
Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 124-131, 2102

https://doi.org/10.26682/sjuod.2019.22.1.14

124

EFFICIENT MECHANISM FOR SECURING SOFTWARE DEFINED

NETWORK AGAINST ARP SPOOFING ATTACK

HARMAN Y. I. KHALID

PARISHAN M. ISMAEL and

AHMAD BAHEEJ AL-KHALIL

Dept. of Computer Science, College of Science, University of Duhok, Kurdistan Region-Iraq

(Received: February 6, 2019; Accepted for Publication: April 15, 2019)

ABSTRACT
Software Defined Network SDN is a new emerging paradigm of networking which decouples the data

plane and the control plane. It is expected to be a solution to overcome the limitations of traditional networks.

Conventional networks had several security problems, some of them disappeared by SDN and some others

still exist such as Address Resolution Protocol ARP spoofing. This paper discusses the attacks of ARP

spoofing and presents a deep study on the existing solutions either in traditional or SDN environments. A

light, reliable, fast and effective mechanism has been proposed to prevent ARP spoofing, without any

additional software or hardware by utilising SDN capabilities. In this work, the SDN controller has been

extended by a module which checks every ARP packet in network to detect possible spoofed packets and stop

them. Experiments were conducted on the simulated environment using Mininet to check the functionality of

the proposed mechanism. The simulation results showed that the proposed mechanism is robust against ARP

spoofing attack.

KEY WORDS: ARP cache Poisoning, ARP spoofing, ARP, Attack, DHCP, DoS, Mininet, SDN,Security.

1. INTRODUCTION

owadays the widely adoption of traditional

Internet Protocol IP networks cannot hide

the fact that they are complex and hard to manage

large number of network devices. The new

Internet-based systems technologies that appeared

in this decade such as cloud services, Internet of

Things IoT, Voice over IP VoIP, big data require

high bandwidth, scalability, higher accessibility

and dynamic management (Benson, Akella and

Maltz, 2009)(Alsmadi and Xu, 2015). In order to

enforce network policies, each network device

should be configured separately by the network

operators using low-level and often vendor-

specific commands, and manually input these

commands using command line or graphical user

interfaces. In case of any failure to a section of

network or adopting load changes, there must be

an automatic reconfiguration and response

mechanisms which are very hard to be performed

in current IP networks. In addition to the

management difficulties, the vertically integration

of current network devices make it more

complicated architecture. In the absence of unified

control unit for current distributed control

networks, the network management becomes very

challenging task and the difficult configuration

process lead to many errors, security gaps and

network faults. New protocol designing may take

several years to be fully matured and deployed.

Therefore, a new paradigm to change the network

architecture instead of IP, is considered as a

difficult (Kreutz et al., 2015). Furthermore, with

the growth of network and its traffic, operational

expenses of running an IP network increased

rapidly.

The spark of solution for current network

infrastructures limitation was glowed with the

emerging of Software-Defined Networking SDN.

SDN is a new networking paradigm that gives

hope to change the inertia of current network

model (Kreutz et al., 2015). It moves the network

model to be open, programmable, reliable, secure

and manageable infrastructure (Klöti, Kotronis and

Smith, 2013).

SDN architecture allows the users to enhance

network security by providing clear view over the

network for easy management, maintenance,

control and reactivity. Security of SDN is an

important concern since there is no security

features in its architecture. Many research papers

and analysis such as (Alsmadi and Xu,

2015)(Kreutz, Ramos and Verissimo, 2013)(Li,

Hong and Bowman, 2011)(Brooks and Yang,

2015)(Scott-Hayward, O’Callaghan and Sezer,

N

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 124-131, 2102

https://doi.org/10.26682/sjuod.2019.22.1.14

125

2013) have been done and showed that various

security attack could conducted on SDN. Some of

spoofing attacks such as IP spoofing, Domain

Name System DNS spoofing and Address

Resolution Protocol ARP spoofing etc are still seen

as a serious concern for SDN architecture since

they cannot mitigated by a plain SDN controller.

Usually ARP spoofing attack is the first step in

other threads such as Denial of Services DoS and a

Man-in-the-Middle MIM, where important

information regarding the network user can be

stolen by attacker. ARP spoofing attack is the most

common attack in Local Area Network LAN. ARP

is used by the host in the network to get the

physical address of host willing to communicate

with. Since ARP protocol does not have security

mechanism, it is used by intruder to impersonate

other hosts in network. In this paper, a mechanism

for validating ARP protocol has been proposed.

The mechanism is mainly focusing on the

detection and the prevention of ARP spoofing by

malicious host that sends crafted ARP packet to

poison ARP table of other hosts in network.

2. RELATED WORKS

 Many tools and methods have been

proposed and used to overcome the ARP spoofing

protocol in traditional network infrastructure.

Network devices such as switches are not designed

to detect and prevent ARP attacks therefore they

require integrating a feature or a software in order

to perform detection or prevention to such an

attack. Since the switch has limited resources, its

opportunity for solving this threat by itself is not

possible, because it cannot handle additional

intensive computation tasks. Therefore, the

prevention and detection techniques were

offloaded to the host itself. The proposed

techniques that been used in traditional network

are no longer applicable in SDN due to the

different architectures of them (Balagopal, Agnise

and Rani, 2017). In SDN, switch acts as a

forwarding device and does not have capability of

processing the packets. Thus, the switch in SDN

has less responsibility and power than the switch in

traditional network, but the SDN central

management and controller accomplished with

global view give ability to move intensive tasks of

switch to the powerful controller. For this reason,

SDN gives the duty of prevention and detection of

spoofing attack to controller. Although some

methods and techniques in traditional network in

ARP spoofing can work in SDN, but they are not

taking the advantage of basic SDN principle of

separating data and control planes.

Current SDN controller such as POX,

Floodlight, Open Daylight and Beacon are not safe

form ARP spoofing attacks as there were many

studies showed that these controllers can be

affected by poisoning attacks (Ubaid et al., 2017).

Many studies have dealt with ARP poisoning in

SDN environment. A method called FICUR has

been proposed by (Nehra, Tripathi and Gaur, 2017)

to detect ARP poisoning and ARP flooding attack

as a module in extended controller. The proposed

method used three functions, the first function

helps to create a detection list of poisoning and

flooding attacks by analysing frame header, the

second function checks ARP entries for same

source IP address and different MAC address in

that list and the third function gives average of

observed thresholds to check if the existing

number of ARP request is more than the average

threshold from history. If it is more, then it may be

ARP flood attack. In an alternative study, the

authors of (Alharbi et al., 2016) proposed SARP

NAT method to detect ARP-Request attack which

has similar working principle of Network Address

Translation NAT. SARP NAT prevents the ARP

table poisoning by replacing the potentially

spoofed source IP and MAC field of ARP header

with a known dummy values that are not found in

the network, and save the original packet

information in list of pending ARP-Requests, then

modified ARP request to destination host. When

the destination host response, it shows in the

pending list for corresponding ARP request and

replaces the dummy value inserted before with the

original values saved in the list. The drawback of

this method is that there is no mechanism for

detecting the ARP-Reply attack. They only accept

ARP-Reply for corresponding request in the list,

otherwise the reply is dropped. Additionally even

if there is no mechanism for ensuring that the reply

with corresponding ARP in list is not spoofed. In a

detailed study, (Abdelsalam and El-sisi, 2015)

proposed an algorithm to detect the spoofing

packet in the network. They used a table

containing all IP-MAC association of all hosts in

the network and these mapping were provided by

Dynamic Host Configuration Protocol DHCP

server. By modifying the controller and extending

a module that handled all ARP requests in the

network, they could analyse the packet header and

check if packet holds spoofing characteristics. The

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 124-131, 2102

https://doi.org/10.26682/sjuod.2019.22.1.14

126

limitation of this mechanism is that it can only be

used in DHCP environment. In similar study, the

authors in (Masoud, Jaradat and Jannoud, 2015)

designed an algorithm to be utilised in one of two

scenarios static or DHCP environment. The two

scenarios have the same mechanism, the only

difference is the method of obtaining IP-MAC

mapping. They depend on the main table of the

controller which contains IP-MAC mapping

association of all hosts in the network. The

algorithm inspects all ARP-Reply and compare the

details in ARP header and if a spoofing is found

then the packet will be discarded. In DHCP

environment the main table is filled inspecting

DHCP packets in the network and extracting IP

and MAC. While in static IP-MAC, pair of each

device is inserted manually. However, this is not

an efficient method in large scale network it

requires its table to be continuously updated by

administrators which is a difficult task. In the same

context, the authors of (Solomon, 2015) suggested

a reactive ARP query which keeps the partial view

of the network in the data plane along with existing

whole view in the controller, shifting some of the

responsibility of the controller back to switches. In

OpenFlow protocols the forwarding devices are

not required to process the packets, they are

required to forward packets according to the rules

in the flow table. The reason behind giving only

forwarding task to those devices is to make them

faster in transmitting packets. However, their

mechanism requires changes to the OpenFlow

protocol by giving processing task back to the

forwarding devices.

3. THE PROPOSED MECHANISM

The proposed mechanism exploited SDN’s

features of central control and management, global

view and ability to gather required data from

network. The collected data will be useful to detect

and mitigate ARP spoofing attack. The proposed

framework utilized Layer 2 L2 learning and DHCP

server which are existing components of POX

controller.

A. Layer 2 Learning Switch Application

The controller runs L2 Learning Switch

application to programmatically and dynamically

manage SDN switches. Once a packet enters the

switch and does not match any flow rules in its

flow table, the switch will redirect this packet to

the controller. L2 application will process this

packet and direct it to the switch with an action

regarding that packet by installing flow rule in the

switch flow table. L2 application allows the switch

to forward the next related packets faster without

sending them to the controller (Solomon, 2015).

Unfortunately L2 application does not provide any

mitigation against ARP spoofing attack, and the

switch is only required to forward the packets but

not processing them. Therefore attacker can craft

spoofed packets and poison the victim ARP cache.

The proposed mechanism modified L2 learning

switch component module presented in POX

controller which is written in Python. The

proposed mechanism will initialise modified L2

learning module for each switch that is connected

to the controller. The switch will populate its flow

table with flow rule instructions to forward ARP

packets to the controller for the purpose of

responding or inspecting for possible poisoned

packet.

B. DHCP and Main Table

The proposed mechanism utilises DHCP

protocols to implement its main table in the

controller. This central table is composed of IP-

MAC associations for each device on a given

network and it is used later for validate ARP

packets. Since DHCP is enabled in the network,

the first arrived packet from new host will be

considered as a discovering packet, as the host will

be asking for an IP from DHCP server. Therefore

it is important to install flow rule in the flow table

of each switch which is connected to the controller

in order to forward DHCP packet to controller. The

DHCP server is critical in the proposed mechanism

and the POX controller already has it installed as

an optional module. Once the host starts asking for

an IP address in DHCP environment, it will

broadcast DHCP discovering packet. Then the

DHCP server response with DHCP offer packet.

The proposed mechanism inspects this packet to

extract the IP and MAC addresses form its header,

and record the mapping information in the main

table which exist in the controller. This table plays

important role in the mechanism since the

detecting spoofing ARP depends and later gives an

acknowledgement on it. It is important to mention

that the environment of the proposed mechanism

has only one DHCP server. This is because the

new host will accept the only offer from single

server by sending DHCP request message and the

later give acknowledgement. Furthermore, when

host IP addresses are used as index keys in the

main table, they do not allow the same IP address

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 124-131, 2102

https://doi.org/10.26682/sjuod.2019.22.1.14

127

to be given to two different hosts in the same

network.

C. The Proposed Mechanism Design

The L2 learning is modified with a proposed

algorithm to perform functions of prevention of

ARP spoofing. It does not require OpenFlow

protocol and ARP protocol to change or enforce

specific topology. The prevention mechanism is

just extended to the L2 component and does not

require additional software or hardware to be

added to the network. In addition, the ARP

spoofing mitigation part does not involve any

cryptographic mechanism, therefore it is light, fast

and able to detect the ARP spoofing attack

immediately. Figure 1 depicts the process of the

Spoofing detection and prevention of the propose

mechanism.

Fig. (1): ARP Poisoning Detection and Prevention

Process

The designed ARP spoofing mechanism

followed the recommendation and requirement

which are presented in (Song et al., 2014) (Abad

and Bonilla, 2007).

For any ARP spoofing countermeasure:

 It should be easy to deploy and does not require

installation of additional software on each hosts as

this incurs additional costs

 It should minimize cryptographic processing

 It should provide timely detection and prevention

 It should minimize hardware costs

 It should be backward compatible with existing

ARP process

 It should detect and prevent all types of ARP

attacks

 It shouldn't slow the ARP request/reply process

significantly

 It should consume low network resources

According to the above guidelines, the

proposed mechanism is deployed in modified L2

learning component in the controller and does not

require any additional software or device in hosts

or in network. It does have cryptographic

technique, and it can detect and prevent all types of

ARP spoofing attacks as they enter the controller

and pass through checking process. It does not

require any changes to the current ARP protocol.

On the other hand, the mitigation mechanism

produces a little slowness of ARP request/reply

process and creates a little overhead in controller’s

CPU load. This is due to the extra checking

functionality extended to the controller and the

requirement of sending all ARP packets to

controller for checking.

D. The Prevention Algorithm

The following pseudocode demonstrates how

does each ARP packet, that is sent by switch, is

analysed by the controller to detect and drop the

poisoned ARP reply or ARP request packet. If the

packet passed the test successfully it will be

processed normally according to the L2 forwarding

application of pox controller.
1. If source MAC of Ethernet not like Source MAC of ARP
2. Spoofed (Drop)
3. Else
4. If source MAC-IP addresses mapping in ARP header not
found in Main table.
5. Spoofed (Drop)
6. Else
7. If Destination IP of ARP not found in Main Table
8. Spoofed (Drop)
9. Else
10. If Destination MAC is Broadcast
11. If ARP Reply and Destination MAC is Broadcast and
Source IP not like Destination IP
12. Spoofed (Drop)
13. Else

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 124-131, 2102

https://doi.org/10.26682/sjuod.2019.22.1.14

128

14. Broadcast
15. Else
16. Forward to designated host

4. EMULATING ENVIRONMENT SETTING

In order to implement and test the proposed

mechanism, Mininet version 2.2.2 (Lantz, Heller

and McKeown, 2010) has been used, which is an

open-source network emulator allocated for SDN

educational and research purposes. Mininet version

2.2.2 is used with other useful tools which are

combined together in pre-built on Ubuntu 14.04

with 1 GB of RAM and 1 core CPU. The virtual

machine image of Mininet is installed in

VirtualBox on the host machine that is running on

Windows 10 and has Intel Core i7 processor with

16 GB of RAM. To prevent the load on the

controller that is created by spoofing detection

algorithm and to obtain accurate results, it is very

important to limit the link parameters in the

proposed mechanism. In addition, it is essential to

mention that the speed of link (Cho, 2019) is

recommended to be 10 or 100 Mb/s rather than 1

Gb/s. This is because the forwarding devices or

switches in the test environment share resources

such as CPU and memory, which have slower

performance than the dedicated hardware switches.

In this research experiments, all links of the

network have been configured to 100 Mbps

bandwidth, 5ms delay, 0% loss and 1000

maximum packet queue size. A simple Tree

topology of 4 hosts has been chosen to evaluate the

efficiency of the proposed ARP mitigation

algorithm. In addition, OpenVswitchs are

connected to a single remote controller with an IP

address of 192.168.201.5 as shown in Figure 2.

Fig. (2): Tree Topology (depth = 2 , fanout = 2)

POX controller has been used in this work’s

testbed as a remote controller. It is a framework for

interacting with OpenFlow switches and written in

Python. As it has been mentioned before,

forwarding L2 Learning is utilised as a module of

pox controller component to make OpenVswitch a

layer 2 learning switch. Enabling this component

makes the OpenFlow switch learns Ethernet MAC

addresses, and matches all fields in the packet

header so it may install multiple flows in the

network for each pair of MAC addresses. This

module is modified to perform ARP checking for

poisoning packets. Another module of pox

component which is proto.dhcpd plays a noble role

in the proposed mechanism which acts as a DHCP

server. This services are used in the proposed

mechanism to populate the Main table in the

controller with the details of IP-MAC mapping

addresses of all hosts in the network.

4. RESULTS AND DISCUSSION

The conducted experiments have been used to

evaluate the functionality of the proposed ARP

mitigation mechanism against the ARP spoofing

attack. The topology in Fig. 2 Considers Host 1 as

an attacker who is trying to poison ARP cache of

Host 4.

In Host 1, Scapy tool (Biondi, 2019) generates

various ARP packets and each one has a different

spoof field of ARP header, which is encapsulated

in Ethernet frame as shown in Figure 3.

Fig. (3): ARP Frame Structure

Table 1 summarises the attempts of attacker

(Host 1) to craft spoofed packets to poison ARP

cache of Host 4. Each time the attacker poisoned

one field of ARP header corresponding to each

C0
Remote Pox Controller

192.168.201.5

S2
Open Vswitch

S1
Open Vswitch S3

Open Vswitch

Host 1
10.0.0.1

00:00:00:00:00:01

Host 2
10.0.0.2

00:00:00:00:00:02

Host 3
10.0.0.3

00:00:00:00:00:03

Host 4
10.0.0.4

00:00:00:00:00:04

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 124-131, 2102

https://doi.org/10.26682/sjuod.2019.22.1.14

129

checking condition of mitigation pseudocode in previous section.
Table (1): Experimented Spoofed Fields of ARP Packet

A. ARP Poisoning Detection and Mitigation Time

The proposed detection’s mechanism is robust

in term of functionality against all different types

of spoofing packets, where all of them have been

dropped. The attack detection and mitigation times

have been measured as illustrated in Fig. 4.

Fig. (4): Detection and Mitigation Time

Attack Detection time is the time period when

spoofed packet enters the controller as packet_in

for validation until detection time. Attack

mitigation time is a time taken by the proposed

mechanism to mitigate an attack after its detection.

Fig. 4 shows that the detection time of the spoofed

packet is around 6ms for ARP request and 5ms for

ARP reply, which are very short times. The

mitigation action has been immediate and it took

only around 0.8 ms for both ARP request and ARP

reply.

B. CPU Load

The CPU load that is created by the proposed

mechanism on the Pox controller has been

compared with the original L2 learning component

of pox controller. The modified L2 learning

component with mitigation module has been

labelled as “Mitigation L2” see Fig. 5.

A number of ARP requests has been generated

and sent from Host 1 to Host 4 (Figure 2) using

ARPING tool. The results were recorded using

NMON tool. The proposed scenario considers a

single ARP traffic of Host 1 sending ARP request

to obtain the MAC of Host 4.

Fig. (5): POX Controller CPU Utilisation

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

T
im

e
in

 s
ec

o
n

d
s

ARP Request Attack ARP Reply Attack

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
P

U
 L

o
a

d
 1

0
0

%

Plain L2 Mitigation L2

 Detection time

 Mitigation time

 Idle

 With load

Spoofed Field Request /
Reply

Description Action

Source MAC of ARP
Header

Request and
Reply

ARP header source MAC address is
spoofed

Detected and
Dropped

Source MAC of Ethernet Header Request and
Reply

Sender MAC of Ethernet header Detected and
Dropped

Source MAC of ARP and MAC Headers Request and
Reply

Sender MAC of ARP header and Sender
MAC of Ethernet header are same but

spoofed
(but the IP-MAC of sender are not in

table)

Detected and
Dropped

Sender Protocol Address Request and
Reply

The source IP are faked
(the IP-MAC of sender are not in table)

Detected and
Dropped

Target Protocol Address Request and
Reply

The destination IP are faked (the IP of
sender are not in table)

Detected and
Dropped

Broadcast ARP Reply with Different
Sender and Target Protocol Addresses

Reply only ARP reply that source IP and Destination
IP not same (not gratuitous Reply)

Detected and
Dropped

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 124-131, 2102

https://doi.org/10.26682/sjuod.2019.22.1.14

130

The controller of original L2 learning

component has no additional functionality except

ARP traffic, where the overall Pox controller CPU

usage was 3.4%. By extending controller with

mitigation mechanism, there was an increase in

CPU load that reach to 4.2%. Comparing results in

Fig. 5, the expense of mitigation functionality on

the CPU load is noticeable. This increase in CPU

load is caused by the effect of sending all ARP

packets to the controller in order to check the

infected packet. While in the original L2 learning

component, the ARP packet is dealt with as a

normal packet, where the controller simply directs

the switch to forward similar packets to specific

destination in a period of time. Therefore, this will

prevent ARP packets to visit the controller.

5. CONCLUSION AND FUTURE WORK

This paper, introduced SDN, OpenFlow and

ARP protocol. The ARP protocol features which

leads to security gap resulting of many threats such

as ARP poisoning attack has been intensively

overviewed. In addition, this research has covered

many studied techniques and methods which has

been proposed by others against ARP spoofing

attack in traditional and SDN environment. Also, it

highlighted how the SDN infrastructure

capabilities such as global view, programmability

and centralised control could be exploited to

implement effect prevention mechanism to

mitigate this attack.

This work presented an efficient approach,

making use of SDN features to mitigate both ARP

Request and Reply based spoofing attacks in SDN

environment. The proposed mechanism does not

require infrastructure changes, changing of ARP or

OpenFlow protocol. Moreover, there is no need to

install additional software or hardware in network.

The proposed mechanism depends on a trusted IP-

MAC Main table exist on the controller and it does

work in conjunction with DHCP server.

Experimental results showed that the proposed

mechanism is robust against ARP threats, very fast

in detection and prevention, and it has a minor

controller CPU overhead.

Since the current mechanism is limited to the

use of single controller environment it is highly

recommended to implement it to be used in

Distributed controller environment. The proposed

mechanism is based on DHCP technology to

populate its Main table in controller. This

mechanism is applicable in network with DHCP

server. The mechanism is essential to overcome

the adaptability issue in network environment

without DHCP server. In other word, how to get

IP-MAC pair details of every host in network

without help of other technology or finding

mechanism independently to obtain these details

for feeding the Main table. Since every ARP

packet visits the controller for validation process,

in large network this may lead to broadcasting

storm in network. There is a need for a mechanism

to suppress ARP broadcast by centrally processing

ARP packets. The fact that if the attacker know

every ARP packet visiting the controller, he can

craft huge number of correct ARP packets

targeting the controller in order to overwhelm it.

Since the Controller considered as the single point

of failure of networks. There must be a mechanism

of port level ARP packet monitoring to prevent

Denial of Service DoS attacks against the

controller.

6. REFERENCES
Abad, C. L. and Bonilla, R. I. (2007) ‘An analysis on

the schemes for detecting and preventing ARP

cache poisoning attacks’, Proceedings -

International Conference on Distributed

Computing Systems, pp. 60–66. doi:

10.1109/ICDCSW.2007.19.

Abdelsalam, A. M. and El-sisi, A. B. (2015)

‘Mitigating ARP Spoofing Attacks in Software-

Defined Networks’, ICCTA 2015, At

Alexandria, Egypt, (October).

Alharbi, T. et al. (2016) ‘Securing ARP in Software

Defined Networks’, Proceedings - Conference

on Local Computer Networks, LCN, pp. 523–

526. doi: 10.1109/LCN.2016.83.

Alsmadi, I. and Xu, D. (2015) ‘Security of Software

Defined Networks: A Survey’, Computers and

Security. Elsevier Ltd, 53, pp. 79–106. doi:

10.1016/j.cose.2015.05.006.

Balagopal, D., Agnise, X. and Rani, K. (2017)

‘Empowering SDN Firewall against ARP

Poison Routing’, International Journal of

Applied Engineering Research ISSN, 12(18), pp.

973–4562. Available at:

http://www.ripublication.com.

Benson, T., Akella, A. and Maltz, D. (2009)

‘Unraveling the complexity of network

management’, 6th USENIX Symposium on

Networked Systems Design and Implementation,

pp. 335–348. doi: 10.1007/978-1-59745-177-

2_17.

Biondi, P. (2019) Scapy. Available at:

https://scapy.net/.

Journal of University of Duhok., Vol. 22, No.1 (Pure and Eng. Sciences), Pp 124-131, 2102

https://doi.org/10.26682/sjuod.2019.22.1.14

131

Brooks, M. and Yang, B. (2015) ‘A Man-in-the-Middle

attack against OpenDayLight SDN controller’,

Proceedings of the 4th Annual ACM Conference

on Research in Information Technology - RIIT

’15, pp. 45–49. doi: 10.1145/2808062.2808073.

Cho, I. (2019) Introduction to Mininet. Available at:

https://github.com/mininet/mininet/wiki/Introdu

ction-to-Mininet.

Klöti, R., Kotronis, V. and Smith, P. (2013)

‘OpenFlow: A security analysis’, in 21st IEEE

International Conference on Network Protocols

(ICNP). Goettingen: IEEE, pp. 1–6. doi:

10.1109/ICNP.2013.6733671.

Kreutz, D. et al. (2015) ‘Software-defined networking:

A comprehensive survey’, Proceedings of the

IEEE, 103(1), pp. 14–76. doi:

10.1109/JPROC.2014.2371999.

Kreutz, D., Ramos, F. M. V. and Verissimo, P. (2013)

‘Towards secure and dependable software-

defined networks’, Proceedings of the second

ACM SIGCOMM workshop on Hot topics in

software defined networking - HotSDN ’13, p.

55. doi: 10.1145/2491185.2491199.

Lantz, B., Heller, B. and McKeown, N. (2010) ‘A

Network in a Laptop’, Proceedings of the Ninth

ACM SIGCOMM Workshop on Hot Topics in

Networks - Hotnets ’10, pp. 1–6. doi:

10.1145/1868447.1868466.

Li, D., Hong, X. and Bowman, J. (2011) ‘Evaluation of

security vulnerabilities by using ProtoGENI as a

launchpad’, GLOBECOM - IEEE Global

Telecommunications Conference, pp. 1–6. doi:

10.1109/GLOCOM.2011.6134465.

Masoud, M. Z., Jaradat, Y. and Jannoud, I. (2015) ‘On

preventing ARP poisoning attack utilizing

Software Defined Network (SDN) paradigm’,

2015 IEEE Jordan Conference on Applied

Electrical Engineering and Computing

Technologies, AEECT 2015, pp. 0–4. doi:

10.1109/AEECT.2015.7360549.

Nehra, A., Tripathi, M. and Gaur, M. S. (2017)

‘FICUR: Employing SDN programmability to

secure ARP’, 2017 IEEE 7th Annual Computing

and Communication Workshop and Conference,

CCWC 2017. doi:

10.1109/CCWC.2017.7868450.

Scott-Hayward, S., O’Callaghan, G. and Sezer, S.

(2013) ‘SDN Security: A Survey’, SDN4FNS

2013 - 2013 Workshop on Software Defined

Networks for Future Networks and Services, pp.

1–7. doi: 10.1109/SDN4FNS.2013.6702553.

Solomon, N. (2015) Mitigating Layer 2 Attacks: Re-

Thinking the Division of Labor. The

Interdisciplinary Center, Herzliya.

Song, M. S. et al. (2014) ‘DS-ARP: A new detection

scheme for ARP spoofing attacks based on

routing trace for ubiquitous environments’,

Scientific World Journal, 2014, pp. 1–8. doi:

10.1155/2014/264654.

Ubaid, F. et al. (2017) ‘Mitigating Address Spoofing

Attacks in Hybrid SDN’, IJACSA) International

Journal of Advanced Computer Science and

Applications, 8(4), pp. 562–570. doi:

10.1016/j.cellsig.2015.02.009.

