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ABSTRACT

In this paper by using the Lyapunov function we investigate the asymptotical stability and boundedness of
solution or 3" order nonlinear differential equation. By using Lyapunov direct method to determine the
asymptotic stability and bounded of solution for nonlinear differential equation by using a suitable Lyapunov

function.
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INTRODUCTION

In the last years, a lot of interesting results 3)

related to the qualitative behaviors of solutions;
stability, instability, asymptotically  stability,
exponentially stability, etc., of nonlinear 3™ order
differential equation. As we know the boundedness of
solution and stability are very important in the
applications of differential equation using Lyapunov
direct method. We can determine the stability for
nonlinear differential equation without solving it only
by define or finding a suitable Lyapunov
function.[2,3,6,8,10]

Consider the 3™ order nonlinear differential Eq. (1)
with continuous functions «, g and Q.

u'""+oc (u,u)u" + glu,u’)

=Q(t;u,u’,u'") D

In addition the initial condition guaranteed the
continuous existence and uniqueness of solution.

In this paper i try to give some simplification to
Barbashin theorem [1] also to expand the results in [4]
and [5] for discussing the boundedness of solution of
Eqg. (1) on areal line. In [4] and [5] Eq. (1) is simplified
and reduced in order as a system of 1% order by
assuming that

u'=v
v =2z

z' = —x (u,v)z — g(u,v)

+ Q(t;u,u’,u'") (2)

For this system, a new Lyapunov function is
obtained.

Some basic definition:[3,4,5]

Definition (1): Suppose that a system of first order
differential equation u' = f(t,u) defined in R™ and
the Lyapunov function w defined as

w:IXR" >R, ueR"
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w(t,u) =0,
w(t,u) =0, ifandonly ifu =0,

1
w'(t,u) < —clu|, where ¢ > 0, and |u| = (X, u?)?

Definition(2): A Lyapunov function is any
continuous and differentiable function W: G — R,
such that W(t,u)is positive defined for allt e
[ty,+0),x € R™, and the time derivative of this
function is negative semi -definite or negative definite

or positive definite.

Definition(3): The zero solution of
asymptotic stable if it is stable and if
zero as L = ©.

Eg. (1) is
it approaches

For finding the asymptotically stable of Eq. (1) we
suppose that Q(t; u, v, z) = 0 this means that Eq. (1) is
in a homogeneous case.

Theorem (1): Assume that g and o are continuous
functions, and let I, = [6,]] , ] = Bke — Bke?, &,k, ¢
and B are positive constant. Additionally the following
assumptions are hold:

Gu = gwy)-g(Ov) €ly=y,u+0,

Jv Elh=0,v+0,

9(0,v) =g, 0) =0and |x (u,v)| < k.

Then the trivial solution of Eq. (1) is asymptotic stable.
In the case of Q(t;u,v,z) # 0 this means that non
homogeneous case.

Theorem (2): Suppose that all assumption of theorem
(1) are satisfy and Q(t;u,v,z) <M, where M > 0,
then 0 < M < oo, and depend only on k , 8 and &, such
that all solution of Eq. (1) satisfies

u
_ guv)-gw,0)
- v
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u?(t) + v2(t) + z%(t)

< e‘%“f{M1 + M, |P(r)|e%’”dr}2
to

t>t,, M, M, > 0.
Theorem (3): By the assumption of theorem (2) and
putting |Q(t;u,v,2)| = (Ju| + |v| + |z])Q(t), where
Q(t) is a positive continuous function and satisfy
J, Q(s)ds < A < 00, A> 0.
Therefore, there exist a constant M, such that all
solution x(t) of Eq. (1) satisfy |u(t)] < M,, |u'(®)| <
M, , [u" (t)] < M, , for sufficient large t.
To prove above theorems, by finding the suitable
Lyapunov function w = w(u, v, z). Which i obtained
below after some lengthy algebraic computations,[1].

2w = 2—5{[/32(1 —o)?Ju? +{(1 - o)k? - p(1 — &)]
+ Blv? + z% + 2kB(1 — €)*uv
+2(1 — &)?Buz + 2k(1 — &)vz}

Where a,d,k,3,A and ¢ are all positive for all u,v,z

with § > 1 and A= a8 (5 — 1)(1 — €)2.

Subject to the assumption of theorem (1) there exist

positive constant A; = A;(a,d,k,B,A,€), i = 1,2 such

that

AU +v% +22) <w,v,2) < A,(W? +v?: +z%)

By rearranging Lyponov function we have

w= %{[ﬁ(l —ou+k(l-¢e)v
+ z]24+B%(1 — &)%u?
+e[(1 — &)k + Be]v?
—&B(1 — &uz}

w = g{[ﬁ(l —ou+k(1—-¢vw
+ z]2+B%e(1 — )%u® — Be(1
—e)(u+ %z)2
+ e[(% — &)k + Belv?
+ 3#22}
Which reduces to
w < A,(u? +v? +z?)
Where A4, = %max {B2e*2(1+ B +k),(1—
ERR+I1+L1—sh—11+1—k+p1—¢

Lemma(1): Assume that all assumption of theorem
(1) holds and A5 is any positive constant, therefore for
any solution of the system (2)

w = %W(u, v,z) < —A;(u? + v? + z2), where

A; = As(a, 8, 4).

Proof. From equation (1) and system (2) we have
ow ow ow ow ow ow

z =av+az+g(—
< (u,v)z — g(u,v))

Which implies that

ad
w' = X{[ﬁz(l —&)%uv
+{(1 - )[k* -1 —¢&) + BIvu
+z—x (u,v)z — g(u, v)) + kB(1
—&)?[v? + uz]
+(1
—&)?B[vz
+ u(oc (w,v)z — g(u, v))]
+ k(1 —¢)[z?
+ v(oc (w,v)z—g(u, v))]}.
Then we have
g, = L0)=000)

u
simplification we get
—ad
w' = 7 u? +v? + 2%}

_ 9u»)-g@,0)

and g, after

Suppose that A; < %5 , then we get this inequality

w' = —Az{u? + v? + 2%}
Here, we arrive to the end of proof of the lemma(1).
Lemma (2): Assume that all assumption of theorem (2)
hold, then for any positive constants A,, A depending
on a,pB, ¢k, A, 6 for any solution of the system (2) we
have

!

dw(u, v,z
= % < —A,(u? +v? +z2) + As(Jul
+ [v] + 1zD|Q(t; w, v, z)|
Proof. When Q # 0

Let Q(t; u,v,z) = Q(t), then we have that
aé
w' = K{[Bz(l —&)?luv
+{(1-&)[k? - B —¢)+ BIvz
+z-

« (u,v)z—gu,v)+Q(t) +kB(1
—&)?[v? + uz]

+(1
— &)2B[vz
+u(x (w,v)z — g(u,v) + Q)]
+ k(1 —&)[z?
+ v(oc (wv)z—g,v) + Q(t))}.
then we get
d U, )
’=$= —aK{u2 +vi+2z2—(1—-€*Bu
+k(1—-&)v+2)Q(t)}
< —af{u2 + v +2z2 - Ay(lul +
v+z0(¢)
A, = maximum((1 — €)28,k(1 —¢),1)
Therefore w' = W < —A;(Wr+vi+z)+
As(lul + [v| + [zDQ(®)
Where As =22 (Jul + [v] + |z]) < V3(u? +
v? + zz)%
Then we get

27
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dw(u,v,z)

' < —A,(W? +v? + 2% + Ag(u? + v?

1
+22)2Q(t)
Where Aq = V345 and A; = A,

This complete proof of lemma (2)

Now we give the proof of theorem (1) from the
proof of lemma (1) and (2) we conclude that the zero
solution of Eq. (1) is asymptotic stable this means that
the solutions (u(t), v(t), z(t)) of system (2) are satisfy
u?(t) + v2(t) + z%(t) » 0as t — oo,

For Proof of theorem (2)
From the inequality
dw(u, v,
¥ < —As;(u? + v+ 2%) + Ag(u? + v?
1
+22)2Q(t)
And inequality satisfy the condition

1 1

z%)2 < (i—w)i , thus it becomes
1
dw(u,v,z)
dt

(u? +v? +

1
< —A;w + Agwz|Q(1)],
or

1
w' < —24w + AgwZ|Q(t)],
where A = §A7 , therefore

1
W'+ Agw < —Agw + Agw2|Q (1)

1
< agwz {lQ(®)] -
Al0w12

Where 4, = fl—g , this implies that
8

1
w' + Agw < Agwzw”

Where w* = [Q(6)] — Ayow? < w3|Q(8)] < Q)]
When

1
QO] < Ayowz,
W < el

Ao
Then we have

1
w' + Agw < A;,w2|Q(1)]
Where
Ag
A =—
11 A10
This implies

1 1
w 2w’ 4+ Agw2 < A14]|Q ()|
1
By multiplying both sides by ez*°*
1 1 1 1
e2 {w 2w’ + Agw2} < e2°°4,41|Q (D)
d 1161 1o
2 W2e?? ) < 2 e A0 ()]
By integrating both sides from ¢, to t we get

11 t1 1
{wzez®*} < f EeEAgTAlllQ(T)ldT

to

we get

which implies to

1 1 1 1
(w2(©))e7™* < Wity
t

1 1,
+=A4;1 | 1Q(0)|drez®"dr
to

2
1 1 1 1
w2 (t) < e 2% {w2(t,)ez"

2

and we have this two inequality
w < A,(u? 4+ v? + z2)

1 ¢ 1,
+=A1; | 1Q(@)|drez®'dr}
to

and
AW +v2+2%) < w(uv,z) < A,(u? +v? + z2)
by this inequality we get
Ay (u?(t) + v2(t) + z%(t)
1
< e 204, (WA (to) + v2(to)
1
+2%(to))e2""
t

1 1,
+ =41 | 1Q(@)| drez™ dr}?
to

2
V't > t,, this implies that
u2(t) + u' () + u"(b)

1 1
< {eT20 A WP (t) + v2 (ko)
1
1
+ z2(ty)) ezt

t 1
1Q ()| drez®dr}?}

to

L t 1,
<{e"2%ky + k, | 1Q(D)] 2" d1}*}
to

1
+ EAH

where k,, k, are constant depending on
Ay, Ay, (UP(to) + v2(to) + 2%(tp)) and Ay
respectively.
By supposing that Ay = y we have

u?(t) + v2(t) + z%(t)

1
<{e 2" {kl

t 1
+k, | Q)] eiyrdr}z}.
to

We arrive to the end of proof of theorem (2).
To prove theorem (3) by the assumption of lemma (1)
and (2)
w' < =AW +v? +2%) + As(Jul + [v| + 1zD1Q(®)]
we get
w' < As(lul + vl + |z])?a(t)
this implies to
w' < Ay (u? +v? + z%)a(t)
We know that |ul|v| < %(u2 + v?), where A;; = 34

, and from lemma (1) we have
w = A (u? +v? +2%)
Then we get
w' < A wa(t)

By integrating both sides from 0 to t we get
t

w() —w(0) < Alz_f w(s)a(s)ds
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Where
A =
12 Al Al
Then we have

t
w(t) <w(0) + Alzf w(s)a(s)ds
0
By using Grownwall-Bellman inequality we get

w(t) < W(O)eAu fota(s)as
This complete the proof of theorem (3).
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