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ABSTRACT  

Although the joints constitute a small proportion of the total weight of the structure, but they have a 

comparatively large work ratio, thus the accounted is represent a large percentage of the total cost of 

framing. In addition, the contact region deformation is sometimes responsible for a significant proportion of 

the total deviation of the structure and often has a large impact on the distribution of internal distribution of 

the forces. All real structures show nonlinear behavior when loads and deformations become large enough 

and the tapered members are also used in several locations in the structural applications such as aerospace 

structures, bridges, as well, in many mechanical components. It is used to try to meet the architectural 

requirements for the shape of buildings and to achieve a suitable division of strength and weight. So, the 

nonlinear post-buckling behavior of plane steel frame under loads was a major research topic. A general 

formulation of Eulerian is used to analyze the plane frames and it is clear that this method of analysis are be 

good to use within theory of  beam-column. This study is shown that a polynomial modeling of the non-linear 

moment-rotation curve of steel connection gives excellent results with the exact non-linear moment-rotation 

curve with a difference not more than (1%) and the effect of the flexible connections must be considered in 

the analysis because it has significant effect on the behavior of the steel structures and the new modified 

tangent stiffness matrix which takes into account the two types of non-linearities at the same time (i.e. 

geometry and connection) and non-prismatic members efficient in giving accurate results of analysis of 

different types frames with difference not more than (0.5%) compere with the other finite element methods 

for analysis.  

 

KEYWORD:  large Displacement Analysis, Post Buckling, Flexible Connections, Non-Prismatic Steel Members, 

Geometrical Nonlinearity. 

 

 
1. INTRODUCTION 

 

lthough the initial behavior of structural 

systems can very well be described by a 

linear modal, all real structures exhibits a 

pronounced non-linear behavior when the loads 

and deformations become sufficiently large. 

However, the entire load-displacement curve of a 

structure may include both softening and 

stiffening behavior, the presence of load and 

displacement limit points and the possible 

bifurcation of the path. Also, tapered members are 

used in many structural applications such as 

highway bridges, space and aircraft structures, as 

well as, in many mechanical components and 

machines. It is used in an effort to achieve a better 

distribution of strength and weight and sometimes 

to satisfy architectural and functional 

requirements. Although the joints constitute a 

small percentage of the price and details of the 

structure, but they have a relatively large work 

ratio, thus accounted for a large proportion of the 

total cost of framing. In addition, contact 

deformation is sometimes responsible for a large 

proportion of the total deviation of the structure 

and often has a significant impact on the 

distribution of internal strength. Therefore, the 

nonlinear flexible connections framed behavior 

under increasing static loads was a major research 

topic. The large deformation problem of flexible 

connections frames has been specimen in detail in 

the references [1, 2 and 5], where a generic 

wording for the analysis of aircraft frames is 

presented. It is clear that this method of analysis 

separates the contribution of solid body 

deformations from relative organ abnormalities 

based on beam column theory. The aim of this 

paper is to extend the previously significant 

deformation formulation to the analysis of flexible 

plane frames with flexible nonlinear connectors. 
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2. LARGE FORMATION ANALYSIS 

2.1  Force-deformation Relationships 

Consider a non-prismatic member and allow 

{F} and {v} to denote end-force members and 

end-displacement respectively in global 

coordinates as shown in Figure (1) and the local 

coordinates system is used for Eulerian as shown 

in Figure (2).  

The global forces and local forces are related 

as [1]:

 

 

 F = A D 
 ……………………………………………………………………………...(1) 

in which D1 = M1 ; D2 = M2 ; D3 = QL 

 .………………………………………………...(2) 

are the local forces. 

and the transformation matrix 
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with  w = cos  e = sin 

 ..………………………………………………………...(4) 

 The local deformations of members are expressed as: 

 1 = v3 -  
 ..…………………………………………………………………………...(5) 

 2 = v6 -  
 ..…………………………………………………………………………...(6) 
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And Lc=L(1+)=L-u=[(x2+Lv4-x1.Lv1)
2
+(y2+Lv5-y1-Lv2)

2
]

0.5
 …………………………………….(11) 

 

 

where x and y are the global coordinates of 

joints in the initial undeformed configuration [1]. 

The relation of the relative deformities of a 

member (Figure 2) can be based on beam column 

theory for flexible members [2]. And so on
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 Q = EA0( - Cb)  …. 

…………………………………………………………………….(14) 

 

In which; 

E : Elasticity modulus, 

I0 : Moment of inertia, 

i : Generalized stability functions, 

A0 : Equivalent area of cross section defined by 
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with A(x) is the variable area of cross section, and 

 
L

u
          ……………………………………………………………….(16) 

where u = relative axial displacement as shown in Figure(2). The length correction factor for bowing 

action, Cb, is of the form 

 Cb = 1.12 + 2*2.1.2 + 3.22 ………………………………………………….(17) 

In which i is the generalized bowing functions. 

Note: i  and i may be viewed as functions of a dimensionless axial force parameter, q0, defined by 

 
0
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   …………………………………………………………………….(18) 

for calculation i and i see Ref. [5]. 

For the special case of a prismatic member (EI = constant), one have 

 1 = 3 = C1 ; 2 = C2  ………………………………………………….(19) 

 

 and  Cb = b1(1 + 2)
2
 + b2(1 - 2)

2
 ………………………………………………….(20) 

 

in which C1, C2 = conventional stability functions of prismatic member and, b1, b2 = bowing functions 

of prismatic member [1]. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. (1): Member Forces and Deformations in Global Axes . 

 

2 

1 

LV4 

LV1 

LV2 

LV5 

F3 

F6 

F2/L 

F1/L 

F4/L 

F5/L 

Y 

X 

Initial Form 

Deformed  Form 

L (1+) 

L 

V6 

V3 

  

 



Journal of University of Duhok, Vol. 20,No.1(Pure and Eng. Sciences), Pp 465-483, 2017 
eISSN: 2521-4861 & pISSN: 1812-7568 

https://doi.org/10.26682/sjuod.2017.20.1.42 

 

 

564 

 

 

 

 

 

 

 
 

Fig.(2): Local Relative Displacements and Forces for Non-Prismatic Member . 

 

 

2.2 Stiffness Matrices For a Member  

The increasing relationship between end-of-member forces and the displacement of end- in global 

coordinates can be written as follows:
 

 {F = [T] v       
…………………………………………………………………….(21) 

in which the member tangent stiffness matrix, [T], is given [2] by  
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The upper line indicates i or i to the differentiation with respect to q0 (see reference [4]). Engineering 

matrices,          [g 
(k)

], are given by 
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and 
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The member tangent stiffness matrix as described earlier was originally derived by Oran [2]. 

 

3. MODELING OF NON-LINEAR FLEXIBLE 

CONNECTION 
Flexible connection behavior is usually 

described by the moment-rotation curves in which 

the curve slop relates to the rotational stiffness. 

Several models have been proposed to represent 

connection behavior. For simplicity, the linear 

semi-rigid model was used extensively [3], [6], 

[11]. However, the approximation of a semi-solid 

linear link is only good when the power at the 

connection is very small. When the moment of 

connection is not small, the contact hardness may 

change significantly compared to the initial 

hardness and the structure becomes more flexible. 

The non-linear behavior of the flexible 

connections can be approximated by bilinear or 

trilinear functions, or expressed by some types of 

functions, for example, exponential [10] or 

Ramberg-Osgood [9] functions 

In the present study a polynomial expression 

for connection is 

 = a + b.M + c.M
2
 + d.M

3
 + …...(32) 

can be used and has a considerable accuracy for 

the moment-rotation relation [12]. 

The connection will have different stiffnesses 

during its loading or unloading conditions Figure 

(3)) If it is under loading condition then:
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Fig.(3): Loading-Unloading Behavior or Steel Connections . 

 

 

 

 

 

Loading  

M
o

m
en

t 
 

 

Unloading-reloading    

Loading  

Rotation    

M    

    

Rki = Initial stiffness 
Rkt= Tangent stiffness 

Rki 

Rki 

Rkt 



Journal of University of Duhok, Vol. 20,No.1(Pure and Eng. Sciences), Pp 465-483, 2017 
eISSN: 2521-4861 & pISSN: 1812-7568 

https://doi.org/10.26682/sjuod.2017.20.1.42 

 

 

544 

4. MODIFICATION OF STIFFNESS 

MATRIX 
The incremental force-displacement 

relationship of a connection can be written as: 
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where v1cn and v2cn are the incremental 

rotational D.O.F. of the connection.  

Figure(4) shows the jointed between the 

variable elements:

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4): Beam-Column Element with Presence of Connection. 
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in which [I] is a 66 identity matrix and 

 Rk* = (Rk1 + k33) (Rk2 + k66) – k236     
…………………………………………………….(42) 

 

 

Substitute Equation (38) into Equation (40) to 

fined: 

[kt]mod. = [Tf-f--]
T
 [Tff-]

T
 [k-f] [Tf-f--] [Tff-]   ….(43) 

where [kt]mod. is the modified element tangent 

stiffness matrix in global coordinates [13,14]. 

 

5. ANALYSIS PROCEDURE 

 

The basic hypothesis for the analysis of the 

iterative is that the correct deflections and internal 

forces of a structure with nonlinear connections 

can be obtained from a single linear analysis, 

provided that the correct flexibility is assumed for 

each connection. It is now clear that there are two 

strategies required for successful completion of a 

single load increase in a iterative method. 

1. Selection of a suitable external load increment 

for the first iterative cycle. The chosen increment 

is termed an initial load increment and a particular 

strategy used to determine it is termed a load 

incrementation strategy. 

2. Selection of an appropriate iterative strategy for 

application in subsequent iterative cycles [J2] 

with the aim of restoring equilibrium as rapidly as 

possible. For more details about the post-buckling 

analysis see Ref.[15, 20].In the application of the 

criterion of translations and rotation of the  joints 

are treated as separate groups, and the 

convergence is assumed to have occurred when 

the inequality
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6. SLIP ANGLE OF NON-LINEAR FLEXIBLE CONNECTION 

 

Because of the presence of the connections, the joint rotation and element end rotation are not the 

same, see Figures (5) and (6). 
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Fig. (5): Slip Angle of a Beam-Column Connection . 

 

 

 

 

 

 

 
 

Fig. (6): Beam-Column Element End Rotation In the Present of Connections . 
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2 = f2(M2)     
…………………………………………………………………………….(47) 

Strictly, 1 and 2 will be calculated from Equations (5) and (6) and are independent of whether the 

connection being linear or non-linear. 

So, for a member with flexible connections at both ends; 

  22112211
1

1
L

IE
M         

…………………………………………….(48) 

  
23122312

1
2

L

IE
M         

…………………………………………….(49) 

A substitution of Equations (46) and (47) into Equations (48) and (49) gives 

M 
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1 

1-1 

1 

2 
2-2 

2 

2 
1 

Deformed configuration w/o connections at 

the both ends  

Deformed configuration with connections at 

the both ends  
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     2221112211
1

1 MfMf
L

IE
M     …………………………….(50)

     
2231122312

1
2 MfMf

L

IE
M     …………………………….(51) 

assuming two functions: 

        0MfMf
L

EI
MM,MF 2221112211

1

1211        ………………………….(52)

        0MfMf
L

EI
MM,MF 2231122312

1
2212                     

………………………….(53) 

These two highly non-linear Equations (52) and (53) can be solved using conventional N-R iteration, 

so that: 
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         ..……………………………………(55) 

 

 

The iteration process continues until both EM1 

and EM2 satisfy the convergence criterion 

simultaneously. The value of EM1 and EM2 is 

usually in the range (1  10
-3

 - 1 10
-10

) [13, 21]. 

Having M1 and M2 been obtained, 1 and 2 can be 

calculated from Equations (46) and (47) and must 

be show that in the case of a rigid connection or a 

real hinge, linear M- relations may be used for 

these purposes as shown in Figure (7).

 
 

 

 

 

 

 

 

 

 

 

 

Fig. (7): Linear M- Relations . 
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7. AXIAL MEMBER FORCE 
Noting that qo is the only unknown in Equation (14), let [8]: 

   0
L

u
Cqqk b02

0

2

o 



  …………………………………………………………(59) 

Let qoi be an approximate solution of this equation. By using a first-order Taylor series expansion, 
Equation (59) can be rewritten as 

       0qqkqkqqk oioioioioi     ………………………………………………(60) 

in which a prime superscript denotes a differentiation with respect to qo, and  

   b2

o

2

io Cqk 



      ………………………………………………………………..(61) 

A new value is thus obtained for qo: 

 
 
 io

io

ioioio1io
qk

qk
qqqq


         …..………………………………………………….(62) 

and the iteration continue until 
 e|q| o                   …………………………………………………………………(63) 
In Equations (14) and (67), Cb and Cb are given by 
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2

111b 2C                ………………………...(64) 
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                22232211222112 22   

           222232             ………………………………………………………...(65) 

in which 1, 2 equal to zero for member with connection at both ends and are independent of 
whether the connection being linear or non-linear, and  
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                ………………………………………………………….(67) 

where f1(M1), f2(M2) are equation of M- curve, for ends 1 and 2 respectively. 
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M       ………..……………………………………..(69) 

to obtain (1, 2), (dM1/dqo and dM2/dqo) must be obtained, thus 
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Solving the two equations simultaneously, 

o

1

dq

Md
 and 

o

2

dq

Md
 are obtained. 

FLOW CHART FOR ANALYSIS 
Present program consists of a main routine and 

many subroutines. Each one of this subroutine has 
been designed to deal with a part of the analysis 
and that part may be repeated more than one time 

in the main routine. The flow chart of the main 
routine will be given here only. The purpose of the 
main routine is to control and arrange the  process 
in the program. In other words the subroutines will 
work together under  the organization of the main 
routine. A flow chart which represents the 
sequence of the operations in this routine is shown 
in Figure (8).
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Fig. (8): Present analysis flow chart 

 

 

8. NUMERICAL EXAMPLE 

a. Flat Sine Arch 

This Flat Sine Arch example has been used to 

display the post-buckling analysis for plane frame. 

Figure (9) shows the sine shape of a curve and it is 

centrally concentrated vertical load (F). It is 

assumed that a continuously curving arch can be 

represented by a collection of straight elements. 

Haisler and Stricklin [4] analyzed this example 

using finite element method. They used 

displacement-load incrementation procedure in 

conjunction with the self-correction or Newton-

SUBROUTINE INPUT Frame Data 

START 

 

Make Non-linear analysis 

Choose strategies for load incrementation Like  Arc-length 

 

Choose strategies for load iterative   process 

Input polynomial equation for each connection in the frame 

Apply the reference load vector 

Evaluate the tangent stiffness matrix for each member in global coordinates 

Monitoring behavior of connection at both ends of member 

Evaluate the modified tangent stiffness matrix for each member in global coordinates 

Evaluate the structure stiffness matrix in global coordinates 

Solve the set of equations for the global incremental displacements by Gauss elimination, find the 
determinant and check the sign of determinant for fist iteration and evaluate the total load and 

displacement vector in global coordinates. 

1- Evaluate the total load and displacements vectors in global coordinates 

2- Update new member configuration in local coordinates Calculate member axial force by iterative 

process transform the member forces from local to global coordinates 

1- Evaluate the internal forces vector of the system in global coordinates 

2- Calculate the out-of-balance load vector in global coordinates 

END  

3- Test the convergence to end the program or return to the program and applied another load increment 
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Raphson methods for predicting pre- and post-

buckling response. 

Wong and Tin-Loi [16] analyzed this arch 

using four-elements model for half of this 

symmetrical arch. They used the incremental-

iterative method with a load step of 1780 N at 

initial stages. As the limit point was approached, 

the solution procedure automatically switched to 

the reduced modified arc-length method at a load 

of 10680 N, finally stopping at a load of 13278 N, 

which was considered to be the limit point load. 

The load-displacement curve is shown in 

Figure (10), this Figure shows that the obtained 

points on the path became very close near the 

extremum points and vice versa. However, good 

agreement is obtained with the solutions obtained 

by other researchers

 

 

 

 

 

 

 

 

 
Fig. (9): Shallow Arch (Geometry and Loading Conditions) . 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.(10): Load-Displacement Curves for Example 8.1. 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. (11): Load-Determinant Curves for Example 8.1 (Present Study). 
 

b. Portal Frame with Tapered Members 

Figure (12) shows the geometry and loading 

conditions for Portal Frame example. This case 

considers a portal frame with tapered columns. 

The non-prismatic member can be represented by 

a number of prismatic elements which is 

considered as the second method of solution while 

the first method of results is the solution by 

representing the non-prismatic member as a one 

tapered element. Figure (13) shows the load-
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displacement curve for horizontal displacement of 

point B. This Figure shows that the results based 

on the second method approaches more and more 

to the solution obtained by first method when the 

number of elements is increased. This confirms 

that the first method is very efficient and accurate. 

For large structures, the required memory and the 

computation time become very important 

especially when the structure contains non-

prismatic members. As can be seen the 

representation of the non-prismatic member by 

using number of prismatic elements requires large 

memory and computation time. In the present 

example, the solution based on the first method 

requires only 15 second while the solution based 

on the second method using 2, 4 and 8 prismatic 

elements for each column requires 19 second, 27 

second and 121 second respectively. This 

difference also confirms the efficiency of the first 

method. The present case is solved by using the 

arc-length load incrementation strategy and the 

minimum residual displacement iterative strategy 

or with the arc-length iterative strategy.  Al-

Uraiby[19], also solved this example.
 

 

 

 

 

 

 

 

 

 

 

Fig. (12): Geometry and Loading Conditions for Example 8.2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13): Load-Displacement Curves for Example8.2 . 

 

c. William’s Toggle Frame 

Figure (14) shows the Shape, properties and 

loading of the William switch frame. Figure (14) 

shows the behavior of a toggle with nonlinear 

elastic support with the behavior shown in figure 

(15). For comparison purposes, the figure also 

shows a switching behavior with rigid and flexible 

support [17]. It can be observed that before the 

first limit point, the load deviation behavior of the 

switch with a single rigid support with a fully 

flexible support is fully comparable. When or after 

the first border point, however, a switch with 

flexible support deviates much more.
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Fig. (14) : Toggle Frame (Geometry and Loading Conditions) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (15): Load-Displacement Curves for Toggle Frame . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (16): Moment-Rotation Behavior Used for Supports of Toggle Frame . 

 

d. Four Story Frame 

The geometry, properties and loading 

conditions for the one bay four story frame are 

shown in Figure (17). The Frame had also been 

analyzed by Al-Sadder (1994) [18], the moment-

rotation behavior shown in Figure (18).
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Fig. (17) : Four Story Frame (Geometry and Loading Conditions) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (18): Moment-Rotation Behavior Used for Four Story Frame . 
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Fig. (19): Load - Displacement Behavior Used for Four Story Frame Case a&d (Rigid Joint). 
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Figure (20): Load - Displacement Behavior Used for Four Story Frame Case a&d (Flexible Joint). 
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Fig. (21): Load - Displacement Behavior Used for Four Story Frame Case b,c&d (Rigid Joint). 
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Fig. (22): Load - Displacement Behavior Used for Four Story Frame Case b,c&d (Flexible Joint). 

 

9. CONCLUSIONS 

 

1. This investigation shows that the large 

displacement elastic behavior of plane steel 

frames with non-prismatic members subjected to 

static load and having non-linear connections can 

be accurately predicted using the beam-column 

approach of analysis. 

2. A comparison between the beam-column 

approach and finite element approach reveals 

similar results but the latter requires a larger 

number of elements than the former, a point which 

is in favor of the beam-column approach despite 

the fact that the derivations of the tangent stiffness 

matrix of the beam-column approach is more 

complicated than that of the finite element 

approach. 

3. The new modified tangent stiffness matrix 

which takes into account the two types of non-

linearities at the same time (i.e. geometry and 

connection) and non-prismatic members efficient 

in giving accurate results of analysis of different 

types frames with difference not more than (0.5%) 

compere with the other finite element methods for 

analysis. 

4. The non-prismatic member can be represented 

by a number of prismatic elements which is 

considered as the second method of solution in 

addition to the representing it as a one tapered 

element (first method) and we will able a good 

agreement results based on the second method 

approaches more and more to the solution 

obtained by first method when the number of 

elements is increased with difference reaches to 

the (5%). 

5. It is shown that a polynomial modeling of the 

non-linear moment-rotation curve of steel 

connection gives excellent results with the exact 

non-linear moment-rotation curve in studying the 

behavior of steel frames with a difference not 

more than (1%) 

6. The effect of the flexible connections must be 

considered in the analysis because it has 

significant effect on the behavior of the steel 

structures.. 

7. The reference load (Fr) must be chosen from 

(1.3% to 2%) of the load at the first limit point. 

8. The desired number of iteration for 

convergence (Jd) can be chosen from (3 to 5), for 

any type of frames with both rigid and flexible 

connections.  
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