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ABSTRACT 
Generating time series data are an important tool in operations research, as this data is often the 

basis of model decision-makers. In this study, the annual maximum rainfall (AMR) data from three 

rainfall stations (i.e., Duhok, Erbil, and Sulaymaniya) located in the Kurdistan Region of Iraq have been 

used to build auto-regressive integrating moving average (ARIMA) models. For this reason, the rainfall 

data series from the years 1991 to 2021 was used. The Box-Cox transformation was used to make the 

rainfall time series stationary and normal. Several statistical tests were used to evaluate how well the 

successful ARIMA models performed. Results revealed that the most suitable model for the Duhok 

station was ARMA (0, 3), and for both Erbil and Sulaymaniya stations, it was the ARMA (0, 4) model. 

The AMR data for the following five years was predicted using these models (2022 to 2026). The study 

found that in a semi-arid region like the Kurdistan Region of Iraq, the ARIMA models were a useful tool 

for generating future rainfall. 
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1. INTRODUCTION 

 

stimating rainfall is crucial for climate 

impact studies and evaluations of 

hydrological processes [23].  The occurrence of 

rainfall is a complicated phenomenon that 

makes forecasting it difficult [5, 29]. Projects 

for managing water resources, agriculture, and 

flood control are all based on accurate rainfall 

forecasts [13]. Accurate rainfall prediction helps 

decision-makers to develop appropriate 

mitigation plans [27]. Various models, methods, 

and techniques are available in the literature for 

evaluating, simulating and predicting 

hydrological variables. Each prediction model 

differs in terms of accuracy, range, duration, and 

cost [22]. For example, [7] forecasted the 

monthly rainfall data on three reservoir dams in 

northern Iraq (i.e., Mosul, Dokan, and 

Derbendikhan) using Autoregressive Integrated 

Moving Average (ARIMA) models. Based on 

the results, it was clear that the ARIMA model 

could accurately predict the monthly rainfall 

series in the three reservoirs. In order to predict 

the amount of rainfall that will fall in India 

during the months of June to August, [10] 

developed an ARIMA model using the rainfall 

data for the years 1871 to 1999. As a result of 

the findings, it can be concluded that the 

ARIMA (0, 1, 1) is a suitable model for 

predicting monthly rainfall data. 

In another study, [12] presented Time Series 

Modeler (TSM) for forecasting rainfall in an 

Indian coastal region. The main characteristics 

include a five-year dataset (2009–2013) that 

includes rainfall, maximum and minimum 

temperature, dew point, visibility, and wind 

speed. A reliable model for predicting rainfall is 

therefore feasible because the performance 

criteria for this model's evaluation are based on 

MAD, MSE, MAPE, and RMSE. With a 

prediction accuracy range of 80%, the results 

produced by this model are widely accepted. 

[21] used generalized linear models (GLMs) to 

predict daily rainfall from 1955 to 2010 on two 

Greek islands (Milos and Naxos). Depending on 

the accuracy of the prediction of rainfall data, 

the results revealed that the GLMs are suitable 

as inputs in future hydrological applications. [3] 

used an ARIMA model to predict the changes in 

precipitation for the projected years. The best-fit 

ARIMA models were identified using the Box-

Jenkins method. The daily precipitation data 

from five stations were used to predict the 

amount of precipitation for the Jordanian Wadi 

Shuaib catchment. The most accurate ARIMA 

models, which had been tested with 10 years of 

data (2007–2016), were used to forecast 

precipitation up to 2026. It has been found that 

E 
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for the Jordanian Wadi Shuaib catchment area, 

which is already water-stressed, this observed 

pattern calls for efficient water management 

strategies. [26] improved forecasts for rainfall 

data in Makassar, Indonesia, using ARIMA and 

Kalman Filter techniques. The information was 

gathered from January 2010 to December 2020. 

Use should be made of the model with the 

lowest mean absolute percentage error (MAPE). 

The results showed that the best ARIMA model 

is ARIMA (0,1,1) (0,1,1), with a MAPE value 

of 111.48, while the MAPE value obtained by 

applying the Kalman Filter algorithm is 47.00, 

indicating that Kalman Filter has better 

prediction than ARIMA model. 

For hydrologists and designers, Rainfall is 

considered an important water resource. In the 

last decade, the Iraqi Kurdistan Region has been 

facing a severe water problem, and there has 

been a lack of meteorological information about 

the characteristics and patterns of the current 

and upcoming rainfall time series. Therefore, 

rainfall time series analysis and forecasting are 

essential for planners, decision-makers, and 

flood risk management to provide information 

on a variety of design issues relating to the 

management of water resource structures. This 

study aims to use the ARIMA models to predict 

the AMR data for the five years from 2022 to 

2026 in the three selected sites in the Kurdistan 

Region, Iraq (i.e., Duhok, Erbil, and 

Sulaymaniya). The current study's quantitative 

analysis of the future rainfall time-series data 

can help hydrologists diagnose the factors that 

influence how they analyze the current and 

future rainfall situation, which helps select the 

most appropriate hydrological estimates and 

hydraulic designs. 

 

2. STUDY AREA AND DATA 

 
In this study, three rainfall stations within 

three major governorates, namely, Duhok, Erbil, 

and Sulaymaniya in the Kurdistan Region 

located north of Iraq are examined (see Figure 

1). The Kurdistan Region is located in the 

Arabian Plate's northeastern corner [1, 16]. 

Between October and April, there is a very 

seasonal amount of rainfall during the winter 

[2]. The annual maximum rainfall (AMR) data 

series for 32 years, from 1990 to 2021, has been 

used in the current study (see Figure 1). The 

maximum amount of rainfall that could be 

expected in a year was calculated using the 

rainfall data (i.e., 365 days period). It should be 

possible to characterize changes in rainfall using 

the threshold record length of 32 years, which 

was determined at random. The gaps in the 

rainfall data of a particular station were filled by 

the linear regression analysis method with a 

nearby station that had no data gap using Excel 

software. It involved contrasting the rainfall 

data gaps at one station with those at a nearby 

station that didn't have any [14, 15]. Table 1 

displays the statistical analysis of the                 

rainfall data series for the three stations selected 

for this study. 

 

 
Fig.( 1):- A map of the study area's location. 
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Table( 1):- A statistical summary of the data series. 
Stations Station ID Longitude (E) Latitude (N) Elevation Max Rainfall (mm) 

Dohuk 370428 43° 17' 60'' 37° 02' 60'' 795 150 

Erbil 361441 44° 00' 00" 36°10' 00" 439 103.9 

Sulaymaniya 354453 45° 27' 00'' 35° 31' 48'' 886 131.8 

 

3. METHODS 

In this study, the procedure for estimating 

the ARIMA models involves the following steps: 

3.1 Stationary and Normality 

Identification: 

By using differencing and transformation of 

the time series data, the first step in time series 

modeling with the ARIMA model is to establish 

stationary and normal time series. The Box-Cox 

method and the Differencing method must be 

used to convert the time series into stationary 

and normal series for the ARIMA model [4]. 

Three tests for stationary were used: the 

Phillips-Perron (PP), Augmented-Dickey Fuller 

(ADF), and Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) tests [11, 28, 18]. A unit root test can be 

used to determine whether differencing of the 

data series is necessary. Based on the outcomes 

of the three stationary tests mentioned above, 

this will be done. In addition, the Shapiro-Wilk, 

Anderson-Darling, and Jarque-Bera tests for 

normality were used [24, 8]. Table 2 displays 

the critical values (CV) for the stationarity and 

normality tests as a function of sample size 

(n=32) at the previously mentioned 5% 

significance level. 

 
Table( 2):- The CV for the tests of stationarity and normality [18] 

Stationary Tests ADF PP KPSS 

CV 2.960-  -2.96 0.463 

Normality Tests SW AD JB 

CV 0.934 2.492 5.991 

 

3.2 ARIMA model 

The autoregressive integrated moving 

average (ARIMA) time series model [9] 

combines moving average, integration, and 

autoregressive functions (MA). The ARIMA 

model is a class of statistical models used for 

analyzing and predicting time series data. The 

ARIMA (p, d, q) model has the following form: 

 

∆dyt = C + ∅1∆
dyt−1 + ∅2∆

dyt−2 +⋯+ ∅p∆
dyt−p + εt + θ1εt−1 +⋯+ θqεt−q       (1) 

 

A ARMA (p, q) model is appropriate for time series data that are stationary and normal. 

yt = ∅1yt−1 + ∅2yt−2 +⋯+ ∅pyt−p + εt + θ1εt−1 +⋯+ θqεt−q                                (2) 

 

Where ∆dyt  denotes a differenced series. p 

denotes the AR parameters, the nonstationary 

time series' order of differentiation is given by 

d, and the MA parameter is symbolized by q. 

The parameters ∅1, ∅2, … , ∅p  denotes as AR 

constant coefficients, the θj (j = 1, 2, ..., q) are 

MA constant coefficients, εt is a distinct series                       

of white noise. 

3.3 Application of the ARIMA model 

The steps taken in this study's application of 

ARIMA modeling and data series forecasting 

are detailed below: 

 

1. Utilizing the various statistical tests 

mentioned in subsection 3.1 to analyze                    

the stationarity and normality of the rainfall 

time series. 

2. Calculating the order of the integer (d) in the 

non-stationary time series data and examining 

the time series' normality. The original time 

series is transformed using the Box-Cox 

transformation [19] method if d is not                

equal to zero or if a data set appears to be out of 

the ordinary. 

3. The ARMA model for the stationary time 

series will be used. The ARMA model 

developed in this step is a special case of the 

ARIMA model with d = 0 if the time series is 

stationary. The stationarized time series' 

autocorrelation function (ACF) and partial 
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autocorrelation (PACF) plots, the order of auto-

regression (p) and the order of moving average 

(q) will be calculated [25]. 

4. The Akaike Information Criterion (AIC) [6], 

the Schwarz Criterion (SC) [17], the Standard 

Error (S.E.) of Regression, and the Probability 

(p-value) are used to determine which model is 

the best. 

5. Once the best model has been chosen, the 

time series data will be predicted using this 

model. The procedure as a flowchart of ARIMA 

modeling which involves the above steps is 

given in Fig. 2. 

 

 
 

 
Fig. (2): - The procedure of applying the ARIMA model. 

 

4. RESULTS AND DISCUSSION 

4.1 The Stationarity and Normality Results 

on the Amr Data Series 

The outcomes of the stationary and 

normality tests mentioned using EViews 

software in section 3.1 on the AMR data series 

of the three stations that were adopted are 

shown in Tables 3 and 4. Table 3 shows that 

none of the three stationary tests used in this 

study (i.e., the ADF, PP, and KPSS) results at a 

significance level of 0.05 or less (Table 2). The 

three stations that were adopted have stationary 

initial AMR data series, in other words. The 

data series' non-stationarity was not, however, 

supported by any statistical test (including the 

ADF, PP, and KPSS). The normality of the data 

series still needs to be verified using objective 

normality tests. Table 4 shows the results of the 

three normality tests that were used in this study 

(SW, AD, and JB), and by comparing them to 

the critical value of the significance level of 

0.05 (Table 2), it is decided to reject the null 

hypothesis and come to the conclusion that the 

AMR data series for the three adopted stations 

do not follow a normal distribution. In order to 

confirm the non-normal AMR data to a normal 

distribution and enable additional capability 

analysis and hypothesis testing, the Box-Cox 

transformation method was used. 

 
Table( 3):- Results of stationarity tests of AMR data series  

 
 

 

ADF PP KPSS 

t-statistic Ƥ-value t-statistic Ƥ-value t-statistic Ƥ-value 

Duhok  -3.987 0.004 -4.617 <0.001 0.197 0.651 

Erbil -6.572 <0.001 -6.768 <0.001 0.083 0.944 

Sulaymaniya -6.672 <0.001 -6.772 <0.001 0.222 0.729 

 
Table (4):- Results of normality tests of AMR data series at a 5% significant level 
Stations SW AD JB 

t-statistic Ƥ-value t-statistic Ƥ-value t-statistic Ƥ-value 

Duhok  0.859 <0.001 1.330 0.002 20.048 <0.001 

Erbil 0.914 0.014 0.740 0.041 10.480 0.005 

Sulaymaniya 0.870 <0.001 2.001 <0.001 11.512 0.003 
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4.2 The Box-Cox Result 

Depending on the results of the three 

normality tests in subsection 4.1, it has been 

concluded that there is a need for transformation 

using the Box-Cox method. According to the 

Box-Cox method, the suitable lambda value (λ) 

has to be determined for the rainfall data for the 

Duhok, Erbil, and Sulaymaniya stations. 

According to the Box-Cox plot in Fig. 3, the 

best value for λ in a 95% confidence interval 

has been estimated for the three selected 

stations. Depending on the Box-Cox method, 

the Transformed function for each adopted 

station and depending on the values of λ are 

shown in Table 5. Once the transformation of 

the AMR data has been done, the stationarity 

and normality of the AMR data transformation 

need to be verified.  

 

  

 
Fig.( 3):- Plot Box-Cox of the AMR data for Duhok, Erbil, and Sulaymaniya. 

 
Table( 5):-Lambda value (λ) and the Transformed function depend on the Box-Cox method 

Station Lambda value (λ) Transformed function 

Duhok 0 Log (AMR) 

Erbil -0.5 1/Sqrt (AMR) 

Sulaymaniya -1 1/(AMR) 

 

4.3 Stationary and Normality Results on 

the Transformed Data Series 

Tables 6 and 7 provide the findings of the 

stationary and normality tests applied in section 

3.1 of this study to the transformed (AMR) data 

series of three adopted stations. The 

transformed (AMR) time-series data for the 

three adopted stations are stationary and have a 

normal distribution, as shown in Tables 6 and 7, 

and by comparing them with the critical value 

of the significance level of 0.05 (Table 2), 

respectively. The P-P and Q-Q plots, which 

display the graphical results of the normality 

test, were also used in this study's visual 

inspection of the normality test. In general, the 

P-P and Q-Q in Fig. 4 show that the transformed 

(AMR) data for the three adopted stations fits 

the normal distribution. The transformed (AMR) 
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data will be incorporated into the ARIMA 

model based on the outcomes of the stationary 

and normality tests. 

 

Table( 6):- Results of stationarity tests of Transformed (AMR) data series 
Stations ADF PP KPSS 

t-statistic Ƥ-value t-statistic Ƥ-value t-statistic Ƥ-value 

Duhok  -4.666 <0.001 -6.866 <0.001 0.049 0.964 

Erbil -6.238 <0.001 -6.823 <0.001 0.071 0.822 

Sulaymaniya -7.158 <0.001 -7.210 <0.001 0.151 0.512 

 

Table (7):- Results of normality tests of Transformed (AMR) data series  
Stations SW AD JB 

t-statistic Ƥ-value t-statistic Ƥ-value t-statistic Ƥ-value 

Duhok  0.967 0.411 0.476 0.222 1.021 0.600 

Erbil 0.992 0.997 0.111 0.992 0.343 0.842 

Sulaymaniya 0.979 0.784 0.196 0.882 0.373 0.830 

  

 

 
Fig.( 4):- Visual inspection of P-P and QQ plots for Transformed (AMR) data for Duhok, Erbil and 

Sulaymaniya. 

 

4.4 Parameters of the ARIMA model 

As mentioned in section 3, the ARIMA 

model is represented by three parameters (AR, I, 

and MA), which stand for autoregressive, 

difference order, and moving average. These 

three parameters also have statistical 

significance for the model's accuracy (p, d, and 

q). Given that the transformed (AMR) data for 

the three adopted stations are stationary and 

normal by the analysis of stationary in the 

preceding subsection, the ARMA (p, q) models 

are applied to the transformed (AMR) data for 

the three adopted stations, which results in d=0. 

For each adopted station in this study, the 

autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of the 

transformed (AMR) data series determine the 

order of both AR (p) and MA (q) in the ARMA 

model (Fig. 5). The range of p and q values is 

appropriately loosened in order to create 

multiple ARMA (p, q) models, as shown in 

Tables 8, 9, and 10, to create a more accurate 

ARMA model for each adopted station based on 

Fig. 5. Additionally, the five tests (p-value, 
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Adjusted R-squared, AIC value, SC value, and 

S.E. of regression) results of ARMA (p, q) 

models are listed in these three tables. These 

tests are all crucial factors in determining the 

best ARMA model. Tables 8 to 10  show that 

the ARMA (0, 3) model is the best optimal 

model for the Duhok station while the ARMA 

(0, 4) model is the best optimal model for the 

Erbil and Sulaymaniya stations based on the 

results of the five tests (i.e., p-value, Adjusted 

R-squared, AIC value, SC value, and S.E. of 

regression) used to determine the optimal 

ARMA model for each station. For these three 

optimal models (i.e., ARMA (0, 3) for Duhok 

station and ARMA (0, 4) for Erbil and   

Sulaymaniya stations) the Adjusted R-squared 

shows the higher value, and the other tests (i.e., 

p-value, AIC value, SC value, and S.E. of 

regression) show the lowest values among the 

other models. The model in Tables 8, 9, and 10 

that failed the parameter significance test (p-

value > 0.05) test was denoted by an asterisk (*). 

The results of fitting the transformed (AMR) 

data for the three stations using the best optimal 

models (ARMA (0, 3), and ARMA (0, 4)) are 

displayed in Fig. 6. 

 

 
 

Fig.( 5):- The ACF and PACF plot of the Transformed AMR data series for three adopted stations with 5% 

critical values at ±1.96N−0.5 (red dotted lines). 

 
Table (8):- Results of the ARMA tests for the Duhok station 

(p,q) P (AR; MA) Adjusted R2 AIC SC S. E. of Regression 

(0, 2)* (---; 0.126) 0.010 -0.526 -3.889 0.177 

(0, 3) (---; 0.006) 0.520 -0.663 -0.626 0.154 

(2, 0)* (0.153; ---) 0.002 -0.519 -0.382 0.178 

(2, 2)* (0.915; 0.650) -0.025 -0.464 -0.281 0.181 

(2, 3) (0.237; 0.005) 0.265 -0.750 -0.566 0.153 

(3, 0) (0.014; ---) 0.187 -0.703 -0.566 0.161 

(3, 2) (0.031; 0.303) 0.189 -0.679 -0.495 0.160 

(3, 3)* (0.848; 0.109) 0.223 -0.703 -0.519 0.157 
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Table (9):- Results of the ARMA tests for the Erbil station 

(p,q) P (AR; MA) Adjusted R2 AIC SC S. E. of Regression 

(0,4) (---; 0.022) 0.011 -0.972 -0.756 0.147 

(4, 0) (0.021; ---) 0.008 -0.8301 -0.763 0.132 

(4, 4)* (0.576; 0.808) 0.022 -0.841 -0.657 0.149 

(6, 0)* (0.251; ---) 0.011 -0.898 -0.761 0.147 

(6, 4)* (0.166; 0.143) 0.082 -0.926 -0.742 0.141 

 
Table( 10):-Results of the ARMA tests for the Sulaymaniya station 

(p,q) P (AR; MA) Adjusted R2 AIC SC S. E. of Regression 

(0, 1)* (---; 0.058) 0.065 -1.745 -1.608 0.138 

(0, 4) (---; 0.012) 0.155 -1.808 -1.671 0.005 

(1, 0) (0.047; ---) 0.032 -1.019 -0.882 0.139 

(1, 1)* (0.856; 0.450) 0.033 -0.965 -0.782 0.141 

(1, 4) (0.051; 0.013) 0.211 -1.064 -0.881 0.105 

(4, 0)* (0.118; ---) 0.053 -0.725 -0.757 0.110 

(4, 1)* (0.265; 0.069) 0.006 -1.023 -0.830 0.086 

(4, 4)* (0.689; 0.305) 0.127 -1.010 -0.827 0.135 

 

  
 

 

 
 

Fig.( 6):- Time series data was generated using the ARMA model for the Duhok, Erbil, and Sulaymaniya 

stations; the actual data is given in blue color and the red line color corresponds to the fitted values. 

 

A white noise test (i.e., ACF and PACF plots 

with the Q-statistic of the Ljung-Box test) is 

used on the residual (i.e., In time series analysis, 

residuals are the difference between the fitted 

values and the actual values) after fitting the 

best optimal ARMA models for each station. 
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White noise means that a variable does not have 

autocorrelation. The ACF and PACF function 

plots of the residual series are shown in Fig. 7. 

The estimated AMR data series from the three 

optimal models essentially have white noise, as 

can be seen in Fig. 7, where neither plot (ACF 

nor PACF) for the three stations shows any 

significant correlation between lags. It is 

common to use a Ljung-Box test to check that 

the residuals from a time series model resemble 

white noise. Also, after applying for the Ljung-

Box test [20], the Q-statistics for Duhok station 

were 2.756, for Erbil station were 6.558, and for 

Sulaymaniya station were 8.798. The residual is 

seen to be white noise, demonstrating the 

validity of all three optimal ARMA models (i.e., 

they are normal, have a zero mean, or are 

serially autocorrelated). In addition, three 

statistical tests (i.e., RE, RMSE, and MAE) are 

evaluated between the actual AMR data and the 

fitted AMR data by the ARMA model, as 

shown in Table 11. It can be seen in Table 11 

that the lower values of MAE, MSE, and RMSE 

imply higher accuracy of an ARMA model for 

each adopted station. Finally, the three selected 

ARMA models for the three adopted stations 

are used to predict the AMR data values for 

future periods from 2022 to 2026 (five years), 

as shown in Table 12. 

  

 

 
 

 
Fig.( 7):- The ACF and PACF plot of the residual series for three adopted stations with 5% critical values at 

±1.96N−0.5 (red dotted lines). 

 
Table (11):- Results Average RE (%), RMSE, MAE between actual AMR data and fitted AMR data by ARMA 

model. 
Stations; model RE (%) RMSE MAE 

Duhok; ARMA (0,3) 2.747 0.154 0.113 

Erbil; ARMA (0,4) 1.494 0.024 0.019 

Sulaymaniya; ARMA (0,4) 1.306 0.004 0.003 
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Table (12):-Time series data forecasted using the ARMA model from 2022 to 2026. 
Stations; model 2022 2023 2024 2025 2026 

Duhok; ARMA (0,3) 48.419 41.639 59.148 54.057 54.031 

Erbil; ARMA (0,4) 41.947 40.133 46.877 41.659 43.842 

Sulaymaniya; ARMA (0,4) 80.013 51.779 52.569 50.369 57.052 

 

5. CONCLUSION 

 
The analysis of the rainfall time series in this 

study has been done using the Box-Jenkins 

(ARIMA) model methodology. The models 

were created and tested using the annual 

maximum rainfall data series for the three 

rainfall stations in the Kurdistan Region of Iraq 

(Duhok, Erbil, and Sulaymaniya) from 1990 to 

2011. The parameters of the ARIMA models 

were estimated using plots of the 

autocorrelation function and partial 

autocorrelation function. For stationary, the 

tests Phillips-Perron, Kwiatkowski-Phillips-

Schmidt-Shin, and Augmented-Dickey Fuller 

were all applied. Additionally, the normality 

tests Shapiro-Wilk, Anderson-Darling, and 

Jarque-Bera were applied. The Box-Cox 

transformation was used to make the rainfall 

time series stationary and normal. Different 

statistical tests were applied to evaluate the 

performance of the successful ARIMA models. 

The findings showed that the ARMA (0, 3) 

model was best suited for the Duhok station, 

and the ARMA (0, 4) model was best suited for 

Erbil and Sulaymaniya. These models were 

used to forecast the AMR data for the 

subsequent five years (2022 to 2026). 

Depending on the results of average statistical 

test errors (i.e., RE (%), RMSE, and MAE) 

between actual AMR data and fitted AMR data 

by the ARMA model, it has been decided that 

the ARIMA model is suitable for projecting 

future annual rainfall values in the                 

Kurdistan Region. 
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