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ABSTRACT 

In this paper, we suggested a modified conjugate gradient method for training neural network which 

assurance the descent and the sufficient descent conditions. The global convergence of our proposed method 

has been studied. Finally, the test results present that, in general, the modified method is more superior and 

efficient when compared to other standard conjugate gradient methods. 
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1. INTRODUCTION 

Artificial neural networks (ANNs) are 

parallel computational samples  consist of 

processing’s units and  interconnected densely 

discriminated by an inherent propensity for 

learning from test and also discovering new 

knowledge. Because of their excellent ability of 

self-learning and self-adapting, they have been 

successfully applied in many aspects of artificial 

intelligence [2,6,7]. They are often found to be 

more active and precise than other classification 

techniques [3]. Although several different ways 

have been suggested, the feed forward neural 

networks (FNNs) are the most  familiar and widely 

used in different kinds of applications. 

Training of neural networks (NNs) can be 

formulated as a problem of nonlinear 

unconstrained optimization. Therefore, the training 

procedure can be achieved by minimizing the error 

function     , defined by the sum of square 

differences between the actual output of the FNN, 

pointed  by   
   and the wanted output, pointed  by 

  
 , relative to the appeared output, namely, 

     
 

 
     

    
    

   
 
       

 
         

(1.1) 

where      is the vector network weights and 

the number of patterns used in the training set 

represented by  . [8] 

one of the most important iterative methods for 

efficiently training neural networks in scientific 

and engineering computation is called conjugate 

gradient method (CG) because of their simplicity 

and their very low memory requirements  

[4,5,12,14,17]. The conjugate gradient method 

produce a sequence of weights     , is given by: 

                                  (1.2) 

where   is the number of iteration generally called 

epoch,      is the learning rate and the search 

direction    which is computed by: 

       and                         ,     

(1.3) 

where    pointed to the gradient of       at the 

point    and the scalar    is a  known as the 

coefficient of (CG). The parameter    of the 

classical formula are determined as follows: 

  
   

    
   

  
   

 ,  Polak and Ribiere (PR)         (1.4) 

  
   

    
   

  
   

 ,  Hestenes and Steifel (HS)      (1.5) 

  
   

    
     

  
   

 , Fletcher and Reeves (FR)    (1.6) 

  
   

    
     

   
   

 , Conjugate Descent (CD)      (1.7) 

  
   

    
     

  
   

 , Dai and Yuan (DY)              (1.8) 

  
   

    
   

   
   

 ,     Liu and Storey (LS)              (1.9) 

for the above equation see [9,18,19,20,21,22]. 

The globally convergence of the above 

conjugate gradient methods has been studied by 

many authors with under some different line 
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searches [1,10,13]. To prove the convergence 

condition of the nonlinear CG methods, it is 

usually need that the step size    should achieve 

the following standard strong Wolfe conditions: 

                      
   ,        (1.10) 

           
         

                   (1.11) 

 

however, the standard Wolfe condition (1.10) 

and 

          
       

                   (1.12) 

where         

is used to prove the convergence of many other 

numerical methods such as (quasi-Newton 

method).  

In this paper, will present our modified CG 

training algorithm in section 2. The descent and 

sufficient descent conditions of our modified 

method are proved in section 3. The global 

convergences of the proposed algorithm are 

discussed in section 4. Some numerical results are 

contained in section 5. Finally, conclusions are 

given in the last section. 

 

2. MODIFIED CONJUGATE GRADIENT 

TRAINING ALGORITHM 
 

In this section, suggested a modified CG training 

algorithm by using conjugate gradient coefficient 

of (Fletcher and Reeves) method and logistic 

mapping which is used extensively [16].  

From the logistic mapping and (1.6), we have 

  
       

       
                              (2.1) 

where      . 

To achieve balance, we will multiply first term 

of (2.1) by scalar  , we get 

  
       

       
    ,   

  
   

   
   

       (2.2) 

and implies that 

  
    

    
     

  
   

   
    

     

  
   

                  (2.3) 

or   
      

       
    . 

Algorithm 1. (The modified CG algorithm) 

Step(1): Initiate   ,        and      

(maximum number of epochs), set    . 

Step(2): Compute    and           . 
Step(3): If      , or       , return  

      and       then stop 

       else Evaluate            and    
        . 

Step(4): Determine the descent direction 

using (1.3) and (2.3). 

Step(5): Compute the learning rate    to minimize 

           . 

Step(6): Updating new point of the weights based 

on Equation (1.2) and set                        

Step(7): If         return “Error Goal not met” 

else   go to step 2. 

 

3. THE DESCENT AND THE SUFFICIENT 

DESCENT CONDITIONS OF THE 

MODIFIED CG ALGORITHM 

 

This section, show that the modified CG 

algorithm satisfies the descent and sufficient 

descent conditions as stated in the following 

theorems:  

Theorem 3.1. Suppose that the sequence      is 

created by (1.2). Then the search direction given 

by equations (1.3) and (2.3) satisfies the descent 

condition. i.e.     
       . 

Proof:  From (1.3), we have if     

  
         

   . 

suppose that   
                  . 

Now, we prove the present search direction is 

descent direction at the iteration      . 

             
     .                    (3.1) 

implies that 

            
    

     

  
   

   
    

     

  
   

     .  (3.2) 

By multiplying equation (3.2) by     
 , we have 

    
             

    
      

    

    
        

      (3.3) 

If   
       , then the equation (3.3) is 

achieve the descent condition i.e.   

    
             

   . 

However, if   
       . We conclude  

           
       

     ,                   (3.4) 

because the  DY method satisfies the descent 

condition. 

Since     
      

    and clearly   
     , 

        and    
       

so, the third term of equation (3.3) can be 

written as 

     
         

         
       

       

Finally, we have 

    
             

    
      

    
    

        
     . ∎ 

 

Theorem 3.2. Suppose that      is produced by 

equations (1.3) and (2.3), and    is obtained from 

equations (1.10) and (1.11), then the sufficient 

descent condition is satisfied, i.e. 
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Proof: From equation (3.4). Therefore, the 

equation (3.3) can be written as follows: 

    
         

    
     

  
   

      
          (3.5) 

Since     
      

    , will be in the form 

    
         

    
     

   
    

   
                (3.6) 

we obtained     
                , 

 where    
    

     

   
    

   
   . ∎ 

 

4. THE GLOBAL CONVERGENCE OF THE 

MODIFIED CG ALGORITHM 
 

To prove the global convergence result of the 

modified CG method, we need the following 

assumptions. [11] 

Assumption 1. The level set        
               is bounded. i.e.        such 

that 

      ,                                    (4.1) 

Assumption 2. In a neighborhood    ,   is 

differentiable and its gradient   is Lipschitz 

continuous, i.e.       such that  

                                 
(4.2) 

From Assumptions 1 and 2,       such that 

                    .                       (4.3) 

Lemma 4.1 [15]. Assume that the Assumptions 1 

and 2 holds and the sequence      is created by the 

equations (1.2) and (1.3), where    satisfy the 

descent condition and    is determined by (1.10) 

and (1.11). If 

 
 

    
      .             (4.4) 

Then 

               .                  (4.5) 

If   is a uniformly convex function,       

such that: 

           
 
               .   (4.6) 

We can rewrite (4.6) in the following manner: 

  
         

 .              (4.7) 

Theorem 4.1. Assume that Assumptions 1 and 2 

holds. If any iteration of the equations (1.2) and 

(1.3), where   
    is defined by equation (2.3) and 

   satisfies the strong Wolfe line search conditions 

(1.10) and (1.11), then 

   
   

            

Proof: By using contradiction, we assume their 

exist appositive constant such that 

            .                       (4.8) 

Then, from (1.3) and (2.3), it follows that: 

             
       

which is can be written as 

                 
        ,          (4.9) 

and    
      

    
     

  
   

   
    

     

  
   

    

using equation (4.7), we obtained that 

   
      

          

     
     

       

    
   .          (4.10) 

Then  

   
     

   
 

     
  

   

   .              (4.11) 

By combining the equations (4.9) and (4.11), 

we have 

          
   

 

     
  

   

       .          (4.12) 

Implies that 

          
  

     
  

   

   
      .      (4.13) 

 Since,            , 

                       . 
 Hence (4.13) becomes 

          
  

  
 

    

   
    . 

leading to (4.4). So, from Lemma 4.1. Hence 

(4.5) holds and contradicting (4.8).  

 

 
EXPERIMENTAL RESULTS 

 
In this section, we examine the implementation 

of the  modified method. The comparative tests 

include  familiar nonlinear problems with various 

dimensions         . Our algorithms has 

converged as soon as             and Powell 

condition    
                

  is used to restart. 

All algorithms implemented with a cubic 

interpolation which uses function and gradient 

values. The algorithms are written in FORTRAN 

95 language. Table (1) shows that the numerical 

results of the modified (CG) method is more 

effective than standard (DY) method with respect 

to the number of iterations (NI) and the number of 

functions evaluation (NF). 

In addition to that, we will offer experimental 

numerical results in order to study and assess the 

performance of the modified (CG) method in 

classical artificial intelligence problems 

(Continuous Function Approximation). 

In particular, we investigate the performance of 

DY method compare with our modified method 

during five times of the implementation the 

program. The implementation has been carried out 
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by using MATLAB (2013a) and the MATLAB 

Neural Network Toolbox version 8.1 for 
conjugate gradient. 
5.1 Problem: (Continuous Function 

Approximation) 

Consider the approximation of the continuous 

trigonometric function as: 

                    , WHERE        . 
The network is trained to approximate the 

function and the network is trained until the mean 

squares of the errors becomes less than the error 

goal 1e-10 within the limit of 1000 epochs. 

Tables 3: offer the performance comparison of 

the methods DY and modified (CG) for the 

continuous function approximation problem. All 

algorithms display excellent likelihood (100%) of 

successful training for network using the same 

initial weights. Thus, computational cost is 

possibly the most appropriate indicator for 

measuring the efficiency of the methods. The 

performs of modified (CG) method is better than 

the DY method in terms of the number of epochs, 

time, Gradient and Step size.

 

 
Table (1): Comparison between the (modified and DY) methods 

 

Test Function N CG (DY) Modified (CG) 

NI NF NI NF 

Miele 4 

100 

500 

1000 

5000 

36 

45 

53 

60 

66 

115 

156 

188 

222 

257 

34 

42 

42 

48 

48 

110 

143 

143 

178 

178 

Non-Diagonal 4 

100 

500 

1000 

5000 

24 

29 

29 

29 

F 

63 

79 

214 

79 

F 

24 

29 

27 

26 

21 

63 

79 

139 

74 

61 

Fred 4 

100 

500 

1000 

5000 

8 

8 

8 

8 

8 

22 

22 

22 

22 

22 

7 

7 

7 

7 

8 

20 

20 

20 

20 

22 

Beal 4 

100 

500 

1000 

5000 

11 

12 

12 

12 

12 

28 

30 

30 

30 

30 

10 

10 

10 

10 

10 

26 

26 

26 

26 

26 

Central 4 

100 

500 

1000 

5000 

18 

20 

23 

23 

24 

127 

153 

192 

192 

205 

18 

20 

22 

22 

22 

129 

151 

186 

186 

186 

Sum 4 

100 

500 

1000 

5000 

5 

14 

20 

27 

32 

27 

80 

100 

132 

151 

5 

14 

20 

25 

28 

27 

80 

98 

135 

125 

Osp. 4 

100 

500 

1000 

5000 

8 

52 

138 

196 

555 

44 

180 

439 

607 

1857 

8 

52 

130 

181 

535 

44 

182 

403 

566 

1816 
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Rosen 4 

100 

500 

1000 

5000 

30 

30 

30 

30 

30 

82 

82 

82 

82 

82 

17 

17 

17 

17 

17 

49 

49 

49 

49 

49 

Total 1817 6649 1614 5959 

Note: The fail result in standard CG is considered a twice value of modified (CG) results.  

 
Table (2):Percentage of improving the modified method 

Tools CG (PR)     Modified (CG) 

NI 100% 88.8277% 

NF 100% 89.6225% 

      

As we observe from Table 2 the NI and NF of the 

DY method are about 100%. That means, the modified 

method has improvement of 11.1722% and 10.3775% 

compared with standard method in NI and NF 

respectively. Generally, the modified (CG) method was 

improved by 10.77485% compared with DY method.

 

Table (3):  Comparing the Performance of modified method with Standard DY method for training neural network 

Methods No. 

Running 

Epochs CPU 

time(s)/Epoch 

Gradient Step 

size 

DY 1 

2 

3 

4 

5 

1000 

1000 

1000 

1000 

1000 

00:04 

00:03 

00:03 

00:03 

00:03 

0.00383 

0.00149 

0.00277 

0.00167 

0.00345 

0.00100 

0.000408 

0.00100 

0.00430 

0.00100 

Modified 1 

2 

3 

4 

5 

191 

464 

904 

761 

273 

00:01 

00:01 

00:03 

00:02 

00:01 

0.00695 

0.00152 

0.00211 

0.00565 

0.0115 

0:00 

0:00 

0:00 

0:00 

0:00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig (1): Performance of DY method for training neural networks 
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Fig (2): Performance of Modified method for training neural networks 

 

5. CONCLUSION 

 

This paper, proposed a modified (CG) 

method which consists of (Fletcher and 

Reeves) method and by using logistic 

mapping. The search direction    produced by 

our proposed method satisfies both (the 

descent and sufficient descent) conditions. The 

global convergence of the modified (CG) 

method has been proved. Furthermore, we 

used the modified (CG) method for training 

neural networks. Depend on the numerical 

experiments, we found that modified method 

is more effective than the classical CG 

method, leading to a stable and faster 

convergence. 
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