic dynamic factors. In order to 

comprehend how the quantity and distribution of 

natural frequencies change and to find possible 

resonances that could affect the plate's general 

stability and performance (Zhong  et al. 2019), 

we adjust the aspect ratio. Additionally, mode 

shapes, which describe the plate's deformation 

patterns at certain frequencies, provide crucial 

information on the localization and distribution 

of energy inside the structure (Araujo  et al. 

2010). Our study investigates how modal 

patterns are influenced by aspect ratio and 

suggests designs that encourage more effective 

energy distribution. 

In evaluating the dynamic performance of 

plates, taking damping into account is equally 

important (Reddy  2004). To understand how the 

structure's capacity to dissipate vibrational 

energy varies, various aspect ratios are explored 

using damping ratios, which measure the energy 

dissipation in the system (Wei  et al. 2016). The 

interaction between damping and aspect ratio 

significantly affects a plate's resistance to 

dynamic loads and vibrations. 

Along with natural frequencies and damping, 

modal participation variables are also looked at 

to figure out how different modes affect the 

plate's overall response (Al-Shammari  et al. 

2022). For engineering structures that display 
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frequency-dependent behavior and need focused 

optimization of certain modes to achieve 

performance requirements, understanding these 

aspects is essential. 

We use numerical optimization methods in 

the analysis in order to get the ideal aspect ratio 

for certain performance indicators (Svanberg 

2002). The aspect ratio that produces the 

necessary dynamic properties is chosen using a 

variety of optimization approaches, including 

gradient-based and evolutionary techniques. The 

groundbreaking optimization research by Araujo 

et al. (Araujo 2010) and Akl et al. (Akl et al. 

2000) as well as the works of Bendsoe and 

Sigmund on topology optimization (Bendsoe 

2003) served as important references in the 

development of the optimization methods for 

aspect ratio selection. 

This study aims to reveal the complex 

interactions between aspect ratio and the 

dynamic performance of plates in terms of 

flexural behavior via a combination of 

theoretical underpinnings, numerical 

simulations, and optimization techniques. This 

study's results have enormous potential for 

assisting engineers and designers in the 

optimization of plate structures for a variety of 

uses, including bridge decks, mechanical parts, 

and more. This publication offered a road map 

for every form of mode shape that can show up 

during a modal analysis. Different mode shape 

types were revealed in this study such as 

flexural, torsional, lateral, and buckling. This 

paper showed how the height and width 

dimensions of the plate could change the 

appearance rank of these mode shape types. 

Finally, this study aims to make a substantial 

contribution to the area of plate dynamics and 

numerical optimization by thoroughly exploring 

the influence of aspect ratio on the dynamic 

performance of plates. This paper intends to 

provide significant insights and approaches for 

optimizing plate-based systems for improved 

performance and structural integrity in a variety 

of engineering applications by using a large 

number of influential references. 

2. Boundary conditions, configurations, and 

dimensions 

This study investigated a plate with a 

cantilever configuration. The boundary condition 

considered one end fixed while the other end 

kept free as shown in Figure 1. The length of the 

plate was 150 mm. The width of the plate had 

the values of 40, 45, 50, 55, and 60 mm while 

the height of the plate was in the range of 10, 15, 

20, 25, and 30 mm. Different models with 

different width and height were built. Steel with 

density of 7850 Kg/m3, modulus of elasticity of 

200 GPa and poison’s ration of 0.3 was selected. 

These dimensions and specifications are chosen 

for the purpose of this research only. 

 

 

 

 

 

 

 

 

 
 

Fig.( 1 ):-Layout of the cantilever plate 

 

3. NATURAL FREQUENCIES AND MODE 

SHAPES 

 

In this study, the natural frequency values and 

the behavior of the mode shape play an essential 

role to specify the effect of the plate dimensions 

on the flexural dynamic behavior of the plate.  

Generally, the natural frequency is the rate at 

which an object oscillates naturally when 

exposed to initial excitation. The mode shape 

can be expressed as it is the shape of the 

deformation of that body at each natural 

frequency (Baqersad  et al. 2014). Basically, all 

bodies have natural frequencies and accordingly 

have mode shapes as much as the level of the 

degree of freedom of these bodies. Knowledge 

of the system’s natural frequencies is of 

importance where cases of intensive resonance 

can be avoided through several ways including 

shifting of the natural frequency to avoid 

resonance regions caused by any force vibration 

subjected to the system (Ewins 2009). Of course, 

height 

width 
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the bulk natural frequency of any system can be 

derived from the equation of motion of that 

system.  

 

4. FINITE ELEMENT MODELS 

 

The finite element method is considered an 

essential technique to simulate the dynamic 

behavior of plates (Hughes 1987). Plate models 

with different dimensions and specific boundary 

conditions were selected. A total of twenty-five 

finite element models were built using the 

ANSYS software package. Figure 2 depicts the 

finite element model of a plate with a length of 

150 mm, width of 40 mm, and height of 10 mm. 

The element type used is SOLID186 which is a 

20 node-element with three degrees of freedom 

per node as shown in Figure 3. The meshing 

process included an element size of 4 mm for the 

body of the plate. Cantilever configuration was 

adopted for the finite element models. Model 

dimensions ranged from 10, 15, 20, 25, and 30 

mm for the height and 40, 45,50, 55, and 60 mm 

for the width.  

 

 

 

 

 

 

 

 

 

 

Fig.( 2):- Finite element model of the plate  Fig.( 3):- Element type of SOLID186 with 20 nodes 

 

5. MODAL ANALYSIS 

 

Modal analysis can be described as it is the 

method by which, the natural frequencies and 

the mode shapes of a mechanical system can be 

evaluated. This is considered an important 

characteristic in dynamic designs as the recorded 

natural frequencies and mode shapes are the 

equivalent values of the whole system (Clough 

and Penzien  1993). Generally, there are several 

methods to perform a modal analysis in practice 

such as subjecting a body to a single or multiple 

excitations and then, by acquisitioning the 

outputs, estimating the natural frequencies and 

mode shapes. The modal analysis adopts Eigen 

equations where the evaluated values of the 

natural frequencies present the Eigenvalues and 

the resulting mode shapes depict the 

Eigenvectors (Jurgen 1996). Modal analysis in 

the finite element method follows the Eigen 

equations as well, where the mechanical system 

undergoes free vibrations.  

In this research, eight modes were simulated 

for each plate model starting from the lowest 

natural frequency. The plate adopted a cantilever 

configuration where one end was freed and the 

other end fixed. Free vibration test was chosen 

for the simulation. The resulting first eight 

natural mode shapes comprised flexural, 

torsional, lateral, and buckling modes. These 

modes are depicted in Figure 4. The 

classification of the resulting modes is listed in 

Tables 1, 2, 3, 4, and 5. 

5.1 Mapping the mode shapes 

The modal analyses performed for each plate 

model revealed that the rank of the first, second, 

and third flexural mode shapes among the eight 

generated mode shapes is not steady and is 

changeable according to the specific width and 

height of the plate model.  

In light of the above, the plate model of 

width, height, and length of 40, 10, and 150 mm 

respectively (Table 1) has the 1st flexural mode 

ranked 1st and 2nd flexural mode ranked 3rd, and 

3rd flexural mode ranked 5th. While another plate 

model of width, height, and length of 45, 30, and 

150 mm respectively (Table 2) has the 1st 

flexural mode ranked 1st and the 2nd flexural 

mode ranked 4th, and the 3rd flexural mode 

ranked 8th. 

A map for the different types of mode shapes, 

including flexural, torsional, lateral, and 

buckling, was able to specify and draw by 

recognizing the type and rank of each mode 
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(a) (b) 

(c) (d) 

(e) (f) 

shape type for the different plate models.   

Tables 1, 2, 3, 4, and 5 map the resulting 

different mode types and the rank of the flexural 

modes. Modal analysis is performed for eight 

modes as it was enough to visualize the third 

flexural mode shape. The following resea

rch article will try to find the relationship between the mode type and the dimension of the plate. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.( 4):- Mode shape types where (a) 1st flexural, (b) 1st lateral, (c) 2nd flexural, (d) 1st torsional, (e) 3rd flexural, 

and (f) 1st buckling 

 
Table( 1):- Map of mode shape types for plates with length 150 mm, width 40 mm, and different heights 

Mode shape 
rank 

Plate models 

Width 40 mm 
Height 10 mm 

Width 40 mm 
Height 15mm 

Width 40 mm 
Height 20 mm 

Width 40 mm 
Height 25 mm 

Width 40 mm 
Height 30 mm 

1 Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st 

2 Lateral, 1st Lateral, 1st Lateral, 1st Lateral, 1st Lateral, 1st 

3 Flexural, 2nd Flexural, 2nd Torsion, 1st Torsion, 1st Torsion, 1st 

4 Torsion, 1st Torsion, 1st Flexural, 2nd Flexural, 2nd Flexural, 2nd 

5 Flexural, 3rd Lateral, 2nd Lateral, 2nd Lateral, 2nd Lateral, 2nd 

6 Lateral, 2nd Buckling, 1st Buckling, 1st Buckling, 1st Buckling, 1st 

7 Torsion, 2nd Flexural, 3rd Flexural, 3rd Flexural, 3rd Flexural, 3rd 

8 Buckling, 1st Torsion, 2nd Torsion, 2nd Torsion, 2nd Torsion, 2nd 

 

Table 2 Map of mode shape types for plates with length 150 mm, width 45 mm, and different heights 
Mode shape 

rank 
Plate models 

Width 45 mm 
Height 10 mm 

Width 45 mm 
Height 15mm 

Width 45 mm 
Height 20 mm 

Width 45 mm 
Height 25 mm 

Width 45 mm 
Height 30 mm 

1 Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st 

2 Lateral, 1st Lateral, 1st Lateral, 1st Lateral, 1st Lateral, 1st 

3 Torsion, 1st Torsion, 1st Torsion, 1st Torsion, 1st Torsion, 1st 

4 Flexural, 2nd Flexural, 2nd Flexural, 2nd Flexural, 2nd Flexural, 2nd 

5 Flexural, 3rd Lateral, 2nd Lateral, 2nd Lateral, 2nd Lateral, 2nd 

6 Buckling, 1st Buckling, 1st Buckling, 1st Buckling, 1st Buckling, 1st 

7 Lateral, 2nd Flexural, 3rd Flexural, 3rd Flexural, 3rd Torsion, 2nd 

8 Buckling, 2nd Torsion, 2nd Torsion, 2nd Torsion, 2nd Flexural, 3rd 
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Table (3):- Map of mode shape types for plates with length 150 mm, width 50 mm, and different heights 
Mode shape 

rank 
Plate models 

Width 50 mm 
Height 10 mm 

Width 50 mm 
Height 15mm 

Width 50 mm 
Height 20 mm 

Width 50 mm 
Height 25 mm 

Width 50 mm 
Height 30 mm 

1 Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st 

2 Lateral, 1st Lateral, 1st Lateral, 1st Lateral, 1st Lateral, 1st 

3 Torsion, 1st Torsion, 1st Torsion, 1st Torsion, 1st Torsion, 1st 

4 Flexural, 2nd Flexural, 2nd Flexural, 2nd Flexural, 2nd Flexural, 2nd 

5 Flexural, 3rd Lateral, 2nd Lateral, 2nd Lateral, 2nd Lateral, 2nd 

6 Torsion, 2nd Buckling, 1st Buckling, 1st Buckling, 1st Buckling, 1st 

7 Lateral, 2nd Flexural, 3rd Torsion, 2nd Torsion, 2nd Torsion, 2nd 

8 Buckling, 1st Torsion, 2nd Flexural, 3rd Flexural, 3rd Flexural, 3rd 

 
Table( 4):- Map of mode shape types for plates with length 150 mm, width 55 mm, and different heights 

Mode shape 
rank 

Plate models 

Width 55 mm 
Height 10 mm 

Width 55 mm 
Height 15mm 

Width 55 mm 
Height 20 mm 

Width 55 mm 
Height 25 mm 

Width 55 mm 
Height 30 mm 

1 Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st 

2 Lateral, 1st Lateral, 1st Lateral, 1st Lateral, 1st Lateral, 1st 

3 Torsion, 1st Torsion, 1st Torsion, 1st Torsion, 1st Torsion, 1st 

4 Flexural, 2nd Flexural, 2nd Flexural, 2nd Flexural, 2nd Flexural, 2nd 

5 Torsion, 2nd Lateral, 2nd Lateral, 2nd Lateral, 2nd Lateral, 2nd 

6 Flexural, 3rd Torsion, 2nd Buckling, 1st Buckling, 1st Buckling, 1st 

7 Lateral, 2nd Buckling, 1st Torsion, 2nd Torsion, 2nd Torsion, 2nd 

8 Buckling, 1st Flexural, 3rd Flexural, 3rd Flexural, 3rd Flexural, 3rd 

 
Table( 5):- Map of mode shape types for plates with length 150 mm, width 60 mm, and different heights 

Mode shape rank Plate models 

Width 60 mm 
Height 10 mm 

Width 60 mm 
Height 15mm 

Width 60 mm 
Height 20 mm 

Width 60 mm 
Height 25 mm 

Width 60 mm 
Height 30 mm 

1 Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st Flexural, 1st 

2 Torsion, 1st Lateral, 1st Lateral, 1st Lateral, 1st Lateral, 1st 

3 Lateral, 1st Torsion, 1st Torsion, 1st Torsion, 1st Torsion, 1st 

4 Flexural, 2nd Flexural, 2nd Flexural, 2nd Flexural, 2nd Flexural, 2nd 

5 Torsion, 2nd Torsion, 2nd Lateral, 2nd Lateral, 2nd Lateral, 2nd 

6 Flexural, 3rd Lateral, 2nd Buckling, 1st Buckling, 1st Buckling, 1st 

7 Lateral, 2nd Buckling, 1st Torsion, 2nd Torsion, 2nd Torsion, 2nd 

8 Buckling, 1st Flexural, 3rd Flexural, 3rd Flexural, 3rd Flexural, 3rd 

 

6. MATHEMATICAL COMPARISON 

 

In this section, the natural frequencies of the 

cantilever plate models were calculated using the 

empirical formula developed by Blevins 

(Blevins 1979) based on his experiments on 

beams and plates. The material chosen was steel 

with a modulus of elasticity of 200 GPa, density 

of 7850 Kg/m3, and poisons ratio of 0.3. 

This section is devoted to comparing the 

natural frequencies obtained numerically using 

ANSYS with the natural frequencies calculated 

using Equation (1). 

The equation to calculate the natural 

frequencies for different modes is presented 

below; 

 

 

                          (1) 

 

Where i is mode shape rank,   is non-

dimension frequency constant that depends on 

the rank of mode shape, E modulus of elasticity, 

I second moment of area, m mass, and L length 

of the plate. 

 values are 1.875, 4.694, 7.854, 10.995, and 

14.137 used for modes 1, 2, 3, 4, and 5 

respectively. 

The empirical equation is designed to only 

estimate the flexural modes. Therefore, the first 

three modes calculated using the empirical 

equation will be compared to the first three 

flexural modes obtained from the ANSYS 

simulation. 

A MATLAB code was developed to calculate 

the natural frequencies using Equation (1) and to 

generate the natural frequency values. 

The comparison results are listed in Table 6 

for a plate model of width, height, and length of 

40, 10, and 150 mm. 
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Table 6 Comparing numerical and mathematical flexural natural frequency values 
Flexural mode ANSYS frequency, Hz Mathematical frequency, 

Hz 
Error 

1st flexural mode 365.880 (1st mode) 362.530 (1st mode) 0.92 % 

2nd  flexural mode 2245.00 (3rd mode) 2272.13 (2nd mode) 1.20 % 

3rd  flexural mode 6106.50 (5th mode) 6361.05 (3rd mode) 4.00 % 

 

7. RESULTS AND DISCUSSIONS 

 

The dynamic performance of a plate was 

investigated by performing modal analyses over 

eight modes. The plate was under a cantilever 

configuration. The width range of the plate was 

40, 45, 50, 55, and 60 mm. The height of the 

plate ranged from 10, 15, 20, 25, and 30. The 

length was fixed at 150 mm. 

The results show the effect of each plate’s 

dimensions on the flexural natural frequency for 

the different mode shapes.  

Basically, for each plate model, there were 

eight generated mode shapes with different mode 

types. These types included flexural, lateral, 

torsional, and buckling mode shapes. The rank 

and appearance of these mode shape types were 

affected by the dimensions of the plate. For 

example, a plate model with a width of 40 mm, 

height of 10 mm, and length of 150 mm has first, 

third, and fifth modes depicted as the flexural 

mode shape type. While first and second lateral 

modes appeared in the second and sixth modes 

respectively, first and second torsional modes 

appeared in the fourth and seventh modes 

respectively and buckling mode appeared in the 

eighth mode as listed in Table 1. 

Figure 5 shows the behavior of the first 

natural frequency against a range of plate’s 

width of 40, 45, 50, 55, and 60 for cases of 

plate’s height of 10, 15, 20, 25, and 30 mm. 

Figure 5a presents the effect of increasing the 

width of the plate on the first flexural natural 

frequency for a plate’s height of 10 mm. The 

same behavior was plotted in Figures 5b, 5c, 5d, 

and 5e but for plate height values of 15, 20, 25, 

and 30 respectively. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.(5):- Effect of plate’s width on the 1st flexural natural frequency at height of (a) 10, (b) 15, (c) 20, (d) 25, and 

(e) 30 mm 
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The results from Figure 5 indicate that 

increasing the width leads to an increase in the 

natural frequency slightly. This behavior is true 

for the selected plate’s height values.  

Examining the results shown above, indicate 

that the width has a slight effect on the values of 

the first natural frequency. This could be referred 

to as the basic equation of the natural frequency 

as shown in the equation below. 

 

𝑓 =
1

2𝜋
√

𝑘

𝑚
                                   (2) 

 

where f is the natural frequency, k is the stiffness 

and m is the mass. The stiffness can be estimated 

through Equation (3), 

 

𝑘 =
3𝐸𝐼

𝐿3
                                        (3) 

 

where E is the modulus of elasticity, I is the 

second moment of area and L is the length of the 

plate. The second moment of area can be 

calculated through, 

 

𝐼 =
𝑏ℎ3

12
                                   (4) 

 

Where b is the width of the plate and h is the 

height. 

From the above equations, the natural 

frequency is affected by the square root of the 

width value. This can be considered as the 

reason for the slight effect of the width value on 

the natural frequency value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig.( 6):- Effect of plate’s height on the 1st flexural natural frequency at a width of (a) 40, (b) 45, (c) 50, 

(d) 55, and (e) 60 mm 

 

Figure 6 presents the effect of the height of 

the plate on the behavior of the first flexural 

natural frequency at specific width values. 

Exploring Figure 6a reveals that the effect of 
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increasing the height from 10, 15, 20, 25 through 

30 mm can significantly increase the value of the 

first flexural natural frequency at a width value 

of 40 mm and Length of 150 mm. 

This behavior can be seen repeated in figures 

6b, 6c, 6d, and 6.6e where the height is 

increasing from 10 mm to 30 mm with a step of 

5 mm for each case and width values of 45, 50, 

55, and 60 for Figures 6b, 6c, 6d and 6.6e 

respectively. 

The reason for the significant effect of the 

height on the values of the natural frequency can 

be explained by returning to Equations 2, 3, and 

4. The natural frequency is affected by the treble 

the square root of the height. 

As Figures 5 and 6 represented the effect of 

width and height on the flexural first natural 

frequency respectively, Figure 7 represents the 

effect of the height on the first three flexural 

natural frequencies. 

As this research is devoted to analyzing the 

flexural modes only, Figure 7 depicts the effect 

of the plate height on the first and second, and 

third flexural natural frequencies. The first, 

second, and third flexural modes had different 

ranks in each plate model therefore Tables 1, 2, 

3, 4, and 5 were considered essential to specify 

the flexural modes in each model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.( 7):- Effect of the plate 

height on the flexural natural frequency at a width of (a) 40, (b) 45, (c) 50, (d) 55, (e) 60 mm 

 

The first, second, and third flexural modes 

had the rank of first, third, and fifth out of the 

total eight generated modes respectively for 

plate models of width 40 mm, height 10 mm, 

and length 150 mm. While the first, second, and 

third flexural modes had the rank of first, fourth, 

and eighth out of the total eight generated modes 

respectively for plate models of width 50 mm, 

height 25 mm, and length 150 mm. 

Although this research focuses on the effect 

of the aspect ratio on the flexural modes only, 

however, this research shed light on the type of 

plate mode shapes. Where there were four main 

types observed as a mode shape. These types 

included flexural, lateral, torsional, and buckling 

mode shapes.  

This research shows that, the rank of 

appearance of these different modes through the 
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eight generated mode shapes differs and that 

they are affected by the dimensions of the plate. 

This research has presented a map for this 

behavior shown in Tables 1, 2, 3, 4, and 5. 

 

8. CONCLUSIONS 

 

The first three flexural modes of cantilever 

plate models were analyzed through modal 

analysis. Models of the plate with a width range 

of 40, 45, 50, 55, and 60 mm and heights of 10, 

15, 20, 25, and 30 mm were built with a plate 

length of 150 mm. The effect of the aspect ratio 

against the flexural natural frequencies was 

examined and the research has summarized the 

following conclusions; 

The height of the plate has a significant effect 

on the flexural modes where increasing the 

height lead to increasing the flexural natural 

frequency. 

The effect of the width on the flexural 

frequencies was considered low compared to the 

effect of the height of the plate. 

ANSYS was able to predict the different 

types of mode shapes. A comparison study was 

presented in this research to compare the 

mathematically and numerically obtained 

flexural frequencies.  

Four main mode shape types were visually 

observed during the execution of the modal 

analysis. The type of these observed mode 

shapes ranged between flexural mode, lateral 

mode, torsional mode, and buckling mode.  

The rank of the flexural modes among the 

eight tested modes was not fixed over the 

analyzed plate models. It was noticed that the 

aspect ratio affects the rank of all mode types 

including the flexural mode as shown in Tables 

1, 2, 3, 4, and 5. 

This research was able to furnish a map for 

the different mode types observed in this 

research where the total number of tested modes 

for each plate model was 8 modes. 

Further comprehensive studies are suggested 

to correlate the dimensions of the plate with the 

rank of mode shapes with their different types 

including the flexural, lateral, torsional, and 

buckling modes. 
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