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ABSTRACT 

Downscaling the effective parameters of Global Climate Models is crucially required to project climate 

conditions in the future. The capability of machine learning approaches in downscaling Global Climate 

Models is getting interesting these days. The present study evaluates the M5p Decision Tree (DT) skill in 

reproducing high resolution monthly precipitation and temperature (predictands) data. To this end, the 

significant climate-related parameters (predictors) were derived from the General Climate Model of the 

Coupled Model Intercomparison Project Phase 6 (CMIP6) for the Erbil Plain. Initially, the effective 

parameters were carefully chosen for developing a downscaling model. Subsequently, multiple models were 

formulated to accommodate various maximum depths of decision trees (DT). Results obtained from the 

training process revealed a notably higher correlation between precipitation and temperature predictors in 

contrast to wind speed and direction. The evaluation of skill indicated enhanced accuracy in downscaling 

when increasing the maximum depth (MD) of M5p models up to an optimal threshold, with MD = 5 

identified as the optimal depth for generating predictive DTs. Finally, it was proved that the M5p model 

serves as a highly effective tool for downscaling the hydroclimatic parameters in climate change studies. 
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1. INTRODUCTION 

 

limate change is one of the most 

important challenges challenge 

confronting humanities. A recent investigation 

highlighted a concerning trend that the Euphrates 

River has experienced a minimum 40 percent 

decline in its downstream flow since 1972, with 

projections indicating a further decrease in the 

river's overall flow in the upcoming decade. 

Paradoxically, Iraq is endowing with abundant 

water resources within the region, facing 

mounting challenges in ensuring water 

availability (IAUIraq, 2012). The scarcity of 

water emerges as a direct consequence of climate 

change (IPCC, 2021), exacerbating the 

complexities faced by Iraq in managing its water 

resources. 

Global Climate Models (GCMs) have 

simulated large-scale climate data until the close 

of century, incorporating the impacts of changes 

in greenhouse gas (Kamranzad et al., 2014; Swart 

et al., 2019). Many research works have utilized 

GCMs to forecast the ramifications of climate 

C 
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change on the precipitation and temperature 

(Kamranzad, 2014; Zheng et al., 2017). 

Downscaling is a way to connect the large-scale 

GCM results to local-scale climate variables 

(Sachindra et al., 2018; Yeganeh-Bakhtiary           

et al., 2022).  

Three classes of downscaling approaches have 

been adopted: empirical, semi-empirical, and 

nesting methods. In the empirical approach, 

employes the historical climatic data to present 

local analog scenarios. These studies entail a 

qualitative conceptual survey, and the obtained 

results derived from empirical approaches do not 

generate a climate forecasting model. Conversely, 

Semi-empirical (statistical) and nested 

(dynamical) downscaling approaches employ 

predictions from large-scale GCM models to 

develop the local climate change scenarios (Sailor 

et al., 2000). In the dynamical downscaling 

method, a regional climate model (RCM) 

operates at the desired mesh resolution utilizing 

outputs from large-scale GCM models as 

boundary conditions to generate higher resolution 

outputs (Fowler et al., 2007). However, the 

significant drawbacks of dynamical downscaling 

methods, which restricted their applications in 

climate change assessments, include their 

complexity, high computational cost, and 

performance sensitive to specific cases (Ghosh 

and Misra, 2010). 

Statistical downscaling methods can be 

divided into three groups (Maraun et al., 2010; 

Srinivasa Raju and Nagesh Kumar, 2018): the 

Perfect Prognosis (PP) method, establishes a 

relationship is between large-scale observational 

data and locally recorded data (Wilby and Wigley, 

2000; Trigo and Palutikof, 2001). In the Model 

Output Statistics (MOS) method, akin to the PP 

method, except that in this approach, a 

relationship is forged between GCM outputs 

(predictor) and local climate variables 

(predictands) (Zhang, 2005). The Stochastic 

Weather Generator (SWG) category develops a 

relationship by altering probable distribution 

parameters (Chen et al., 2013). Considering the 

numerous parameters involved in GCM 

simulations and the future scenarios intended to 

simulate trends, the MOS method may be suitable 

for downscaling when only limited observational 

data are accessible compared to the PP approach, 

(see Srinivasa Raju and Nagesh Kumar, 2018; 

Zhang et al., 2021).  

On the other hand, the statistical downscaling 

methods are developed based on two fundamental 

assumptions: (i) the establishment of empirical 

relationships between historical large-scale 

atmospheric predictors modelled by GCMs and 

local climate characteristics, and (ii) the validity 

of these derived empirical relationships under 

varying climate change scenarios (Sunyer et al., 

2012; Kamranzad et al., 2013). The predominant 

downscaling approach involves devising transfer 

functions that fit a quantitative relationship 

between large-scale climate variables and local-

scale climate variables. are the most popular 

statistical downscaling approach. In recent years, 

machine learning techniques have emerged as a 

method to determine the required transfer 

function in statistical downscaling (see among 

others, Sachindra et al., 2018; Davanlou 

Tajbakhsh et al., 2019). 

Due to the nonlinear nature of climatic 

processes in predication process, machine 

learning techniques such as artificial neural 

networks (ANN) find widespread adoption in 

modeling and forecasting various characteristics 

of climatic parameters (e.g., Sailor et al., 2000; 

Avila et al., 2020). On the other hand, Decision 

Tree (DT) as one of the most popular and efficient 

data mining techniques, characterized by its 

clustering approach, offers the advantage of  

logical arranging variable choices, thereby 

leading to results that are both comprehensive and 

straight forward (Nourani and Molajou, 2017). 

Comparison assessment between Decision Tree 

models with other machine learning techniques 

demonstrate that DT models provide more 

accurate predictions ( Londhe and Dixit, 2012; 
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Mahtabi and Sattari, 2016). 

This study investigated the potential of the 

M5p DT as a classification-based machine 

learning for hindcasting precipitation and 

temperature in the Erbil Plain. Variations of 

predicted precipitation and temperature simulated 

by the GCM, specifically the CanESM5 model 

(Swart et al., 2019) during the historical period 

were downscaled by the proposed approach and 

assessed using reanalyzed data (ERA5-Land). 

Notably this research marks the first time of 

studying different designs of M5p DT for the 

prediction of precipitation and temperature. 
 

2. METHODOLOGY 
 

Long-term rainfall forecasting is very crucial 

for resource management and policymaking in 

Erbil plain. This long-term precipitation is 

affected significantly by climate change, and 

downscaling of GCMs data provides a robust 

model to explore the climate change impacts on 

precipitation and other hydroclimatic parameters. 

Recently, the application of Decision Trees has 

increased rapidly to predict the climatic 

parameters. This section discusses the data and 

methods that were used in this study. 

2.1 Study Area 

The study area includes the entire of Erbil 

province, located within geographical coordinate 

of latitude of 34°42'-37°22' N and longitudes of 

42°25'-46°15' E. Geographically, Erbil Province 

covers an area of 14,818.1 km2 and comprises 10 

districts: Mergasur, Soran, Choman, Rawanduz, 

Shaqlawa, Khabat, Erbil, Dashti Hawler, 

Koysinjaq, and Makhmur. The climate in the IKR 

is characterized as arid and semi-arid, exhibiting 

hot and dry conditions in summer and cold and 

wet in winter. Spring and autumn are relatively 

short compared to the dominant summer and 

winter seasons (Gaznayee and Al-Quraishi, 2019). 

Erbil Province displays a considerable elevation 

variation ranging between 100 m and 3,565 

meters above sea level, as shown in Error! 

Reference source not found.. 

 

 

 
Fig.( 1): -Erbil topography and the location of meteorological stations. left: Erbil region (Mustafa et al., 

2019), right: considered study area. 
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Error! Reference source not found. shows the spatial distribution of the mean annual rainfall across 

the Erbil Plain. As seen a decreases in precipitation amount from the northeast toward the southwest 

of Erbil Province can be observed; this signifies that the northeastern regions receive higher quantities 

of precipitation than the southwestern areas of the Erbil city (Mawlood and Al-Quraishi, 2019). 

 

 

Fig.( 2): -Spatial distribution of average annual rainfall in Erbil Plain (Mawlood and Al-Quraishi, 2019). 

 

2.2Global Climate Model (GCM) 

Climate change exhibits geographical 

variation and is not homogenous across the planet, 

with certain areas are more sensitive to climate 

change than others. The coupled Atmosphere-

Ocean-Land General Circulation Models (GCMs), 

initially designed for weather forecasting, have 

evolved into tools for understanding climate 

dynamics and projecting climate change. The 

projections concerning climate change using 

GCMs is based on future scenarios, accounting 

for the greenhouse gas emissions at each scenario 

that drive concentrations the greenhouse gas in 

the atmosphere. As the impacts of climate change 

are increasingly evident, there is an urgent need 

to act based on reliable scientific information. 

The Canadian Centre for Climate Modelling and 

Analysis (CCCma) is actively engaged in an 

ongoing effort to improve the modelling of the 

global Earth system. This aims to advance 

understanding of climate system’s functionality 

variability, historical changes, and foster 

improved quantitative predictions and forecast of 

future climate. CanESM5, the current version of 

CCCma's global model, has a pedigree extending 

back 40 years to the inception of the first 

atmospheric general circulation model (GCM) 

developed at CCCma's predecessor, the Canadian 

Climate Centre. 

CanESM5 represents a major upgrade from 

CanESM2, featuring incremental improvements 

across the atmosphere, land surface, and 

terrestrial ecosystem models. The major changes 

relative to CanESM2 encompass the introduction 

of completely new models for the ocean, sea ice, 

and marine ecosystems, and a novel coupler. 

Developers of the model face decisions on 

allocating limited computational resources 

among augmentation in model resolution, model 

complexity, and model throughput (i.e., number 

of simulated years). maintain a resolution akin to 

CanESM5 (T63 or ∼ 2.8˚ in the atmosphere and 

∼ 1˚ in the ocean), situating it at the lower end of 

the spectrum of CMIP6 models. The advantage of 

this coarse resolution lies in its relatively high 

model throughput given the model’s complexity, 

enabling simulation of many years within 

available computational resources. 

Among the multiple parameters provided by 

the GCM, three specific parameters- total 

precipitation, near-surface temperature, and both 

U and V components of wind speed- were 
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selected and prepared as inputs (predictors) for 

the machine learning model. Table (1 summarizes 

the mentioned variables along with their 

description. It should be noted that, akin to the 

control period, all three parameters were prepared 

for the forecasting period under three distinct 

scenarios: SSP1-1.9, SSP5-8.5, and SSP4-6.0. 

These scenarios represent three global warming 

scenarios: minimum, medium, and maximum. 

The most recent set of scenarios, used for CMIP6 

(2016-2021) and IPCC Sixth Assessment Report 

(AR6) (2021) are known as the Shared Socio-

economic Pathways (SSPs). These SSPs 

scenarios represent the most complex scenarios 

created to date and encompass a spectrum from 

highly ambitious mitigation strategies to ongoing 

emissions growth. 

 

Table (1): -The predictor variables and their description. 

Variables name Unit Description 

Precipitation kg m-2 s-1 The sum of liquid and frozen water, comprising rain and snow, that falls to the 

Earth's surface. It is the sum of large-scale precipitation and convective 

precipitation. This variable represents amount of water per unit area and time. 

Near-Surface air 

temperature 

K Temperature of air at 2m above the surface of land, sea or inland waters. 2m 

temperature is calculated by interpolating between the lowest model level and the 

Earth's surface, taking account of the atmospheric conditions. 

Northward near-surface 

wind 

m s-1 Magnitude of the northward component of the two-dimensional horizontal air 

velocity 10m above the surface. 

Eastward near-surface 

wind 

m s-1 Magnitude of the eastward component of the two-dimensional horizontal air 

velocity 10m above the surface. 

 

2.3 Observed Data 

In regions with a limited instrumental 

coverage, reanalysis products are used as a viable 

alternative to observational datasets. Reanalysis 

datasets offer a distinct advantage owing to their 

comprehensive global coverage and extensive 

temporal scope. To facilitate the production of 

contemporary reanalysis data, a fusion of data 

from European Centre for Medium-Range 

Weather Forecasts (ECMWF), ERA5 satellite, 

and gauge measurements were assimilated. 

Notably the latest generation of the ECMWF 

reanalysis, ERA5, replaced the previously 

successful ERA-Interim reanalysis. ERA5 

operates on a function of four-dimensional 

variational (4D-Var) data assimilation, 

integrating a soil model and an ocean wave model 

into its framework. 

Atmospheric data from ERA5 spans 137 

hybrid vertical levels and is available on the 

Climate Data Store (CDS), interpolated to 37 

pressure levels ranging from 1000 hPa (near the 

surface) to 1 hPa (at approximately 80 km 

altitude). An enhanced version focusing on the 

land component, termed as a ERA5-land, has 

been developed using a horizontal resolution 

model and uses the ERA5 data as a primary input. 

This enhancement enables a horizontal resolution 

of 9 km at hourly intervals. Here in this study, 

ERA5-Land data served as the observed data set, 

presented on a regular 0.1° × 0.1° grid, 

specifically covering terrestrial surfaces. The 

annual average precipitation recorded fell in the 

range of 1-2.5 mm, with temperature values 

approximating 15 °C. These metrics delineate the 

environmental parameter essential for the 

analysis conducted in this study.  

2.4 M5p Decision Tree 

Recently, Decision Tree (DT) algorithm have 

garnered significant attention as a robust machine 

learning technique for predicting of hydroclimatic 

parameters (see among others Abolfathi et al., 

2016 and Avila et al., 2020; Yeganeh-Bakhtiary et 

al., 2022). Decision Trees are versatile, 
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supporting both classification and regression 

problems by creating a tree structure to evaluate 

data instances. This tree is inverted, commencing 

from the root and progressing down to the leaves 

until a prediction can be established. Predictions 

are made iteratively, refining the tree it reaches to 

a tree with a fixed depth. Post- construction, 

pruning techniques may be applied to improve the 

model’s ability to generalize to new data.  

In general, a typical Decision Tree is comprised 

of four main parts: root, branch, node, and leaves. 

The root (or initial node) is at the top of the tree’s 

apex, while the leaves (or the last nodes) mark the 

end of the chain of branches and nodes. Error! 

Reference source not found. depicts the flow 

chart of the M5p DT model used as a predictive 

model in this study. As Decision Trees can be 

considered as a graphical method, the 

interpretations of DT model outputs offer a more 

visible and understandable representation 

compared to the other machine learning methods 

(Abolfathi et al., 2016). This adaptability and the 

interpretability of Decision Trees make them a 

compelling choice for hydroclimatic parameter 

prediction, facilitating both effective modeling 

and comprehensible presentation of results. 

 

 

 

 

 

 

 

 

 

 

 

Fig.( 3): -Flow chart of M5p model prediction procedures (Abolfathi et al., 2016) 

 

Considering the primary objective of 

categorization is to develop a predictive model, it 

is suggested to use the M5p DT as a robust 

machine learning approach for forecasting 

climatic parameters. Unlike neural networks, 

Decision Tree yields to the interpretable rules. 

The prediction derived from the tree is explained 

through a series of rules, providing a transparent 

insight into the reasoning behind the predications. 

Whereas neural networks solely present the 

predicted results, concealing the process through 

which the prediction was generated within the 

network. This distinction highlights the 

advantage of Decision Trees in offering 

transparent and understandable rules for 

prediction, enhancing interpretability, and 

facilitating a clearer understanding of the model's 

decision-making process. 

2.5 Study Procedure 

Data preparation, model development, 

evaluation, and prediction are the main steps of 

downscaling employing a machine learning 

approach. In the data preparation, we needed to 

generate a calculation network. All the models’ 

developments, verifications, and predictions will 

be done on the nodes of the network. Since the 

observation was presented in a 0.1° × 0.1° 

resolute grid, the calculational network was 

generated in the same resolution. 

Collecting observed and GCM data is the next 

step in data preparation. In this study, the GCM’s 

simulated precipitation (Pr), temperature (T), and 

wind characteristics (wind speed and direction) 

are selected as the primary predictors (forecasting 

model’s inputs). Besides the climatic variables, 

topographic terms, including the longitude, 



Journal of University of Duhok., Vol. 26, No.2 (Pure and Engineering Sciences), Pp 795-808, 2023 

4th International Conference on Recent Innovations in Engineering (ICRIE 2023) (Special issue) 
 

801 

 

latitude, and altitude were also employed to 

predict Pr and T. It is noteworthy that the altitude 

data are collected from GEBCO web-based 

application and gridded to the generated network 

by averaging the gathered data. On the other hand, 

observed precipitation and temperature are used 

to develop and verify the downscaling                  

and prediction models, which are called the 

predictands. 

A preliminary examination of the correlation 

between the chosen predictors and predictands is 

necessary to select the possible effective variables. 

As the M5’-based models are multilinear rules, it 

can be expected that the predictands correlated 

higher than linear correlation and lower than non-

linear. Accordingly, both the Spearman and 

Pearson correlation coefficients are investigated 

for prediction models inputs. 

For the next step, considered models were 

developed under the several limited max depths 

of the tree condition based on the first part of the 

data (the train section) to predict precipitation and 

temperature. The developed models’ performance 

was evaluated using several error detection 

criteria. The results had shown the best max depth 

of the tree, and the model was employed to predict 

future precipitation and temperature. Error! 

Reference source not found. illustrates the 

downscaling and predicting procedure. 

 

 

Fig.( 4): -Schematic of the downscaling methodology and predictive modelling processes 

 

3. RESULTS AND DISCUSSION 

 

To develop a robust downscaling and 

forecasting model, a comprehensive collection of 

variables that potentially influencing the results 

were collected from the CMIP6 GCM (CanESM5) 

simulations. But prior to constructing the models 

based on these variables, an assessment of the 

correlation between these variables and 

predictands (Pr and T) was imperative. A strong 

correlation can lead to a more robust model 

development and better prediction of Pr and T. 

Conversely, the prediction models built upon 

weak correlated inputs can yield less accurate 

results. Precipitation, temperature, wind speed in 

both north and east directions, and topographical 

specifications (longitude, latitude, and altitude) 

were selected as the input data to derive the 

prediction model. The correlation analyses were 

conducted between these input parameters and 

predictand to identify the most                 

influential parameters.   

Error! Reference source not found. shows 

the results of correlation evaluation between the 

selected GCM outputs and ERA5 for both 

precipitation and temperature. It is evident from 

Error! Reference source not found. that the 

input wind specifications exhibited limited 
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alignment with the predictand precipitation, while 

the input temperatures displayed a significant 

inverse correlation with precipitation. The results 

indicate that a decrease in temperature 

corresponds to an increase in precipitation, 

inlining with the rising temperature enhance the 

potential of rainfall. 

 

(a) Precipitation 

 

(b) Temperature 

 

 

 

 

 

 

 

 

 

 

 

Fig.( 5): - Correlation coefficient of the selected GCM outputs and ERA5: (a) Precipitation, (b) Temperature. 

 

Input wind specifications exhibited limited 

alignment with the predictand precipitation, while 

input temperatures showed a noteworthy inverse 

correlation with precipitation. A decrease in 

temperature corresponds to an increase in 

precipitation, suggesting a discernible relation 

between these parameters. Further analyses 

indicated a positive correlation between input 

precipitations and the predictand Pr. The 

graphical illustration (Figure 5) demonstrates the 

strong correlation between GCM precipitation 

and temperature, particularly in relation to ERA5 

temperature. Additionally, the close alignment 

between linear and non-linear indexes implies the 

predictability of this phenomenon using a linear 

model. Therefore, it is anticipated that the M5p 

based models may exhibit greater accuracy in 

predicting temperature compared to precipitation.  

On the other hand, it is important to note that the 

equations (leaves) within the models do not 

unilaterally ensure improving prediction accuracy. 

Instead, there exists an optimal value, where the 

models’ performance reaches its peak. To 

ascertain this optimal value, we evaluate the 

effect of the prediction models’ maximum depth 

on their performance. The maximum depth (MD) 
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value was systematically adjusted to 1 to 10, 12, 

15, and 20. Error! Reference source not 

found.6 illustrates the variations in the linear 

correlation coefficient between the predicted 

precipitation and temperature against ERA5 

records versus to change in the tree’s maximum 

depth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.( 6): -Correlation coefficient (lines) and STD divergence (column bars) of the predicted precipitation (up) 

and temperature (down) with ERA5 values versus DT’s max depth variation 

 

As seen from Figure 6, a notable trend in the 

correlation coefficient as the tree depth increases 

during the training period, reaching its zenith at 

MD = 20, where it closely reaches CC= 1.0. 

However, during the test period, the correlation 

coefficient shows an upper limit, with values 

around CC≃ 0.75 for precipitation and CC≃ 0.9 

for temperature. This indicates that evaluating the 

maximum depth of the prediction model does not 

uniformly argument the correlation index 

between predicted and actual values. Similar 

behavior was observed in the STD divergence 

trends. While in the training phase, increasing the 

tree depth leads to decreased STD divergence, 

approaching minimal differences between STDs 

and reaching close to zero. During the verification 

phase, higher MD values indicated a limited 

divergence, around 5% for temperature and 

approximately 30% for precipitation predictions. 

This analysis sheds light on the intricate 

relationship between model complexity, 

represented by maximum depth values, and the 
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resulting predictive accuracy. 

A Comparison of precipitation and 

temperature curves reveals disparities in the 

models’ performance. The temperature predictor 

exhibited superior forecasting capabilities 

compared to the precipitation model, as 

evidenced by higher CC and reduced STD 

divergence measures. Error! Reference source 

not found. illustrates this discrepancy, with the 

precipitation model demonstrating a minimum 

CC of 0.45 in the training phase, while the 

weakest performance for temperature was CC≃ 

0.75.  

 

 

Fig.( 7): -Prediction RMSE of the generated models by changing the DT’s max depth: precipitation (up) and 

temperature (down) 

 

Ultimately the CC value converged to 

approximately 0.75 and 0.95 for precipitation and 

temperature, respectively. Furthermore, the 

difference between the STD of ERA5 and 

predicted values are approximately 30% for 

precipitation and only 5% for temperature. The 

superior performance of the temperature predictor 

suggests its higher predictability compared to 

precipitation within the studied context, 

indicating the need for nuanced modeling 

approaches to accurately capture and forecast 

precipitation dynamics. 

For a comprehensive evaluation, assessing 

prediction errors alongside CC and STD 

divergence is essential. For this purpose, the 

RMSE values were calculated for Precipitation 

and Temperature prediction. Figure 7 illustrates 

the trend where RMSE decreases as the prediction 

tree size increases in the training phase for 

precipitation and temperature. But this reduction 

reaches a plateau during the test period. From the 

Error! Reference source not found. and 7 
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collectively suggest that while larger tree size 

enhance the performance of the predication 

models during training phase, the models’ 

capability becomes constrained even with trees of 

MD = 20. Consequently, determining the 

optimum model size is imperative based on 

observation. From the depicted trends, MD = 5 

was identified as the optimum maximum depth 

for future evaluations and predictions, given that 

the since the model’s performance did not 

improve beyond MD = 5.  

Evaluating the spatial distribution of the 

prediction errors across the study area is crucial 

for a detailed assessment of the selected model 

(MD = 5). Figurer 8 depicts the mean absolute 

error (MAE) of precipitation and temperature 

predictions across the study area for both the 

training and test phases.  

 

 

 

Fig.( 8): -Spatial distribution of the mean absolute error of predicted precipitation (up row) and temperature 

(down row) during the train (left column) and verification (right column). 

 

It is evident from Figure 8 that, while the 

prediction RMSE in the test phase was 

consistently larger than that of the training phase 

across the entire calculation region, the spatial 

distribution reveals an increase in prediction error 

during verification phase compared to the training 

phase. Further analysis of the prediction values 

with respect to the grid’s nodes altitudes in Fig.( 8 

indicates that MAE escalated with higher 

elevations of topography. This trend may be 

attributed to the variation of data density across 

lower altitudes. Given that a significant portion of 

the training data belongs to lower altitudes, the 

predictions trend to be more accurate in these 

regions due to errors, highlighted the influence of 

data distribution across varying topographic area 

on model accuracy. 

 

4. CONCLUSION 
 

This study focused on assessing the 

effectiveness of the M5p DT model in 

downscaling CMIP6 climate output for the Erbil 

Plain. The evaluation of downscaled historical 
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data was performed using CC, MAE, and RMSE 

metrics, highlighting the suitability of the M5p 

DT model in downscaling hydroclimatic 

parameters. The main findings can be 

summarized as follows: 

 The correlation analysis indicated that wind 

speed and direction exhibited a weaker 

correlation with Pr and T compared to stronger 

correlation observed between precipitation and 

temperature predictors. 

 Both linear and non-linear correlation indexes 

showed a closer relation between the predictors 

and temperature predictand. Notably, the 

predictive accuracy of temperature suppressed 

that of the precipitation. 

 The obtained results showed that increasing the 

depth of DT led to more accurate predictions 

within the training dataset and procedural phases. 

 The skill assessment results demonstrated a 

marked enhancement in downscaling accuracy by 

escalating the maximum depth of M5p models, 

reaching an optimum point at MD = 5; thereby 

generating highly predictive DTs. 

Overall, the obtained results contribute to the 

growing knowledge of downscaling techniques 

and emphasize on the potential of employing the 

M5p DT model as a valuable tool in projection 

future climatic trends in Erbil Plain and other 

regions with comparable climate setting. 
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