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ABSTRACT 
 An innovative study has been carried out on timber beams strengthened mechanically by two external 

layers attached to their tension and compression sides with glue. This study is based on the individual 

behavior of each component of the laminate section. An approach has been developed to simulate the 

behavior of such beams. The equations are formulated and solved numerically using finite difference method 

and computational analysis.  

The interaction efficiency indicated by slip and deflection calculations between the three layers in a timber 

beam has been considered thoroughly, from which the effect of some parameters such as layer length upon 

the behavior of such beams are studied. 

New equations are proposed for such system to calculate the deflection of laminated timber beams.   
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1. INTRODUCTION 

 

lued laminated limber members are 

produced in laminating plants by gluing 

together dry lumber, normally of 2-in. or 1-in. 

nominal thickness, under controlled conditions of 

temperature and pressure. Glued laminated timber 

members are typically produced in three 

appearance classifications. Premium, 

Architectural, and Industrial, though Industrial 

Special is also available[1]. Premium and 

Architectural beams are higher appearance 

classifications and are surfaced for a smooth, 

beautiful finish. Industrial appearance beams are 

normally used in concealed applications or in 

construction where appearance is not important. 

Industrial Special appearance beams are typically 

used for headers. Design values for the glued 

laminated timber member are independent of the 

appearance classifications. 

In 1968, Goodman [2] produced one of the 

earliest theories to analyze the behavior of layered 

beam systems with interlayer slip. In this theory, a 

three -layered system is used; all layers are 

considered to have the same mechanical properties 

throughout. The connectors for the beam are 

assumed to be equally space and of equal strength. 

The governing differential equation is of the 

second order in terms of axial force. Nine 

experiments with layered wood beams are 

performed to verify his theory. In 1986, 

McCutcheon [3]  resented a simple procedure for 

computing the composite stiffness of wood 

bending member with sheathing attached no 

rigidly to one or both edges .and he modify the 

axial stiffness’s of the flanges and then compute 

the stiffness of the resulting T-beam or I-beam by 

the transformed area procedure an accounting for 

interlayer slip , so his test data agreed very closely 

with theoretical predictions .also the framing 

members will be assumed to be the principal load-

carrying elements in the resulting T-beams and I-

beams , the method will assume that all materials , 

including connectors behave linearly and that the 

interlayer stiffness is much lower than the 

stiffness’s of framing members (web) or 

sheathings (flanges). Xu et.al. [4] in 2012 studied 

the  behaviour of glued-in ribbed steel bars in 

timber beam-to-beam connections experimentally 

and numerically. The experimental results exhibit 

two different failure modes due to the internal 

stiffness distribution between steel and timber in 

bending. They are used to validate a 3D finite 

element model developed considering the actual 

geometry of the connections. Their  model 

considers the elasto-plastic behaviour of steel and 

the orthotropic elasto-plastic behaviour of timber. 

In 2015 Umaima and Arya [5] presented a study to 

determine analytically the flexural properties of 
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glued laminated timber beam (glulam) with 

different thickness of lamina and jointed lamina; it 

was compared to solid beam. Their research used 

Rubber wood (Hevea brasiliensis). Glulam beam 

was divided into three groups based on the 

thickness of lamina, 20 mm, 15 mm and 10 mm 

respectively. Solid beam was also modelled 

besides glulam beam. Jointed wood with finger 

outside maximum moment zone in the bottom 

lamina was also modelled. In 2013 Fink et.al. [6]  

modelled  the probabilistic representation of the 

material properties of Glued Laminated Timber 

(GLT) that considers the natural growth 

characteristic of timber. Further, 24 GLT beams 

with well-known local material properties are 

produced and tested in order to validate the model.  

 

2. ASSUMPTIONS 

 

A single theory of interaction taking both slip 

and uplift effects into account is presented 

assuming bending theory but ignoring shear lag 

effects. The formulations of existing works take 

account of either differential strain only, or of 

differential deflections only, but not both together, 

in this work of glued laminated timber beam 

indicate that both slip and uplift occur 

simultaneously where the elastic connection is 

flexible. In addition, it is assumed that the rate of 

change of the axial force is directly proportional to 

slip, and uplift force is directly proportional to 

differential deflection. This last assumption 

implies the existing of two Modula, one that 

depends on the ability of the connectors to resist 

slip (Ks), and the other, which depends on the 

resistance of the connectors to uplift in parts 

where separation occurs (Kn), 

 3. FORMULATION 

 Assuming an element of length (δx) of timber 

section shown in Figure (1) and  satisfying the 

equilibrium of horizontal and vertical forces for 

timber elements , the following will be obtained:   

  ,0Fx  then, 

 Longitudinal equilibrium of upper timber layer 

 ( layer ) gives :- 

1, qN xa                                         ………(1) 

Similarly for timber core layer  and lower 

timber layer, respectively  

12,, qqNN xcxa                        ..……..(2) 

2, qN xc                                         ………..(3) 

  0Fy   ,then, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1, FPS xa  ….… (4) For upper layer 21, FFS xb    .  ……….. (5) For middle layer 
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2, FS xc    ……………… (6) For lower layer 

Considering moment equilibrium of the timber 

core layer  and two timber layers about points, a5 , 

b5 and c5 which represent the center of the three 

layers respectively, gives:- 

 

 

1,, .hNSM xaaxa   .        ….……………. (7) 

2,1,, .. dNdNSM xcxabxb   …….…. (8) 

3,, .hNSM xccxc     ..     …………..….. (9) 

 

 

In which subscripts (a), (b) and (c) denoted the 

upper middle and lower layer respectively 

subscripts (1) and (2) denote the interface between 

upper timber layer and timber core layer  and the 

interface between the timber core layer  and the 

lower timber layer respectively. (V) Denotes the 

vertical shear at a section, distance (x) from the 

support. Hence 

 

cba SSSV   …..          …………….. (10) 

 

Furthermore, the external moment at any cross 

section of the strengthened beam will be resisted 

by the sum of the moments in (a),(b),(c) layers 

plus the triple arising from the axial forces in the 

three element. 

 

 

)( 21 ddNMcMbMaM   … (11) 

211 hhd                322 hhd   

N = Na = Nc  

 

 

Where d1,d2 in the distance between the 

centurions of the upper-middle- and lower layer 

respectively, differentiating equation. (7),(8) and 

(9) once with respect to x then replacing values of 

Sa,x, Sb,x and Sc,x from equation (4) , (5) and (6) so, 

these equations became:- 

 

 

1,1, .)( hNFPM xxaxxa   .………..….(12) 

  2,1,21, .. dNdNFFM xxcxxaxxb    ….…...(13) 

3,2, .hNFM xxcxxc           …....…..……(14) 

 

 

and in compatibility equations the curvature of 

the reinforced  timber core layer  and two timber 

layers is (Wb,xx) and (Wa,xx,Wc,xx) respectively, can 

be defined from elastic beam theory as below: 

 

 

1

,


a

xxa

M
W                                     ….….……(15) 

2

,


b

xxb

M
W                                      ……….….(16) 

3

,
B

M
W c

xxc                                       ……….….(17) 

Where:-  

upup IE .1      

coco IE .2     

lplp IE .3   

Therefore relating equations 

(12),(13),(14),(15),(16) and (17) will give  

 112

a

14

a

4

FPh
dx

Nd

dx

wd 2

 ……..…..…. (18) 

 21.. 22

2
1224

4 2

FFd
dx

Nd
d

dx

Nd

dx

wd cab 











…………

. (19) 

232

2

334

4

.
*

Fh
dx

Nd
h

dx

wd cc   ………. (20) 

 

The tension peeling forces (F), arises from the 

deformation of the elastic connection due to 

differential displacement between the three layers 

at their two interfaces, so that  

 

 WbWaKnF 1
……………………...….(21) 

 WcWbKnF 2
…………….………..….(22) 

 

Where ( Kn ) is the normal stiffness per unit 

length for vertical displacement. In addition, we 

can differentiate equations (21) and (22) four 

times with respect to x and after that, we substitute 

(
44 / dxWad ), (

44 / dxWbd ), (
44 / dxWcd ) from 

equations (18), (19) and (20) yield:- 
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Differentiating equations (21) (22) twice with 

respect to x and substituting for curvature in terms 

of moment and flexural rigidity and rearranging 

give,  

212

1

2

.
1

B

M

B

M

dx

Fd

Kn

ba  ……………..….(25) 

 

32

2

2

2

.
1

B

M

B

M

dx

Fd

Kn

cb  ……………..….(26) 

from equation (11) and equation (25) and (26) 

the moment in the three layers will be :- 

 

21

2

2

21

1

.
,1

BB

B

Kn

xxF

B

ddNM

B

Ma













 ………. (27) 

Mb  due to upper intrface 

 

21

1

1

21

2

1
.

,

BB

B

Kn

xxF

B

ddNM

B

Mb













 ……….. (28) 

Mb Due to lower interface 

 

32
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3
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2

.
,

BB

B

Kn

xxF

B

ddNM

B

Mb













 …..….. (29) 

 

32

22

2

21

3

.
,

BB

B
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xxF

B

ddNM

B

Mc













 ……. (30) 

the rate of change of slip at the first interface at 

any point equal to the differential strain at this 

point , Hence :- 

baxabU  , …………..………….….. (31) 

and we can define (εa) and (εb) as  

1

1.,



N

hxxWaa  ………….………..….. (32) 

2

2.,



N

hxxWbb  ………………………… (33) 

upup AE .1   

coco AE .2   

Similarly, for the second interface the slip is - 

cbbc xU  , ……………………….. (34) 

2

2.,



N

hxxWbb  ………………………. (35) 

3

3.,



N

hxxWcc  ……….…………….... (36) 

lplp AE .3   

 

Where ( 1h ) and ( 2h ), ( 3h ) are the distance 

between the interface and the centered of the 

upper timber layer and timber core layer  and the 

lower timber layer respectively. 

So we can write equations (31) and (34) as: 

 

212
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1 ..
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xU ba
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2

2 ..
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
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B

hM

B

hM
xU cb

bc  ……... (38) 

 

Substituting for the values of curvature of 

upper and lower elements from equations (27), 

(28), (29), and (30) respectively then equations 

(37) and (38) becomes  
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Hence, shear flow (q) can be related to the interface slip between the two elements, therefore,  

s

KU
qq cs .

21  ….……………………….……. (41) 
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Where (K) is the shear stiffness of shear 

connectors and (s) in the spacing between them. 

Then relating equations (41), (1) and (3)  
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Equating equations (42) and (43) with (39) and 

(40) yields  
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4.  NUMERICAL SOLUTION 

 

We should bear in mind that all methods of 

structural analysis are essentially concerned with 

solving the basic differential equation of 

equilibrium and compatibility, although in some 

of the methods this fact may be obscured. 

Analytical solutions are limited to the cases when 

the load distribution, section properties and 

boundary conditions can be described by 

mathematical expressions, but for complex 

structure like our care, numerical methods are in 

general a more practical means of analysis, so we 

solve equations (23), (24), (44) and (45) 

numerically using finite difference methods of 

various derivatives. This method will save time 

and effort as a personal computer can be used to 

apply the final solution to difference loading can 

dittoing. In order to achieve higher accuracy in the 

solution of the differential equation by finite 

differences the four equation contain derivatives 

of fourth and second order which can be expressed 

in a form called central differences form, and 

solved by a method suggested by Fox for solving 

two-point boundary value problems involving 

differential equation of orders higher than two. In 

order to achieve higher accuracy in the solution of 

the differential equations by finite differences, the 

equations are rearranged such that no derivative 

higher than second order occurs. Thus assuming 

an intermediate function modifies the equations 

(46) and (47): 

2

1

2

1
dx

Fd
U  ………………………………………

…..…. (46) 

2

2

2

2
dx

Fd
U  …………………………………….…

……. (47) 

So that the six differential equations, (23,24), 

(44,45) and (46,47), with five unknown variables, 

(indeed four unknown for each interface) (F1),(F2) 

(N), and (U1),(U2) can be written in the following 

forms, 

pNFFU xxxx .... 3,2211.0,1   … (48) 

0... ,5241.1,2  xxxx NFFU    

…………… (49) 

bxx MUNN ... 8176,   …….. (50) 

bxx MUNN ... 112109,   ……….. (51) 

01,1 UF xx ………………………………. (52) 

02,2 UF xx …………………………. (53) 

where: 
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equation (47) , (48) contain derivatives of 

second order in term of N,F1,F2,U1 and U2 which 

can be expressed in finite central difference form, 

using three node points as given below 

2

11
,

.2





 iii

xxi

YYY
Y  (Central)  ………. (54) 

In which,  is the node division, y in the 

dependent variable,  

(i) Number of node. In addition, substituting 

the above formula finite difference into equations 

(48) and (53) respectively. 

 

5. THE BOUNDARY CONDITIONS 

 

The finite difference formulation requires 

introducing external node on each end of the 

timber layer; because, the final differential 

equations are of second order, see Fig. (4.2). 

Therefore, eight boundary conditions are required 

to be established at the beam (four boundary 

conditions for each interface) .For the case of a 

simply supported beam, the lengths of the three 

elements are unequal; therefore we use the 

following boundary conditions,  

1. From equations (25),(26 ), at (x = a+b)and 

(x=a), (Ma & Mc = 0), free end of upper and lower 

timber layers, the first and second boundary 

conditions yield the following, 

F1,xx =γ1 .Mb ………………………………..(55)  

F2,xx =γ1 …………………………………….(56) 

2. By differentiating equations (21),(22) thrice 

with respect to (x), and substituting for the values 

of(Ma,Mb & Mc) from equations (7) ,(8) and (9) 

respectively, that will lead to a new  two boundary 

conditions at (x =a)and (x=a+b),which are, 

bx SNhhU .)..( 1311,1   ………. (57) 

bx SNhhU .)..( 1311,2   ……….… (58) 

3. From equations (27), (30) the strain in timber 

layers tends to zero at (x=a+b) and (x=a) then, the 

fifth and sixth boundary conditions are: 

bxx M
B

Ks
N

Ks
Na 

22

,


……………..... (59) 

MbKsNKs
xx

Nc 
22

,


……….... (60) 

4. We can obtain the seventh and eighth boundary 

conditions by taking the fifth derivatives of (F1 

and F2) as a (mathematical trick) at each interface 

with respect to x yield: 

0,1,1  xxxxxxxx UF ………………………. (61) 

 0,2,2  xxxxxxxx UF ………………….….. (62)  

Similar boundary conditions will be used in the far 

end of the timber layer (i.e. at x = (lup+a+b) and 

(x=llp+a). 

 
6.  PREDICTION OF SLIP 

 

Using the finite difference method, the output 

solving the final differential numerically,are the 

axial and peeling forces in each node. From 

equation (1), it can be seen that the shear flow (q) 

is equal to the first derivative of the axial force in 

each node, hence the following formula can be 

used, 

 

x.2
NN

q 1n1n
n 


  …………………..…. (63) 

 

where, (qn )is the shear flow at node number (n), 

(Nn-1) and (Nn+1) are the axial force in nodes 

before and after node number (n) and (Ax) is the 

spacing between every successive nodes.When the 

value of shear at each node has been obtained, the 

value of slip at the same node can be defined 

using equation (41). 

 

7. STRAIN AND STRESS 

 

If we see equations (32),(33),(35) and (36) ,It 

must be established that the strain in each element 

is due to direct strain and bending strain, these 

equations give the strain for the three elements at 



 
Journal of University of Duhok, Vol. 20,No.1(Pure and Eng. Sciences), Pp 498-509, 2017 

eISSN: 2521-4861 & pISSN: 1812-7568 

https://doi.org/10.26682/sjuod.2017.20.1.44 

 
 

 

504 

the upper and lower interface of timber beam. By 

substituting the values of (Wa,xx ), (Wb,xx)and 

(Wc,xx) from equations (15),(16) and (17) and 

replace the values of (Ma/B1), (Mb/B 2)  and (Mc/ 

β 3) from equations (27),(28),(29) and (30) 

respectively. The values of strain at the three 

elements can be obtained as, 

 
1

21

2

2

21

1

1 h.
BB

B
.

Kn

xx,1F

B

ddNMN


















….. (64) 

    

2

2

21

1

1

21
2

N2
h.

BB

B
.

Kn

xx,1F

B

ddNM


















  

due to upper 

layer…………………………….………..…(65)                   

 

2

2

32

2

3

21
2

2
..

,2




N
h

BB

B

Kn

xxF

B

ddNM
















   

due to lower layer   …………………….......(66)  

 
3

32

2

2

21

3

3 ..
,2

h
BB

B

Kn

xxF

B

ddNMN
















 …....(67) 

Considering, equations (64, 65, and 66) and 

(67) and elastic material, the stress in each node 

can be found from hook’s low: 

1up1 .E  ………………………………... (68) 

2co2 .E  ..……………………………... (69) 

 

2co2 .E  ………….……..…………….… (70) 

3lp3 .E  ………….……………………... (71) 

 

8. PREDICTION OF DEFLECTION 

 

By using one of the equations (18, 19) or (20) 

Deflection can be found together with equations 

(21) or (22) as below: 

 

2

1
124

1

4

4

4

..
1 2



 F
h

dx

Nd

dx

Fd

dx

Wd

Kn

ab 
 …… (72) 

 

 

 

 

 

 

 

9. NUMERICAL SOLUTION 

 

we can determine (d
4
F1/dx

4
) and (d

2
N/dx

2
) From 

equation (72), by applying the right stencils from 

finite difference method see Fig.(2) , for each 

derivative and for each case, and the equations up 

contain derivatives of fourth order in terms of F1 

and W which can be expressed in finite difference 

form using five nodes points as given below : 

 211244

4

.4.6.4
1

  iiiii YYYYY
dx

yd


  …………. 

(73) 

Then the values that obtained above are known in 

each node, and equation (72) becomes with one 

derivative variable in fourth order of  

(Wb ).Boundary Conditions While, there are only 

one unknown, (Wb), at each node, solution of the 

resulting set of algebraic equations requires 

specifying boundary conditions at each end of the 

layerd beam and since there are two external 

nodes at each end, then, boundary conditions are 

required at each end, as below: 

1. Wb, xx= Mb /B2 

…………………………………... (74) 

2. By derivative equation (16) once with respect to 

x, and equates with equation (8) then substituting 

for (Sb= TS) at (x= 0) the second boundary 

condition becomes:

 

W b’xxx = Sb – ((d1 + d3)/B3).Nc, xx ………………… (75)
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 Fig. (2): Nodes for finite deference 
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10. RESULTS AND VALIDATION 

 

To develop a clear understanding of the 

problem of interlayer slip, the first series 

submitted by Goodman and consists of three wood 

layers with equal length components. Goodman 

takes a typical layered beam, which consists of 

three equal layers, and has the same mechanical 

properties, made of wood and each layer is 

connected to the other by nail (dimensions and 

other details are shown in Figure(3) and Table (1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Good agreement between the experimental and 

theoretical results was obtained as shown in table 

(2) and figures (4) and (5); the large effect of the 

slip is evident when the actual deflection of the 

beam is compared with the one for equivalent 

solid beam. Comparison between current solution 

and Goodman’s solution is carried out for central 

concentrated load in addition to a convergence 

study, as clarified in Table (2).

 
Table (1): Material Properties of Johnson’s Example. 

 
A 

Fig. (3): (a) A Typical Layered Beam System. 
            (b) Section (A-A) at the Beam[2] 

114.3 mm 
A 

2286 mm 
6 nails per 
joint (6 d) 

114.3 mm 

(a) 

304.8 mm 

25.4 mm 
25.4 mm 
25.4 mm 

(b) 
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Table 2 Comparison between Solutions for the Suggested Models and Goodman’s Solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4), shows variation of interface slip, for 

the same example, described previously central 

loading conditions are applied to the beam .

  

 
 

 

 

 

 

 

 

 

  Figure (4) Slip distribution along the beam 

 

Material Property Value 

Wood layer Total length (mm) 2286 

Modulus of Elasticity Ew (N/mm
2
) 5.8*10

3
 

Width (mm) 304.8 

Thickness (mm) 25.4 

6 d. Nails 

 

Connector Modulus k (N/mm) 0.278*10
3
 

Diameter (mm)* Height (mm) (19.5*50.8) 

Spacing (mm) 288.6 

Type of test Experimental 

value (mm) 

from Goodman 

for slip 

Theoretical value (mm) 

from suggested model for slip 

Numerical solution 

P
o
in

t 
lo

a
d
 a

t 
L
/2

 

(8
8
8
.8

N
) 

Max. slip (mm) 0.104 0.102 

Max. deflection 

(mm) 

 

6.68 6.21 

Max. Axial 

force  

(KN)*10
4 

6.85 6.65 
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Fig. (4): Slip distribution along the beam 

 

Finally figure (5) show variation of deflection , for the same example along the beam, 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5): Deflection distribution along the beam 

McCutcheon presented a simple procedure to 

computing the composite stiffness of a wood 

bending member with sheathing attached onrigidly 

to both edges. The validity of the theory was 

checked by construction and testing (24) I-beams. 

The beams were constructed from two sizes of 

No. 2 spruce –pine –fir webs [38 × 89mm× 2.44 

m] and [38 × 184 mm × 2.44 m] and two types of 

flanges were employed [19-mm CDX plywood 

and 11-mm oriented strand board]. The flanges 

were all 406 mm wide and 8d common nails 

spaced at 152 mm. were used to fasten the flanges 

to the webs, see Figure (6).

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) I-Beam consists of spruce-pine- 
fir web and CDX plywood flanges - 

size 1 (All dimensions in mm) 

1 
9 

1 
9 

8 
9 

38 

406 

(b) I-Beam consists of spruce-pine- 
fir web and CDX plywood flanges - 

size 2 (All dimensions in mm) 

1 
9 

1 
9 

1 
8 
4 

38 

406 

(c) I-Beam consists of spruce- 
pine-fir web and oriented 

strandboard flanges -size 1 (All 
dimensions in mm) 

1 
1 

1 
1 

8 
9 

38 

406 

(d) I-Beam consists of spruce- 
pine-fir web and oriented 

strandboard flanges -size 2 (All 
dimensions in mm) 

1 
1 

1 
1 

1 
8 
4 

38 

406 

Fig. (6): Types of I-Beams used in the tests 
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Each I-beam was tested three times: first with 

both flanges continuous and slip measured at 

points A and B (Figure 7); second with the bottom 

flange cut and slip measurements also at C ; third 

with the top flange also cut and slip measured at 

D.

 
 

 
 

Fig. (7): Beam deflection and slip (A,B,C,D) measurements 

 

The results of the I- beam tests, shown in Table 

(3) are reported as load/deflection ratios for the 

composite beam stiffnesses, and load/slip ratios 

for the interlayer slip measurements. 

The I-beams with continuous flanges were 

considerably stiffer than the webs alone. In 

general, the results gave very good estimates of 

composite beam stiffness.

 
 

Table (3): comparison between Top slip obtained by McCutchoen and the solutions submitted by suggested 

models for 89 mm I-beam test results.   

Flange type 

 

 

(1) 

I. Web Top load/ slip 

E 

(10 6 kpa) 

(2) 

Load/deflectio

n (N/mm) 

(3) 

Test 

(N/mm.) 

(4) 

numerical 

(N/mm.) 

(5) 

Difference 

(%) 

(7) 

PLY-PLY 11.02 145.49 3560.50 4077.06  9.6  

   3215.53 3624.85  -4.7  

  4756.27 5421.18  -4.7  

11.51 151.93 3950.15 4175.37  8.2  

  3374.61 3719.58  1.8  

  5397.95 5616.01  -3.3  

9.30 122.80 3344.23 3730.30  7.0  

  2911.67 3285.24  1.8  

  4604.34 4724.10  6.2  

PLY-OSB 7.10 93.66 2379.03 3179.78  11.8  

   2060.87 2840.18  11.5  

  3197.66 3810.74  9.6  

11.51 151.93 3371.04 4064.55  -12.6  
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  2868.78 3707.07  0.0  

  4911.78 5590.99  0.0  

7.65 101.00 3099.35 3290.60  0.2  

  2618.54 2947.42  0.1  

  3998.41 4032.37  0.0  

OSB-PLY 8.13 107.42 2373.67 3315.63  48.9  

   2211.01 2874.14  9.8  

  3816.10 4239.71  5.7  

9.85 130.12 3869.72 3664.17  12.6  

  3088.63 3215.53  13.2  

  4264.74 4935.01  14.4  

12.67 167.48 3846.48 4237.93  24.5  

  3419.30 3778.56  12.9  

  5819.77 6077.16  7.9  

OSB-OSB 10.34 136.56 3683.83 3653.45  5.6  

   3208.38 3297.75  11.1  

  4833.13 5106.60  8.7  

11.65 153.71 4084.21 3917.98  5.0  

  3546.20 3558.71  16.7  

  4663.33 5635.67  10.1  

9.22 130.02 3547.99 3571.23  9.0  

  2954.57 3215.53  -1.7  

  3882.23 4940.37  13.6  

First line – continuos flanges ; second line – bottom flange cut at midspan ; third line –top flange 

also cut at midspan 

 

 

 

11. CONCLUSION 

 

A finite difference model was presented to 

study the behavior of glued laminated timber 

beam. The current model provides information on 

the slip, separation and stresses at each node that 

divided on it. Results from the analytic help to 

predict the slip, deflection, and stresses at each 

node. It is concluded, that basic understanding of 

the interlayer slip mechanics and the solution 

methods applicable to this problem have been 

gained. It is assumed that this will lead to 

considerable improvement in rational design 

procedure for layered beam systems. Finally, 

when comparison is made between test results 

available from literature and the predicted results 

presented in this study, a close agreement between 

these results is concluded.    

 

REFERENCES 
[1] Suplement Structural Glued Laminated Timber, LRFD Manual 

For Engineered Wood Construction, APA-The Engineered 

Wood Association. 

[2] J.R. Goodman, “Layered Wood Systems with 

Interlayer Slip”, Wood Science, Vol.1, No.3, 

pp.148-158, 1969. 

[3] W.J. McCutcheon “Stiffness of Framing Members 

with Partial Composite Action”, Journal of 

Structural Engineering, Vol. 112, No.7, July, 

PP. 1623-1637, 1986. 

[4] B.H. Xu, A. Bouchaïr, P. Racher, Analytical study 

and finite element modelling of timber 

connections with glued-in rods in bending, 

Construction and Building Materials, Volume 

34, September 2012, Pages 337–345. 

[5]  Umaima Muhammed. C.K  , Arya.R. Analytical 

Study on Flexural Behaviour of Glued 

Laminated Timber, International Journal of 

Innovative Research in Science, Engineering 

and Technology, Vol. 4, Issue 4, April 2015. 

[6] G Fink, A Frangi, J Kohler,  Modelling the Bending 

Strength of Glued Laminated Timber 

Considering the Natural Growth Characteristics 

of Timber, CIB-W18 proceedings, Vancouver, 

Canada, 2013.

 

http://www.sciencedirect.com/science/journal/09500618
http://www.sciencedirect.com/science/journal/09500618/34/supp/C
http://www.sciencedirect.com/science/journal/09500618/34/supp/C

