
Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

90

BEST PRACTICES AND RECOMMENDATIONS FOR WRITING GOOD

SOFTWARE

QUSAY IDREES SARHAN

Dept. of Computer Science, College of Science, University of Duhok, Duhok, Kurdistan Region, Iraq

(Received: November 6, 2018; Accepted for Publication: March 27, 2019)

ABSTRACT
Writing good software is not an easy task, it requires a lot of coding experience and skills. Therefore,

inexperienced software developers or newbies suffer from this critical task. In this paper, we provide

guidelines to help in this important context. It presents the most important best practices and

recommendations of writing good software from software engineering perspective regardless of the software

domain (whether for desktop, mobile, web, or embedded), software size, and software complexity. The best

practices provided in this paper are organized in taxonomy of many categories to ease the process of

considering them while developing software. Furthermore, many useful, practical, and actionable

recommendations are given mostly in each category to be considered by software developers.

KEYWORDS: Good Software, coding quality and standards, best practices, practical recommendations, software

engineering.

1. INTRODUCTION

riting software is the art and process of

converting what is in mind into reality.

This process aims to produce software-based

solutions for real-world problems that we

encounter in our everyday life. As a result, it

makes the life easier and smarter in many

directions. Software is used everywhere around

us; for example in computers, mobiles, TVs,

refrigerators, cars, aircrafts, and many others.

Without software, we cannot imagine how our life

would be [1]. Software is developed by coding

using programming languages such as Java, C#,

etc. Besides, different types of models, methods,

and tools to manage this development are

involved. Writing software is not an easy task at

all, it requires a lot of thinking, imagination, and

different types of skills. Software that serves our

different types of needs is not written equally.

Even those that are meant to serve the same

purpose can differ greatly in their quality.

Therefore, many software developers who are

involved in this process suffer from the issue of

how good software can be written or produced.

Also, suffer from how given software can be

considered as good [2]. And yet, people bet their

jobs, their comfort, their safety, their

entertainment, their decisions, and their lives on

software. Thus, it is crucial to be written well. To

address the aforementioned issues and to avoid the

barriers or blockers of writing good software, we

provide whatever helps in this context as best

practices and recommendations. This paper is

written to be used as a guide to support software

developers to write good software. As well, a set

of qualities, standards, rules, and practices which

are closely related to the principles of good design

and engineering but are not limited to any

programming language, software domain, or the

educational background of whom is writing the

software has been gathered, organized, and

presented. In literature, there are many efforts for

writing good software but they are very specific to

certain programming languages and focus only on

few aspects of writing software while ignoring

many others. We believe that this paper is an

essential effort towards considering the most

important factors of writing good software.

However, we aim to contribute to the following:

 Provide state-of-the-art of major software

development best practices and recommendations

that help produce software with high quality.

 On top of that, the best practices and

recommendations are organized in many

categories in a proposed taxonomy to make them

easy to be remembered and followed.

 As this comprehensive study provides deep

understanding of many aspects regarding writing

good software. We hope to provide a holistic

W

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

91

guideline as essential point to guide developers

who want to follow up and be professional in this

field.

The rest of this paper is organized as follows.

Section 2 highlights the software nature and its

most important characteristics. In Section 3, the

proposed taxonomy of the best practices and

recommendations of writing good software is

given. Section 4 explains the taxonomy and the

included categories. Finally, overall conclusions

are provided in Section 5.

2. Software Nature
The software world is an amazing world. It

combines creativity and imagination in all of its

aspects. Software is the soul of mostly everything

people use in their practical lives. Our world

cannot be imagined without different types of

software products covering various domains such

as industry, healthcare, military, transportation,

etc. These products have unique nature and

characteristics that differentiate them distinctly

from non-software products [3, 51].

Understanding software nature and its

characteristics alongside many directions should

ease the understanding of how software is used

and developed. Therefore, in this section we

provide the most important characteristics of

software and its nature as follows:

 Software is everywhere around us and it changes

the way people live. As the software engineer

Mark Andreessen (the co-founder of Netscape,

one of the first web browser companies) said,

“Software is eating the world”. More and more

stuff are getting automated to make our life easier,

faster, and smarter, and as much more automation

is going to be just a function of software.

 Software plays a dual role. It is a product and a

vehicle for delivering products at the same time.

As a product, it is created to deliver its

functionality to users via various forms including

software applications, web applications, web

services, embedded systems, etc. As a vehicle for

delivering products, software constitutes the

foundation for creating, managing, controlling,

etc. of other software products such as software

tools, frameworks, and platforms.

 Industrially, the majority of products existing

around us today are physical and tangible things

such as cars we drive, watches we wear, or TVs

we watch. In contrast, a software product is the

only product that can be used without touching it

or seeing its internal structure.

 Once you design a physical product such as a

lamp or teacup and make it exists, it cannot be

evolved and changed over time. It fulfills its

requirements and that is all; changing its

requirements means a new product has to be

produced from scratch. For software products,

new requirements come in all the time so changes

are applied on the same product without

developing a new one from scratch.

 Software products are not like physical products;

they do not break down after too much use.

 Not every software product is good even if it

delivers its functionality in a proper way.

 A single mistake in writing software may

collapse the work of many years, turns software

useless, and causes catastrophic events. Take the

Mars climate orbiter as an example; it crashed in

1999 because of a mistake of using different

measurement units by different developers groups.

 The development and advancement in the field

of software are growing very rapidly compared to

other fields. Every single day there are new

software innovations including developing new

software applications, creating new software

frameworks, and proposing new software

technologies.

 Studying software is not similar to other study

fields. As it is used in every device we use or see

today, studying it requires studying other fields in

depth. For example, planting a chip in a human

body and program it requires the study of human

body in detail alongside many directions.

 In most cases, developing software products

may cost nothing in terms of manufacturing costs.

And, may need no raw material, expensive devices

and tools.

 Software is not a program. Software is produced

by a team of people which is not the case in

writing programs [4]. Besides, a number of

differences between software and program exist

regarding usage, size, users, development style,

and many others [5]. Table 1 presents the main

differences between them.

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

92

Table (1): Software vs. program

 Software Program

Definition A collection of several programs and related

configuration files that manage their work

alongside documentation.

A set of instructions (written in a computer

understood language) manipulate a set of

data to perform a specific task.

Problem scale Developed to solve large-scale problems. Developed to solve small-scale problems.

Developed by A team of software specialists, each focusing on

one part of the development process.

An individual.

Size Extremely large. Small.

Usage Developed for a third party for the sake of money.

Therefore, It is used by a different number of

customers.

Developed mostly for the personal use.

Therefore, the programmer himself is the sole

user.

Functionality Has full-scale functionality. Has limited functionality.

User involvement Most users are involved with the development. A single developer is involved only.

User Interface The user interface must be taken into consideration

seriously as developers of the product and its users

are totally different.

The user interface may not be very important

as the programmer is the sole user.

Documentation Must be well documented. Very little documentation is expected.

Development process Must be developed using software engineering

principles and practices.

Can be developed according to the

programmer’s individual style of

development.

Installation Required. Not required.

3. The Proposed Taxonomy

This section presents the proposed taxonomy

of the best practices and recommendations

that help developers to produce good

software. The taxonomy is divided into three

main categories: (1) before writing software

(2) while writing software, and (3) after

writing software. It is worth mentioning that

each main category has some sub-categories

which are explained in the subsequent

sections. Figure 1 shows the proposed

taxonomy.

4. Best Practices and Recommendations

In this section, the proposed taxonomy that

assists developers to create good software

illustrated in categories. The categories cover

different aspects of writing any software and

they are based on software engineering,

industry, and coding experiences.

4.1 Before writing software

The best practices and recommendations that

have to be taken into consideration before

starting the process of writing software are

presented in the following subsections.

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

93

Fig. (1): Taxonomy of writing good software

4.1.1 Build a good team

Software development team is extremely

necessary for planning, organizing, monitoring,

and controlling the development process. Well-

established team leads to timely and high-quality

software delivery. Building a good team has an

obvious positive impact on writing software and

its quality [6]. Moreover, greater clarity in

expressing ideas can be gained through group

discussion, efficient use of resources (especially

time) can be achieved, and workloads can be

shared. To build a good software team to fulfill

the vision mentioned above, a clear goal has to be

set. Specifying the goal is the starting point of

achieving everything that can be thought of. If

writing good software is not the goal that you or

your team seeks for, then never expect to achieve

it. Good software is the result of a predefined goal

and everything leads to achieve that goal.

Therefore, a clear goal and vision have to be set

before start looking for what helps to write good

software. Software that makes our lives easier and

smarter is good software. In contrast, software that

makes things worse and does not serve people in

their practical lives or does not deliver what

customers want is not good software even if it is

written perfectly. Some other important and most

prevalent points should be taken into account

while building a good software team [7], as

follows:

 The team should be technically skilled.

 The team should closely represent the

users of the software. Therefore, build a diverse

team that involves users in the development

process.

 The team should work collaboratively to

achieve the required tasks. Therefore, team

members should have good communication skills

and understand each other.

 The team should have a common

definition of success and believe that the whole is

greater than the sum of parts.

 The team membership, size, skills, and

resources should match the task at hand.

 The team should have a good leader who

manages and plans tasks across the team.

Encourages team members to show their best

creativity, skills, and abilities.

In most cases, software is developed by a team.

However, it can be developed by an individual

when the software size is small. Therefore, this

section can be considered mostly when the size is

large.

4.1.2 Work with professionals

One of the enabling elements of writing good

software is to work and be in touch with experts

and professionals in the field of software

development. Building a good team can provide

the opportunity to achieve this in one way or

another. Also, it can be achieved through

collaborative projects, training courses,

workshops, or conferences. Many well-known and

senior software developers have websites,

 Software Best Practices and

Recommendations

Review code

Test code

Maintain code

Create a user

manual

Make searchable

code

After Writing

Software

Avoid quick

coding

Follow coding

standards

Simplify coding

Reuse existing

code

Minimize code

dependences

Focus while

coding

Follow software

evolution

Use comments

Avoid code

duplication

Use programming

concepts

While Writing

Software

Build a good

team

Work with

professionals

Understand

software

categories

Select a

development

model

Select an

advanced IDE

Select a user

interface

Use programming

language features

Select a

programming

language

Select software

architecture

Before Writing

Software

Work in a good

physical

environment

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

94

Facebook pages, Blog pages, or YouTube

channels where one can follow their software

development activities and learn from them. Many

others publish books and research articles on

software development. One of the best examples

to mention in this respect is using Livecoding.tv

[8]. It is an interactive social coding platform

where one can watch professionals coding

software products in real time using a variety of

programming languages. By doing so, software

developers will improve their development skills

to the next level and will learn innovative ways of

coding never thought of before; which eventually

leads to produce good software [9].

4.1.3 Understand software categories

Different categories of software as shown in

Figure 2 are required to serve different types of

our day-to-day activities. The software team

should know and understand each category in

detail with its own set of attributes. Understanding

software attributes of a specific domain helps to

create software with high quality.

Fig. (2): Different types of software

If the category or domain of the software

required to be developed is Web for example;

Web software attributes must be understood in

detail by the software team. The most important

Web software attributes are network intensive,

content driven, and continuously updated. Thus,

developing such software requires all these

attributes to be implemented to get software with

high quality.

4.1.4 Select a development model

Generally, software development models (also

called software process models, software life cycle

models, or software engineering paradigms)

represent systematic manners that have to be

followed to develop software. These models

organize various tasks of software development

into a number of phases. Then, specify how these

phases (and tasks within each phase) are to be

performed. To produce good software, developers

should select a proper development model. The

selection of a development model depends on

many factors such as software team, software

domain, software size, software complexity,

development time, methods and tools to be used,

deliverables that are required [10]. Currently,

there are different types of software development

models such as waterfall, prototype, incremental,

spiral, and agile. Each model with its own usages,

phases, advantages, and disadvantages [11]. For

example, in the waterfall model (also called

classical model or linear sequential model), the

tasks that go into making software are performed

sequentially in multiple phases. Figure 3 shows a

version of the model with six phases.

Fig. (3): Waterfall model

The phases of the waterfall model are briefly

described below.

 Requirement phase: In this phase, all

requirements regarding developing software are

gathered then analyzed. Therefore, user

participation is very important to get an approved

set of requirements documented in a Software

Requirements Specification (SRS) document. It is

worth mentioning that the requirements gathered

in this phase form the basis of all further phases in

the model.

 Design phase: In this phase, the requirements in

the SRS document are translated into a design.

Besides, this phase acts as a bridge between what

the user wants and the code that will be written to

satisfy the user requirements.

 Implementation phase: In this phase, the code is

written and the user manual may also be written.

 Testing phase: In this phase, the code is tested in

form of unit testing for lowest level components,

integration testing for groups of components, and

testing of the software as a whole. The last and the

most important task in this phase is usually the

Requirement

Design

Implementation

Testing

Deployment

Maintenance

Good
GUI Prevents errors

Provides feedback

Updatable

Easy to learn

Supports multiple
skills

Clear

Compatible

Consistent

Standardized

System
Software

PC
Software

Real-Time
Software

Web

Software

Scientific
Software

Embedded

Software

Engineering
Software

Mobile
Software

Business

Software

Software Categories

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

95

acceptance testing to validate that the software

meets user needs. Therefore, this task requires

user involvement.

 Deployment phase: In this phase, the software

is made operational. This phase includes software

installation and user training to use the software

properly. It is worth mentioning that when the

software is operational, new requirements may be

discovered especially if the requirements phase is

not defined well and not analyzed with user

involvement.

 Maintenance phase: In this phase, leftover

defects found in the previous phase are corrected.

In many cases, software is made more efficient,

new features are added, or existing features are

modified to meet the ever changing needs.

The main advantages of this model are:

 The model is simple to understand and use.

 The model is well-defined into phases each with

its related tasks. Therefore, it provides a clear

separation of tasks.

 Its phases are completed one at a time.

The main disadvantages of this model are:

 It assumes that user requirements are clearly

defined at the beginning of the software

development.

 User feedbacks are not taken into consideration

as the software is being developed. Because it

does not support changes in requirements that are

identified in other phases.

 It is time-consuming in that a working version of

the software will not be available until late in the

development time-span.

It is worth mentioning that other software

development models use the waterfall model as

their basis and share some of its common phases.

Many others have their own unique phases.

Selecting a software development model has a big

impact on building software. If the model is

inappropriately chosen, the software product will

distinctly suffer. Also, it may affect the

development team. Thus, may need formulation of

unique team roles but this should not affect the

sequencing order in the proposed taxonomy.

All the tasks and activities within the selected

software development model should be measured

and evaluated regarding quality. The software

development model is only as good as the

requirements describe the current problem, the

designs represent the solution, the codes lead to

executable software, and the tests exercise the

software to uncover errors.

4.1.5 Select software architecture

Software architecture generally means how the

structural elements and functional components of

a software product are organized and how they are

communicating with each other to achieve a

common goal. From software engineering

perspective, the good software product is always

based on well-selected software architecture.

Therefore, the process of selecting which

architecture out of many available options has to

be used to develop a particular software product

has a big impact on its quality [12]. The software

quality will be affected as the selected architecture

determines many aspects of the software

including:

 How its elements and functional components

will be organized.

 How they will communicate with each other.

 How its cost, size, and complexity will be

derived.

 How its functionality will be delivered to users.

 In case of any maintenance, how it will be tested

and maintained.

Currently, there are a various number of

software architectures and each one has its own

set of advantages and disadvantages [13]. For

example, the traditional monolithic architecture is

used today in a massive number of software

products. Figure 4 shows monolith based software

with all functional units in a single process.

Fig. (4): Monolithic based software

Software products based on monolithic

architecture are difficult to understand, maintain,

and evolve which considered as the main

drawbacks of this architecture type [14]. Another

common architecture is the microservice

architecture which recently gained more attention

compared to the monolithic. The concept of

microservice based software development is to

divide any software into a number of small,

Functional Unit 1

Functional Unit 2 Functional Unit 3

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

96

independent (not in the same process), and

functionality-focused microservices [15]. It is

worth mentioning that microservice is derived

from the traditional Service Oriented Architecture

(SOA). Figure 5 shows microservice based

software where each service provides certain

functionality.

Fig. (5): Microservice based software

After both monolithic and microservice

architectures described briefly, the main

differences between them are presented in Table

2.

Table (2): Monolithic vs. microservice

 Monolithic Microservice

Structure The functional

components or

modules are

gathered into a single

file. Thus, user

interface, business

logic, and data layer

are not clearly

separated

A number of small-

scale functional units

deployed as services.

Besides, these

services can

collaborate with each

other by integration

and composition.

Reusing Other developers

cannot reuse

monolithic based

software as it is not

intended for reusing.

Other developers

have the ability to

reuse complete

functional units

through composition.

Complexity Lower complexity as

there is no interaction

required between its

various components.

Higher complexity as

there are different

issues to deal with

including interactions,

locking, integrity etc.

Development Usually, it is written in

a single programming

language.

Usually, it is written in

multiple programming

languages.

Accessibility It cannot be used by

multiple users at the

same time.

It can be used by

multiple users at the

same time.

Maintenance

As everything is

placed in one place

Microservices are

small in size. Thus,

and there is no clear

separation between

the functional

components, any

attempt to maintain

code may collapse

everything or may

cost so much.

the cost to replace

them with a better

implementation, or

even delete them

altogether, is cheap

in terms of cost, time,

and effort.

Deployment

It is executed as one

complete unit.

Each microservice

can be deployed

independently. A

system may have a

number of deployed

microservices with

the ability to manage

the work of each one

separately.

Resilience

A small fail may

break down the

whole program.

A single-component

failure does not break

down the whole

software.

4.1.6 Select a programming language

There are a tremendous number of

programming languages that can be used to create

different types of software. Many of them share

common features, capabilities, and target common

software domains such as desktop, web, mobile,

and embedded. Many others have their unique

features, capabilities, and target only specific

domains. Therefore, choosing which language

(sometime multiple languages) to be used for

developing software has a direct impact on its

quality and functionality [16]. For example,

microservice based software development is a hot

topic nowadays and currently there are many

languages including Java and Go that support

developing this kind of software. But Jolie is the

first and the only programming language that has

been designed completely to develop microservice

based software and supports its full concepts [17].

Therefore, using a language other than Jolie in this

respect will produce software that does not

implement all concepts of microservice which is

not the right thing to go for. Based on what

mentioned above, software developers should take

this important point into account to produce good

software with the right functionality and fully

implemented concepts.

4.1.7 Use a programming language’s features

Many developers do not realize that the way

they select, learn, understand, and use a

programming language affects the quality of their

Functional Unit 1

Functional Unit 2 Functional Unit 3

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

97

software in one way or another. Inexperienced

developers learn many languages over time but do

not dive deeply into language’s architecture,

concepts, and full features [18]. In many cases,

those developers write many pieces of code to

achieve a specific task (for example, displaying

the contents of a given folder), whereas the same

task can be achieved using a single built-in

function provided by the used language itself. In

many other cases, developers use external libraries

to perform tasks, whereas the used language

provides a built-in library that performs the same

tasks even more efficiently. Going deeply through

all language-related concepts, features, and

studying them across many aspects helps to use

that language in an effective and efficient way

never expected before.

4.1.8 Select an advanced IDE
An Integrated Development Environment

(IDE) is a programming environment to help

developers write software and manage related

activities. Generally, any IDE consists of code

editor, compiler/interpreter, debugger, and built-in

utilities that simplify the software development

and hide its intricacies (For example, developers

will be shielded from going through the internal

details of how their codes are compiled and

converted into machine codes). Using an advanced

IDE simplifies the learning of the language being

used, helps developers to measure the

performance and resource allocation of their

software in many directions, and increases their

productivity [19]. Also, it helps making less

coding errors. For instance, if a variable or a

method has to be renamed, IDEs provide the

“refactor” option to help in this respect. This

option changes all the calls to that variable/method

name. Thus, there is no need to change them

manually one by one which will make the code

prone to various errors. Currently, there are a

number of different IDEs each having its own set

of features including supporting a number of

different programming languages. For example,

one of the widely used IDEs for Java developers is

NetBeans IDE [20]. In this IDE, developers can

use Profiler tool to measure the CPU time, RAM

allocation, execution time of each method, and

many other available important features which are

not available in traditional Java IDEs. Doing so,

help them to decide if their software products

meet specific performance and resources

requirements or not.

4.1.9 Select a user interface

Any software code is good when it provides a

good user interface to its users to interact with its

functionality. Therefore, software developers

should take this point into account while coding.

User interfaces represent one of the most

important parts of any software code because it

determines how easily users can use it and as it is

the only visible part for users. It is worth

mentioning that any powerful software code with

a poorly designed user interface has no or little

value. Generally, user interfaces are divided into

five types [50], as follows:

 Command Line Interface (CLI): It is the

simplest one among other types of user interfaces.

In the CLI, the user interacts with the software by

typing commands in a screen using the keyboard

and the software provides back the output by

printing it on the same screen. Command prompt

application in Windows operating system is one of

the best examples that utilize CLI to deliver its

functionality to users.

 Graphical User Interface (GUI): The GUI

presents a user-friendly mechanism for interacting

with any software via a set of graphical

components including menus, buttons, labels, and

many others. Besides, it provides a distinctive

look and feel to the underlying software. Paint

application in Windows operating system is one of

the best examples that utilize GUI to deliver its

functionality to users.

 Zoomable User Interface (ZUI): The ZUI is

a special type of GUI. In the ZUI, users are able to

see more detail or less by changing the scale of the

viewed area. In other words, the user can browse

almost everything simply by zooming in and out.

Eagle Mode application [52] is one of the best

examples that utilize ZUI to deliver its

functionality to users.

 Voice User Interface (VUI): In the VUI,

users interact with the software through

voice/speech based commands to utilize its

functionality. The most important feature of VUI,

it provides hands-free and eyes-free interaction.

Speech Recognition and Cortana applications in

Windows operating system, Amazon Alexa, and

Apple Siri [53-55] are the best examples that

utilize VUI to deliver its functionality to users.

 Activity User Interface (AUI): It is also

called gesture user interface. In the AUI, gestures

can originate from the human face or hands and

then recognized as commands to the underlying

software. Touchscreen in smart phones is one of

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

98

the best examples that utilize AUI to deliver its

functionality to users.

However, selecting the appropriate user interface

depends mainly on the software aim and domain.

Besides, any good software should have a user

interface with important characteristics, as follows

[21]:

 Clear: Everything in the user interface should

be clear including its objectives, how to use it, and

many others.

 Concise: The words used to describe the aspects

of the user interface should be concise and give

useful meanings. In GUI for example, the title of a

button should be simple and reflect the function of

that button.

 Attractive: The user interface should be

attractive in terms of colors, fonts, and shapes.

This creates a nice user experience while using it.

 Efficient: The user interface should perform its

tasks properly and efficiently. For example, if the

user clicked on an EXIT button to exit from the

current application, the application should be

closed directly without any delay.

 Forgiving: The user interface should not allow

users to make mistakes while using it. In case of

any, the interface should be able to recover or

undo the process. For example, if the user deleted

by mistake an important file, the interface may

offer options to recover it.

 Feedback: Users should be notified about the

tasks requested to be performed. For example, the

user interface should notify the user after the task

is performed successfully or in case of any

unexpected error due to certain reasons.

 Speed of learning: The interacting with the user

interface should be easy and does not require

special trainings to learn how to use it.

4.1.10 Work in a good physical environment

Many developers believe that they can code

effectively in any physical environment. And,

consider that different physical environments

including offices and laboratories do not affect the

code quality and productivity. Many studies

proved the opposite, physical environments have

obvious impacts on quality and productivity.

Often, software bugs are produced when

developers lose their attentions while coding. To

overcome this issue, concentration is required.

One of the main factors that help writing good

code is working and coding in inspiring

environments. That is, the environment where

everything in it supports your work and creativity,

a place where you can concentrate and be

motivated while coding. Generally, physical

environments have different elements that affect

the code quality if they were set or used in

improper ways [22], as follows:

 Lighting: As software developers spend most of

their time doing coding in offices and laboratories,

the lighting of these environments have a direct

effect on them. When there is no light or the light

is dim, the human body produces a hormone

called melatonin or darkness hormone. This

hormone makes the body in an inactive or

sleeping state. The natural defender against this

hormone is the sunlight. It stops the production of

the melatonin and keeps the body active and

awake. Based on the aforementioned information,

offices and laboratories where developers work at

should consider the effect of lighting on

developers and provide an appropriate lighting

system. With no doubt, utilizing the sunlight is

more preferred compared to others. This can be

achieved by using a lot of windows in such

environments. If providing the nature sunlight is

difficult for any reason, lighting that simulates the

sunlight can be used instead. By this, the

developers will be awake and active while coding.

As a result, they will be more productive.

 Coloring: Different colors have different effects

on each one of us and especially software

developers. Each developer likes colors that

motivate him/her in working. Therefore, offices

and laboratories where developers work at should

consider the impacts of colors on the developers

and their work. Colors such as green, red, and blue

generally are the creativity colors. Offices and

laboratories can use these colors (rather than using

only white or light yellow) in balance to paint

their all or some wall surfaces to motivate

developers and increase their working enthusiasm.

 Ventilation: When there are many developers

work in a small office environment with no good

ventilation, do not expect from them to do good

while they code. Bad ventilation usually caused by

either no availability of enough windows or no

good ventilation system is supported in the office.

However, it decreases the oxygen which affects

directly on the developers such that they cannot

breathe properly and then feel tired. On top of

that, this will have a direct bad impact on their

performance while coding.

 Air-conditioning: The productivity of software

developers gets affected by the air-conditioning.

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

99

Therefore, office environments should consider

this issue too. They should not be warm in

summer nor cold in winter. It is recommended that

the temperature be around 25 °C over all seasons

to provide a productive working environment.

 Adjustability: As software developers sit a lot

on chairs in front of computers and use keyboard

and mouse devices to do coding, they should feel

comfortable in their sittings and in using devices.

For example, some developers like sitting on

circled chairs, using wireless mouse/keyboard

devices, and specific type of monitors. The

aforementioned preferences are existent due to the

physical anatomy and issues of the human body.

As an example, sitting on a chair for a long time

makes body pain for developers. Therefore, it is

preferred to equip office environments with chairs,

monitors, and many other equipment that are

highly adjustable. As a result, every developer will

be able to make his/her own configurations easily.

Providing adjustable and configurable equipment

in office environments decreases body pain and

eventually makes developers comfortable and

more productive.

4.2 While writing software
The best practices and recommendations that

have to be taken into consideration while writing

software are presented in the following

subsections.

4.2.1 Avoid quick coding

Quick coding has direct and bad impact on

code quality. In many cases, software developers

become under pressure to follow a schedule, meet

a deadline, or add a new feature within a limited

time. Such cases lead them to code more in a short

period. As a result, they produce various defects

[23]. In the short-term, many defects have no

instant effects on code functionality which make

them ignored totally by developers or they will be

added to a list of problems that have to be fixed

later. With continuing coding in the same wrong

manner, new defects will be added to the list. By

the time, developers will face a full list of defects

based on the ignored ones in the earlier phases of

coding making code much harder to be corrected.

However, defects have to be fixed directly once

they are found to overcome issues of fixing them

later in terms of time, cost, and risk. Or, to not

forget them; they can be tracked and logged using

different tools and frameworks. For example, the

open-source Apache Log4j is a well-known Java-

based logging framework that could help very

well in this context [24].

4.2.2 Follow coding standards

Coding standards are found mainly to format and

style software code in a uniform way. As a result,

these standards prevent developers (especially

when there are many developers working on the

same software code) to format and style a piece of

code in their own personal and non-uniform way.

Alongside that, they help to produce code without

bugs [25] and to improve the readability of the

software, allowing developers to understand a

given code more quickly and thoroughly. Coding

standards are of many forms, as follows:

 Using spaces to indent code.

 Using easy-to-type, easy-to-remember, and self-

explained variable names.

 Naming conventions for classes, interfaces, and

methods.

 Using an empty line to separate two code sections.

Many software organizations provide coding

standards and conventions for different

programming languages. For example, Java

developers can use Google Java Style [26] or Sun

Code Conventions [27] in their coding. Currently,

there are a tremendous number of tools and

frameworks to help developers analyzing a given

code (written in any language) to ensure applying

coding standards or to avoid unwanted coding

standards. For example, Java Coding Standard

Checker (JCSC) [28] and Checkstyle [29] are free

and open-source tools that can be used by Java

developers in this context. In many cases, the size

of software code is extremely large which means

developers will not be able to apply the standards

to the whole code. Instead, only the most

important pieces of code can be standardized.

4.2.3 Simplify coding

Simplicity is the foundation of readability and

maintainability for any software code. It is

independent of the size and functional complexity

of code. Usually, it is associated with many

properties such as creating simple classes with

very well-defined functionalities containing

simple methods each with a single functional

responsibility. On top of that, the relationship

between classes should be simple and

understandable [30]. Sometimes, the used

programming language has an obvious impact on

code simplicity. For example, printing a simple

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

100

string on the output screen using Java requires

multiple lines of code. On the other hand, printing

the same string requires only a single line of code

in Python as presented in Table 3.

Table)3(: Printing a string - Java vs. Python

Language Code Example

Java public class Hello

{

 public class void main (String argv [])

 {

 System.out.println("Hello World");

 }

}

Python print "Hello World"

Regardless of the aim of code, simplicity and

cleanness make the code easy to read and

maintain. Furthermore, they are considered as the

must-have properties of any good code.

4.2.4 Reuse existing code
Writing a piece of code from scratch is not a

recommended practice in the software

development process, especially when the scale of

the code being developed is large. Often, many

pieces of code that provide functionality needed to

develop the current software are available

somewhere on the Internet for free as part of third-

party libraries, frameworks, or other software

projects. However, if a function that only converts

between units of temperature is required to be

reused, then there is no need to import or reuse the

complete library that contains that function and a

hundred of other functions that are not required to

be reused. Some of them are even written in your

preferred programming language by well-known

experts in the field. Or, they are reviewed and

tested by experts. However, other pieces of code

are not [31]. It is worth mentioning that before

integrating the reused code into your own code, it

is recommended to test its functionality separately

to ensure it has the required functionality and

works properly. This testing process is important

and critical to reveal the strengths and weaknesses

of the reused code. As a result, the weaknesses can

be eliminated or maintained then can be integrated

into the code at hand. Generally, free software

components and frameworks that are used widely

have large support community or licensed under

well-known software licenses such as Apache,

GNU's Not Unix General Public License (GNU

GPL), or Berkeley Software Distribution (BSD).

Thus, they have fewer bugs compared to others

that are developed in-house and not used or

supported widely. Code search tools and engines

that help in this context gained more attention

from researchers and developers due to their good

impact on the software development process.

Currently, many code search engines are available

to help developers find and reuse relevant existing

code. For example, SearchCode [32] is one of the

leading code search engines that help developers

to search for existing code written in various

programming languages. Reusing existing code in

proper ways saves a lot of time, effort, and

increases productivity over time.

4.2.5 Use programming paradigm-related

concepts

Almost all software codes are developed based

on a software design or programming paradigm.

In the software world, there are a number of

programming paradigms each with its own set of

concepts. Currently, the superior ones are object-

oriented and service-oriented paradigms [33].

Developers are using such paradigms in their

coding, but most of them do not really utilize all

the concepts and features offered by a specific

paradigm. For example, developers and especially

the newbies use object-oriented paradigm only in

terms of creating classes and initiating objects. As

a result, their code is full of classes and objects

only while ignoring other important concepts and

features of object-oriented including inheritance,

polymorphism, and many others [34]. Therefore,

developers should not limit their using and

understanding of object-oriented to classes and

objects creation only. These paradigms are found

to help writing good software code alongside

many directions, so their concepts and features

have to be utilized rigorously.

4.2.6 Avoid code duplication

One of the fundamental factors that make any

code clean and good is making no code

duplication. Code duplication can be found in

three main forms, as follows [35]:

 A piece of code such as a class or method is

duplicated exactly as it is but with different

names.

 A piece of code is duplicated with a very little

change.

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

101

 A piece of code doing a specific purpose is

repeated many times but in different ways and

styles.

Coding with duplication affects badly on code

in many ways including increasing its size,

complexity, and making it difficult to be

understood and maintained.

4.2.7 Add comments to describe code
Comments are very useful to explain the

purpose and functionality of code. They are

considered one of the main properties of good

software code. The good code should explain

itself to other developers or even to its developer

when it is required to make maintenance after

sometime of its creation [36]. Generally, code

comments are classified into two types, as

follows:

 Header comments: Are used at the beginning

of code files to give general information about the

code including the purpose, functionality, names

of developers, last date/time modified, and many

others.

 Inline comments: Are used anywhere between

code lines when it is required to explain the reason

of doing something, to clarify the functionality of

a method, to specify the relationships between

classes, methods, and many others.

It is worth mentioning that using comments

require attention and skills. For example,

developers should know where to use comments,

comments should be simple and informative, and

not to over use or use inaccurate comments.

Currently, many programming languages have

built-in tools to parse header and inline comments

from source code to produce complete and

formatted code documentation. For example, Java

language provides a code documentation generator

tool called Javadoc [37] that can be used in this

respect to parse code comments into Hyper Text

Markup Language (HTML) document format that

can be viewed from a web browser such as

Mozilla Firefox or Google Chrome.

4.2.8 Minimize code dependencies

Making any software code depends heavily on

its software or hardware environment might have

a bad impact on its performance and quality in

case of changing that environment [38]. For

example, writing a code with dependencies to

work only on a Windows operating system will

have a certain level of performance and quality

differs from the same code working on a Linux

operating system. In this context, dependency can

be of many forms, as follows:

 The software code depends on a specific

operating system to work properly. Or, it depends

on the existence of a system file or folder which

can be deleted or modified by the system itself

anytime.

 The software code depends on a specific

hardware device or hardware specifications to

deliver its functionality properly.

Therefore, developers should minimize the

number and type of dependencies of their code as

possible. Code with a lot of dependencies is not

considered a good code.

4.2.9 Focus while coding

Many developers believe that spending a lot of

time on coding will increase the productivity and

improve quality. But the truth is that coding less

with focusing and sustainable pace achieve much

more in terms of productivity and quality. Coding

so much in a short period with no focus opens the

doors to produce code with different types of

defects that lead to code with no quality.

Therefore, developers should give themselves

enough time to observe and analyze the impacts of

what they are coding and react accordingly.

4.2.10 Follow software evolution

Software libraries, frameworks, and tools are

updated and improved daily. Furthermore, many

new ones with new features are developed from

scratch to compete with the existing ones in one

way or another. As a result, using a framework for

developing a part of the software at hand may not

be good choice after sometime [39]. Therefore,

software developers should always follow and

utilize new software innovations to make their

software development up-to-date. However,

developers should not expect that all new libraries

and frameworks are good in quality and have big

improvements and features compared to the

existing ones. They are recommended to perform

a deep analysis before deciding to use a new

library or framework. Generally, utilizing new

innovations in the field of software will result in

significant improvements in the functionality,

maintainability, and productivity of software code.

4.3 After writing software
The best practices and recommendations that

have to be taken into consideration after writing

software are presented in the following

subsections.

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

102

4.3.1 Review code

Code reviewing is an important process to

decrease the number of errors/bugs, detect

undesired coding styles, and increase code quality

[40]. Often, this process is conducted by a senior

software developer who has a wide experience in

reviewing code. One of the main advantages of

involving a senior developer in the review process

is his/her ability to identify errors, defects, or

mistakes faster with more accuracy which saves a

lot of valuable time. However, code reviews can

also be conducted by a team of reviewers each

having a unique reviewing task. Involving a team

in the reviewing process has its own advantages

[41]. For example, inexperienced reviewers or

newbie reviewers can join the team not only to

gain knowledge and understand how the

reviewing process is conducted but also to learn

how to code with a high quality by analyzing

other’s code. In software engineering perspective,

code reviewing is one of the must-to-do processes

to produce a code with quality. Therefore, it is

recommended to apply reviewing on any code

after its completion or after each functional

development phase.

4.3.2 Test code

Testing is one of the most important processes

that ensure a piece of code is without defects or

undesired functionality. It is important to ensure

that any code should pass a set of tests after each

development, maintenance, integration, or reuse

processes. Also, code should be tested on different

machines using different configurations. On top of

that, extreme and thorough test scenarios have to

be used for testing code. Generally, testing can be

divided into three types depending on how the test

is performed [42], as follows:

 White-box testing: It is used to test the internal

structure of a given code. It tests how code

statements have been written, how classes and

objects have been declared and used, tests the

relationships between functional units, and many

others.

 Black-box testing: It is used to test only the

functionality of a given code without going

through its internal structure and how it has been

written and developed. In other words, it tests only

the input and output of code without considering

the technical details.

 Gray-box testing: It combines the two

aforementioned testing types.

These types of testing are very useful to test many

aspects of code including its functionality.

Moreover, they ensure that a given code has an

acceptable level of performance and good quality.

Nowadays, many tools and frameworks are

available in many programming languages to

support developers in this context. For example,

developers can use Apache JMeter application

[43] to measure the performance and functionality

of their software. Also, it supports testing a variety

number of software including web, database, and

network applications/services. Another well-

known testing framework is JUnit [44]. It is used

widely to test the functionality of software code.

JUnit is written in Java programming language but

there are many JUnit-inspired testing frameworks

to support other programming languages such as

CPPUnit for C++, NUnit for C#, and PHPUnit for

Personal Home Page (PHP).

4.3.3 Maintain code

Code maintenance usually performed after the

testing phase or after the real installation and

deployment of software [45]. Different types of

maintenance are required for any software in the

following cases:

 Corrective maintenance: To correct software

defects, errors, bugs, etc. found in the testing

phase or in the operating phase.

 Perfective maintenance: To enhance the existing

software code via adding new features or

functions. Thus, to extend its original functional

requirements.

 Adaptive maintenance: To make changes to the

existing software to adapt to changes in its

external environment such as CPU, RAM, or

operating system.

 Preventive maintenance: To make changes to the

existing software so it can be corrected, enhanced,

or adapted more easily.

One of the main factors that have an obvious

effect on code maintenance is code simplicity. If a

software code is written in a simple way,

developers will rapidly find the place to make the

required modification [46]. However, it is not

recommended to perform one massive

maintenance process in one time on the code. As

often it affects badly and in many directions on

code quality and functionality. Also, massive

maintenance failures are not manageable and even

can lead to bad decisions including cancelling the

maintenance. On the other hand, multiple simple

maintenance processes in different times help

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

103

developers to measure the effects of each

maintenance process on the code and to handle

failures (if any) of each process in an easy and

manageable way.

4.3.4 Create a user manual

The good software is always delivered with a

user manual (also called a user guide) to support

its users while using it. Writing user manuals is

not like commenting on the code. Code comments

are only used by developers to understand a given

code whereas manuals are mainly for non-

technical persons including users [47]. The main

advantages of software user manuals are:

 They are used to describe the software

functionality.

 They are used to explain how to use the software

properly.

 They are used to compare the functionality of

two or more software products without knowing

their internal technical intricacies or even without

executing them.

Generally, any manual includes a number of

sections; the most common ones are listed below:

 Title section: Includes software name, software

version, developers’ names, copyright, and

manual created date.

 Contents section: Contains information on how

to navigate the manual.

 Introduction section: Explains the functionality

of software and gives an overview of the manual.

 Requirements section: Provides a list of

software and hardware requirements that enable

the software to deliver its functionality properly.

 Frequently Asked Questions (FAQ) section:

Includes a list of questions that are commonly

asked in the context of software and their answers.

 Installation section: Provides a set of

instructions to help users properly installing the

software.

 Uninstallation section: Provides a set of

instructions to help users properly uninstalling the

software.

 Using section: Includes a guide on how to

interact and use the software.

 Troubleshooting section: Presents a list of

possible errors or problems that may occur while

using the software, along with how to fix them.

 Contacts section: Gives details on how or

where to find the technical help and contact

details.

 Glossary section: Provides a list of terms that are

either newly introduced, uncommon, or

specialized with their definitions.

 It is worth mentioning that user manuals

should be created in a clear, simple, and

understandable way without diving into the

software technical aspects as they are intended to

be used mainly by non-technical users. There are a

number of tools that help creating manuals

automatically. For example, Dr.Explain [48] can

be used in this respect to create manuals in

different file formats including HTML, Rich Text

Format (RTF), or Portable Document Format

(PDF). It works automatically by analyzing

software’s user interface, taking screenshots of all

its graphical controls and elements, and then

allowing developers to smoothly add desired

descriptions to the created manuals.

4.3.5 Make searchable code

As we are living in the world of open-source

software, any software code that is discovered and

accessed easily in the digital world is considered

good code. Only the search for software code

makes them usable and more valuable in our

practical life. Therefore, developers should make

their code (in case of open-source development)

searchable and accessible using suitable metadata

to describe their code [49]. Often, such data are

related to the code file such as name, size,

extension, and attributes. Besides, developers can

provide other data about code files such as the

number of used classes, objects, methods,

variables, and comments. All these information

can help other developers to search published code

files and reuse them for example. Currently, many

code search engines and tools are available to help

in this respect as mentioned in subsection 4.2.4.

5. CONCLUSION

In this paper, we provided the taxonomy of the

most important best practices, recommendations,

and factors that software developers should follow

and take into account to produce good software.

Some of the influential factors target the technical

aspects of any software development process.

Many others, target the non-technical aspects in

terms of the effects of working environments on

the productivity and quality. Generally, everything

given in this paper helps developers in one way or

another to write good software regardless of the

programming language used in the development

and regardless of the software domain whether for

https://en.wikipedia.org/wiki/Troubleshooting
https://en.wikipedia.org/wiki/Glossary
https://en.wikipedia.org/wiki/Term_%28language%29
https://en.wikipedia.org/wiki/Definition

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

104

desktop, mobile, etc. Besides, this paper helps

developers to measure the goodness of given

software alongside many directions.

REFERENCES
[1] R. Selby, “Being a Software Engineer in the

Software Century”, Wiley-IEEE Press, pp. 797-

806, 2007.

[2] L. Baresi, E. Di Nitto, and C. Ghezi, “Toward open-

world software: Issues and challenges”,

Computer, vol. 39, no. 10, pp. 36-43, 2006.

[3] R. Kitchin and M. Dodge, The Nature of Software,

1st edition of Code/Space: Software and

Everyday Life, MIT Press, 2011.

[4] T. F. Kusumasari, I. Supriana, K. Surendro, and H.

Sastramihardja, “Collaboration Model of

Software Development”, International

Conference on Electrical Engineering and

Informatics (ICEEI), pp. 1-6, 2011.

[5] S. Bansal and A. Goyal, “An Innovative Research

on Software Development Life Cycle Model”,

International Journal of Innovation Research in

Computer and Communication Engineering

(IJIRCCE), vol. 3, no. 11, pp. 10445-10451,

2015.

[6] M. Grottke, L. M. Karg, and A. Beckhaus, “Team

Factors and Failure Processing Efficiency: An

Exploratory Study of Closed and Open Source

Software Development”, IEEE 34th Annual

Computer Software and Applications

Conference, pp. 188-197, 2010.

[7] S. Basri and R. V. O’Connor, “Software

Development Team Dynamics in SPI: A VSE

Context”, The 19th Asia-Pacific Software

Engineering Conference, vol. 2, pp. 1-8, 2012.

[8] Live Coding Television,

https://www.livecoding.tv/, accessed

01/08/2018.

[9] M. Storey, C. Treude, A. van Deursen, and L.-T.

Cheng, “The Impact of Social Media on

Software Engineering Practices and Tools”, The

FSE/SDP workshop on Future of Software

Engineering Research (FoSER), pp. 359-364,

2000.

[10] S. Kishore and R. Naik, Software Requirements

and Estimation, Eighth reprint 2007, Tata Mc

Graw Hill, 2001.

[11] H. Sarker, F. Faruque, U. Hossen, and A. Rahman,

“A Survey of Software Development Process

Models in Software Engineering”, International

Journal of Software Engineering and Its

Applications, vol. 9, no. 11, pp. 55-70, 2015.

[12] R. Land, “A Brief Survey of Software

Architecture”, Mälardalen Real-Time Research

Center (MRTC) Report, Mälardalen University,

Sweden, 2002.

[13] C. STRIMBEI, O. DOSPINESCU, R.-M.

STRAINU, and A. NISTOR, “Software

Architectures - Present and Visions”,

Informatica Economica, vol. 19, no. 4, pp. 13-

27, 2015.

[14] R. Terra, M. T. Valente, and R. S. Bigonha, “An

approach for extracting modules from

monolithic software architectures”, IX

Workshop de Manutenção de Software Moderna

(WMSWM), pp. 1-18, 2012.

[15] D. Namiot and M. Sneps-Sneppe, “On Micro-

services Architecture”, International Journal of

Open Information Technologies, vol. 2, no. 9,

pp. 24-27, 2014.

[16] C. Wohlin, “Is prior knowledge of a programming

language important for software quality?”,

Proceedings of International Symposium on

Empirical Software Engineering, pp. 27-34,

2002.

[17] F. Montesi, C. Guidi, and G. Zavattaro, “Service-

oriented programming with Jolie”, Web

Services Foundations, pp. 81-107, 2014.

[18] M. Ben-Ari, Understanding Programming

Languages, John Wiley and Sons, 1st edition,

2007.

[19] M. Bruch, E. Bodden, M. Monperrus, and M.

Mezini, “IDE 2.0: Collective Intelligence in

Software Development”, The FSE/SDP

workshop on Future of Software Engineering

Research (FoSER), 2010.

[20] NetBeans IDE, https://netbeans.org/, accessed

01/08/2018.

[21] W. O. Galitz, The Essential Guide to An User

Interface Design, John Wiley and Sons, 2nd

edition, 2002.

[22] Ş. Çetiner, “Effects of Office Environment on

Software Developer’s Productivity”, 2012,

http://scstrider.blogspot.com/

[23] K. Henney, 97 Things Every Programmer Should

Know, 1st edition, O’Reilly, 2010.

[24] Apache Software Foundation, Apache Log4j v. 2.5

User’s Guide, 2015.

[25] P. Goodliffe, Code Craft: The Practice of Writing

Excellent Code, 1st edition, No Starch Press,

2006.

[26] Google Java Style Documentation,

http://checkstyle.sourceforge.net/reports/google-

java-style.html, accessed 01/08/2018.

[27] Code Conventions Documentation,

http://www.oracle.com/technetwork/java/javase/

documentation/codeconvtoc-136057.html,

accessed 01/08/2018.

[28] Java Coding Standard Checker Tool,

http://jcsc.sourceforge.net/, accessed

01/08/2018.

[29] Checkstyle Tool,

http://checkstyle.sourceforge.net/, accessed

01/08/2018.

https://www.livecoding.tv/
https://netbeans.org/
http://checkstyle.sourceforge.net/reports/google-java-style.html
http://checkstyle.sourceforge.net/reports/google-java-style.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://jcsc.sourceforge.net/
http://checkstyle.sourceforge.net/

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 90-105, 2102

https://doi.org/10.26682/sjuod.2019.22.1.11

105

[30] Y. Li and H. Yang, “Simplicity: A key

engineering concept for program

understanding”, IEEE Workshop on Program

Comprehension, pp. 98-107, 2001.

[31] R. Keswani, S. Joshi, and A. Jatain, “Software

Reuse in Practice”, The 4th International

Conference on Advanced Computing and

Communication Technologies, pp. 159-162,

2014.

[32] Source Code Search Engine,

https://searchcode.com/, accessed 01/08/2018.

[33] H. Zhu, “From OOP to SOP: What Improved?”,

IEEE International Conference on Service

Operations and Logistics, and Informatics, pp.

956-961, 2005.

[34] N. M. A. Munassar and A. Govardhan,

“Comparison study between traditional and

object-oriented approaches to develop all

projects in software engineering”, The 5th

Malaysian Conference in Software Engineering

(MySEC), pp. 48-54, 2011.

[35] M. Rieger, S. Ducasse, and M. Lanza, “Insights

into system-wide code duplication”, The 11th

Working Conference on Reverse Engineering,

pp. 100-109, 2004.

[36] J. L. Freitas, D. da Cruz, and P. R. Henriques, “A

Comment Analysis Approach for Program

Comprehension”, The 35th Annual IEEE

Software Engineering Workshop, pp. 11-20,

2012.

[37] Javadoc Tool,

http://www.oracle.com/technetwork/articles/java

/index-jsp-135444.html, accessed 01/08/2018.

[38] M. Cataldo, A. Mockus, J. A. Roberts, and J. D.

Herbsleb, “Software dependencies, work

dependencies, and their impact on failures”,

IEEE Transactions on Software Engineering,

vol. 35, no. 6, pp. 864-878, 2009.

[39] M. W. Godfrey and D. M. German, “The Past,

Present, and Future of Software Evolution”,

Frontiers of Software Maintenance, pp. 129-138,

2008.

[40] M. Bernhart and T. Grechenig, “On the

understanding of programs with continuous

code reviews”, IEEE International Conference

on Program Comprehension, pp. 192-198, 2013.

[41] Bac chelli and C. Bird, “Expectations, outcomes,

and challenges of modern code review”,

International Conference on Software

Engineering, pp. 712-721, 2013.

[42] S. H. Trivedi, “Software Testing Techniques”,

International Journal of Advanced Research in

Computer Science and Software Engineering,

vol. 2, no. 10, pp. 433-439, 2012.

[43] S. Shenoy, N. A. A. Bakar, and R. Swamy, “An

adaptive framework for web services testing

automation using JMeter”, IEEE 7th

International Conference on Service-Oriented

Computing and Applications (SOCA), pp. 314-

318, 2014.

[44] M. Wahid and A. Almalaise, “JUnit framework:

An Interactive Approach for Basic Unit Testing

Learning in Software Engineering”, The 3rd

International Congress on Engineering

Education (ICEED), pp. 159-164, 2011.

[45] K. H. Bennett and V. T. Rajlich, “Software

Maintenance and Evolution: a Roadmap”, The

International Conference on The future of

Software engineering (ICSE), pp. 73-87, 2000.

[46] C. F. Kemerer, “Software Complexity and

Software Maintenance: A Survey of Empirical

Research”, Annals of Software Engineering, vol.

1, no. 1, pp. 1-22, 1995.

[47] Y. Murakami and Y. Hori, “Automatic Generation

of Usage Manuals for Open-Source Software”,

The 6th International Conference on Complex,

Intelligent, and Software Intensive Systems

(CISIS), pp. 671-676, 2012.

[48] Dr.Explain Tool, http://www.drexplain.com/,

accessed 01/08/2018.

[49] T. F. Bissyande, F. Thung, D. Lo, L. Jiang, and L.

Reveillere, “Orion: A Software Project Search

Engine with Integrated Diverse Software

Artifacts”, The 18th International Conference on

Engineering of Complex Computer Systems

(ICECCS), pp. 242-245, 2013.

[50] Q. I. Sarhan, “Web Applications and Web

Services: A Comparative Study”, Science

Journal of University of Zakho (JUOZ), vol. 6,

no. 1, pp. 35-41, 2018.

[51] Ron Jeffries, The Nature of Software

Development: Keep It Simple, Make It

Valuable, Build It Piece by Piece, 1st Edition,

Pragmatic Bookshelf, 2015.

[52] Eagle Mode Zoomable User Interface,

http://eaglemode.sourceforge.net/, accessed

01/08/2018.

[53] Cortana Voice User Interface,

https://www.microsoft.com/en-

in/windows/cortana, accessed 17/02/2019.

[54] Amazon Alexa Voice User Interface,

https://www.amazon.com/b?node=17934671011

, accessed 17/02/2019.

[55] Apple Siri Voice User Interface,

https://www.apple.com/siri/, accessed

17/02/2019.

https://searchcode.com/
http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html
http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html
http://www.drexplain.com/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwic19_JnI3eAhXrsYsKHfOeCykQFjAAegQICBAB&url=http%3A%2F%2Fsjuoz.uoz.edu.krd%2Findex.php%2Fsci%2Farticle%2Fview%2F375&usg=AOvVaw1WOpHS9DdWbR9Zwx8CBFft
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwic19_JnI3eAhXrsYsKHfOeCykQFjAAegQICBAB&url=http%3A%2F%2Fsjuoz.uoz.edu.krd%2Findex.php%2Fsci%2Farticle%2Fview%2F375&usg=AOvVaw1WOpHS9DdWbR9Zwx8CBFft
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwic19_JnI3eAhXrsYsKHfOeCykQFjAAegQICBAB&url=http%3A%2F%2Fsjuoz.uoz.edu.krd%2Findex.php%2Fsci%2Farticle%2Fview%2F375&usg=AOvVaw1WOpHS9DdWbR9Zwx8CBFft
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwic19_JnI3eAhXrsYsKHfOeCykQFjAAegQICBAB&url=http%3A%2F%2Fsjuoz.uoz.edu.krd%2Findex.php%2Fsci%2Farticle%2Fview%2F375&usg=AOvVaw1WOpHS9DdWbR9Zwx8CBFft
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwic19_JnI3eAhXrsYsKHfOeCykQFjAAegQICBAB&url=http%3A%2F%2Fsjuoz.uoz.edu.krd%2Findex.php%2Fsci%2Farticle%2Fview%2F375&usg=AOvVaw1WOpHS9DdWbR9Zwx8CBFft
http://eaglemode.sourceforge.net/
https://www.microsoft.com/en-in/windows/cortana
https://www.microsoft.com/en-in/windows/cortana
https://www.amazon.com/b?node=17934671011
https://www.amazon.com/b?node=17934671011
https://www.apple.com/siri/

