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ABSTRACT            

 In this study, by applying some fixed point theorems when 𝜶 ∈ (𝒏 − 𝟏, 𝒏], the existence and uniqueness 

theorem for certain fractional differential equations with fractional boundary conditions is established. The 

theories are illustrated by examples.  
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1  INTRODUCTION 
 

n the last decades the fractional calculus 

was popular and played an important role in 

different fields of science especially   chemistry, 

fluid mechanics, elasticity, heat conduction in 

materials with memory, physics and engineering, 

see [10-11]. The subject of this work is related to 

the differential equation involving non-integer 

derivative. Many authors discussed the fractional 

order of differentiation and it was found that the 

fractional order of derivatives and integrals is just 

tangible as that of integer order. Thus the 

fractional derivative is an extension of the 

familiar derivative 𝑑𝑛𝑓(𝑡)/𝑑𝑡𝑛 , to non-integer 

values of n, see [3,6,8]. Recently several 

researchers deals with fixed point theorems to 

discuss the existence and uniqueness of solution 

for fractional differential equations with initial or 

boundary conditions; for more details see 

[4,5,12,14-16]. Shuman et al [17] discussed the 

uniqueness of the solution to a class of differential 

systems with coupled integral boundary 

conditions under the Lipschitz condition. The 

solution of the existence and uniqueness and the 

solution of nonexistence of positive solution are 

obtained by means of the iterative technique in 

[18]. Rian Yan et al [13] used Banach’s fixed  

point theorem and Schaefer’s fixed point 

theorem to establish some criteria of existence for 

the boundary problems with non-local boundary 

condition involving the Caputo fractional 

derivative. The existence of solution for the 

ordinary differential equation of non-integer 

order through the method of fixed point in the 

large has been discussed in [2]. The purpose of 

this work is to prove the existence and uniqueness 

through Krasnoselskii fixed point theorem for the 

problem  

𝐷𝛼𝑦(𝑡) = 𝑓(𝑡, 𝑦), 𝑛 − 1 < 𝛼 ≤ 𝑛, (1) 

𝛽𝑟𝐷
(𝛼−𝑟)𝑦(𝑎) + 𝛾𝑟𝐷

(𝛼−𝑟)𝑦(𝑇) = 𝐶𝑟, 
where      𝑟 = 1,2,3, . . . , 𝑛,         (2) 

 

 where 𝐷𝛼  is the Riemann-Liouville 

fractional derivative, 𝑡 = [𝑎, 𝑇], and  𝑎, 𝑇, 𝛽𝑟, 𝛾𝑟 
and 𝐶𝑟  are constants, We consider the space 

𝐶([𝑎, 𝑇], 𝑅)  to be the Banach space of all 

continuous functions defined from [𝑎, 𝑇] into R, 

with the norm ‖𝑦‖ = 𝑠𝑢𝑝{|𝑦(𝑡)|: 𝑡 ∈ 𝐼}. 
The result is more general and contains 

uniqueness solution. We verify the result by 

contracting an interesting example. 

 

 

I 

Nipeal
Text Box
https://doi.org/10.26682/sjuod.2019.22.2.9
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2  PRELIMINARIES 

 

Let us give some definitions, theorems and lemmas that are basic and needed at various places in this 

work. For references see [3,6,7,11].  

 

Definition 2.1  Let 𝑓 be a function wih is defined almost everywhere (a.e) on [a,b], for 𝛼 > 0, we 

define:  

  𝑎
𝑏𝐷−𝛼𝑓 =

1

Γ(𝛼)
∫
𝑏

𝑎
(𝑏 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠, 

where Γ(𝛼) is the Gamma function.  

  

Definition 2.2  The Riemann-Liouville fractional derivative of order α > 0 for a function y(t) is 

defined by  

  𝑎
𝑡𝐷𝛼𝑦(𝑡) =

1

Γ(𝑛−𝛼)
(
𝑑

𝑑𝑡
)
𝑛

∫
𝑡

𝑎
(𝑡 − 𝑠)𝑛−𝛼−1𝑦(𝑠)𝑑𝑠            𝑛 − 1 < 𝛼 ≤ 𝑛, 

where 𝑛 = [𝛼] + 1 and [𝛼] denotes the integer part of 𝛼.  

 

 

Lemma 2.3  If α > 0; n is the smallest integer > α; f(x) is in L(a,b) and  𝑎
𝑡 𝐼1−𝛼𝑓 exists and absolutely 

continuous on [a,b], then  𝑎
𝑎+𝐼𝑖−𝛼𝑓 = 𝑘𝑖 exists for 𝑖 = 1,2, . . . , 𝑛;  𝑎

𝑡 𝐼𝛼𝑓 exists almost everywhere on 

[a,b], is in L(a,b) and  

  𝑎
𝑡 𝐼𝛼  𝑎

𝑡 𝐼−𝛼𝑓(𝑡) = 𝑓(𝑡) − ∑𝑛𝑖=1
𝑘𝑖(𝑡−𝑎)

𝛼−𝑖

Γ(𝛼−𝑖+1)
      𝑎. 𝑒.      𝑜𝑛      𝑎 ≤ 𝑡 ≤ 𝑏. 

Furthermore, the inequality works everywhere on (𝑎, 𝑏], if in additional, f(x) is continuous on (a,b].  

  

Lemma 2.4  Let 𝑓(𝑡) ∈ 𝐿1[𝑎, 𝑇] and 𝛼, 𝛽 ≥ 0. Then 

 

 𝐼𝛼𝐼𝛽𝑓(𝑡) = 𝐼𝛼+𝛽𝑓(𝑡) = 𝐼𝛽𝐼𝛼𝑓(𝑡) (3) 

  

is defined almost everywhere on [a,T]. Moreover, if 𝑓(𝑡) ∈ 𝐶[𝑎, 𝑇], then the identity (3) is 

true for all 𝑡 ∈ [𝑎, 𝑇]  

  

Lemma 2.5  Let 𝛼 > 0, that 𝑓(𝑡) ∈ 𝐶([𝑎, 𝑇]), then 𝐷𝛼𝐼𝛼𝑓(𝑡) = 𝑓(𝑡) for all 𝑡 ∈ [𝑎, 𝑇].  

  

Lemma 2.6  Let 𝛼, 𝛽 ∈ 𝑅, 𝛽 > −1. If 𝑡 > 𝑎, then 

 

 𝐷−𝛼
(𝑡−𝑎)𝛽

Γ(𝛽+1)
{
(𝑡−𝑎)𝛼+𝛽

Γ(𝛼+𝛽+1)
  ; 𝛼 + 𝛽 ≠ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟,

0   ; 𝛼 + 𝛽 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟.
 

 

  

Lemma 2.7 If 𝛼 > 0 and f(x) is Lebesgue integrable function on [a,b], then  

 

  𝑎
𝑡 𝐼−𝛼  𝑎

𝑠 𝐼𝛼𝑓 = 𝑓(𝑥)      𝑎. 𝑒.    𝑓𝑜𝑟  𝑎𝑙𝑙      𝑡 ∈ [𝑎, 𝑏]. 
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Theorem 2.8  ("Krasnosel’skiĭ fixed point teorem"). Let 𝑀 be a closed-convex bounde 

nonempty subset of a Banach space 𝑋. Let A and B be two operators such that 

 

(1)𝐴𝑥 + 𝐵𝑦 = 𝑀, whenever 𝑥, 𝑦 ∈ 𝑀, 

(2) A is compact and continuous, 

(3) B is a contraction mapping. 

Then there exists 𝑧 ∈ 𝑀 such that 𝑧 = 𝐴𝑧 + 𝐵𝑧.  

  

Lemma 2.9  Let 𝑦(𝑡) ∈ 𝐶([𝑎, 𝑇]) and 𝑛 − 1 < 𝛼 ≤ 𝑛, then the unique solution of the fractional 

boundary value problem (1)-(2) is given by  

 

 

 
𝑦(𝑡) = 𝑎

𝑡 𝐼𝛼𝑓(𝑡, 𝑦) + ∑𝑛𝑖=1
𝑘𝑖(𝑡−𝑎)

𝛼−𝑖

Γ(𝛼−𝑖+1)
.
 (4) 

 Where  

 𝑘𝑖 =
1

𝛽𝑖+𝛾𝑖
[𝐶𝑖 − 𝛾𝑖 𝑎

𝑇𝐼𝑖𝑓(𝑡, 𝑦) − 𝛾𝑖 ∑
𝑖−1
𝑚=1

𝑘𝑚(𝑇−𝑎)
𝑖−𝑚

Γ(𝑖−𝑚+1)
]. 

 

Proof: By applying the lemma (2.3), we may reduce (1) to an equivalent equation  

 𝑦(𝑡) = 𝑎
𝑡 𝐼𝛼𝑓(𝑡, 𝑦) + ∑𝑛𝑖=1

𝑘𝑖(𝑡−𝑎)
𝛼−𝑖

Γ(𝛼−𝑖+1)
. 

 For 𝑘𝑖 ∈ 𝑅. From the boundary condition (2), it follows  

 𝑦(𝛼−𝑟)(𝑡) = 𝑎
𝑡 𝐼𝑟−𝛼 𝑎

𝑡 𝐼𝛼𝑓(𝑡, 𝑦) + ∑𝑛𝑖=1
𝑘𝑖 𝑎

𝑡 𝐼𝑟−𝛼(𝑡−𝑎)𝛼−𝑖

Γ(𝛼−𝑖+1)
, 

 by using the lemma (2.7) and lemma (2.9), we arrive at  

 𝑦(𝛼−𝑟)(𝑡) = 𝑎
𝑡 𝐼𝑟𝑓(𝑡, 𝑦) + ∑𝑛𝑖=1

𝑘𝑖(𝑡−𝑎)
𝑟−𝑖

Γ(𝑟−𝑖+1)
, 

when 𝑟 ≥ 𝑖, 𝑟 = 1,2,3, . . . , 𝑛, now to find the values of 𝑘𝑖 applying the boundary conditions (2), we find  

 𝑦(𝛼−𝑟)(𝑎) = 𝑘𝑟 ,      𝑦
(𝛼−𝑟)(𝑇) = 𝑎

𝑇𝐼𝑟𝑓(𝑡, 𝑦) + ∑𝑛𝑖=1
𝑘𝑖(𝑇−𝑎)

𝑟−𝑖

Γ(𝑟−𝑖+1)
. (5) 

 Substituting (5) in (2), we obtain  

 𝐶𝑟 = 𝛽𝑟𝑘𝑟 + 𝛾𝑟 𝑎
𝑇𝐼𝑟𝑓(𝑡, 𝑦) + 𝛾𝑟 ∑

𝑛
𝑖=1

𝑘𝑖(𝑇−𝑎)
𝑟−𝑖

Γ(𝑟−𝑖+1)
, 

 when 𝑛 = 1 and 𝑟 = 1, we have  

 𝛽1𝑘1 + 𝛾1 𝑎
𝑇𝐼1𝑓(𝑡, 𝑦) + 𝛾1𝑘1 = 𝐶1 ⟹ 𝑘1 =

1

(𝛽1+𝛾1)
[𝐶1 − 𝛾1 𝑎

𝑇𝐼1𝑓(𝑡, 𝑦)], 

when 𝑛 = 2 and 𝑟 = 2, we have  

 𝑘2 =
1

(𝛽2+𝛾2)
[𝐶2 − 𝛾2 𝑎

𝑇𝐼2𝑓(𝑡, 𝑦) − 𝛾2𝑘1
(𝑇−𝑎)

Γ(2)
], 

when 𝑛 = 3 and 𝑟 = 3, we have  

 𝑘3 =
1

(𝛽3+𝛾3)
[𝐶3 − 𝛾3 𝑎

𝑇𝐼3𝑓(𝑡, 𝑦) − 𝛾3𝑘1
(𝑇−𝑎)2

Γ(3)
− 𝛾3𝑘2

(𝑇−𝑎)

Γ(2)
], 

when 𝑟 = 𝑛, we obtain  



Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 76-88,2019 

 

 

79 

 𝑘𝑛 =
1

(𝛽𝑛+𝛾𝑛)
[𝐶𝑛 − 𝛾𝑛 𝑎

𝑇𝐼𝑛𝑓(𝑡, 𝑦) − 𝛾𝑛 ∑
𝑛−1
𝑖=1

𝑘𝑖(𝑇−𝑎)
𝑟−𝑖

Γ(𝑛−𝑖+1)
], 

then the solution of (1)-(2) is  

 𝑦(𝑡) = ∑𝑛𝑖=1
𝑘𝑖(𝑡−𝑎)

𝛼−𝑖

Γ(𝛼−𝑖+1)
+

1

Γ(𝛼)
∫
𝑡

𝑎
(𝑡 − 𝑠)𝛼−1𝑓(𝑡, 𝑦(𝑠))𝑑𝑠, (6) 

 

Where 

     𝑘𝑖 =
1

𝛽𝑖+𝛾𝑖
[𝐶𝑖 −

𝛾𝑖

Γ(𝑖)
∫
𝑇

𝑎
(𝑇 − 𝑠)𝑖−1𝑓(𝑡, 𝑦(𝑠))𝑑𝑠 − 𝛾𝑖 ∑

𝑖−1
𝑚=1

𝑘𝑚(𝑇−𝑎)
𝑖−𝑚

Γ(𝑖−𝑚+1)
]. 

 

Next, we need to prove that 𝑦(𝑡) satisfies the differential equation(1) a.e. 

From equation (6) and Definition (2.1), we have  

 

 𝑦(𝑡) = ∑𝑛𝑖=1
𝑘𝑖(𝑡−𝑎)

𝛼−𝑖

Γ(𝛼−𝑖+1)
+𝑎
𝑡 𝐼𝛼𝑓. (7) 

From (7), we obtain 

  

  𝑎
𝑡 𝐼−𝛼𝑦(𝑡) = ∑𝑛𝑖=1 𝑎

𝑡
𝐼−𝛼

𝑘𝑖(𝑠−𝑎)
𝛼−𝑖

Γ(𝛼−𝑖+1)
+𝑎
𝑡 𝐼−𝛼  𝑎

𝑠 𝐼𝛼𝑓. (8) 

 

From Lemmas (2.6) and (2.7), we have  

 

 ∑𝑛𝑖=1 𝑎
𝑡
𝐼−𝛼

𝑘𝑖(𝑠−𝑎)
𝛼−𝑖

Γ(𝛼−𝑖+1)
= 0  𝑎𝑛𝑑  𝑎

𝑡 𝐼−𝛼  𝑎
𝑠 𝐼𝛼𝑓 = 𝑓(𝑡, 𝑦)      𝑎. 𝑒.    forall  𝑡 ∈ [𝑎, 𝑏] 

 

Hence the equation (6), becomes  

 

  𝑎
𝑡 𝐼−𝛼𝑦(𝑡) = 𝑓(𝑡, 𝑦)        𝑎. 𝑠      𝑜𝑛      (𝑎, 𝑏) 

 

Next, we need prove that 𝑦(𝑡) satisfies the equation (2), from (7), we obtain  

 

  𝑎
𝑡 𝐼𝑟−𝛼𝑦(𝑡) = ∑𝑛𝑖=1 𝑎

𝑡
𝐼𝑟−𝛼

𝑘𝑖(𝑠−𝑎)
𝛼−𝑖

Γ(𝛼−𝑖+1)
+𝑎
𝑡 𝐼𝑟−𝛼  𝑎

𝑠 𝐼𝛼𝑓, (9) 

  

by using the Lemma (2.6), we have  

 

 𝐷𝛼−𝑟𝑦(𝑡) = ∑𝑛𝑖=1
𝑘𝑖(𝑠−𝑎)

𝑟−𝑖

Γ(𝑟−𝑖+1)
+𝑎
𝑠 𝐼𝑟𝑓, 

 

by applying the boundary condition (2), we find  

 

 𝛽𝑟𝐷
(𝛼−𝑟)𝑦(𝑎) + 𝛾𝑟𝐷

(𝛼−𝑟)𝑦(𝑇) = 𝛽𝑟𝑘𝑟 + 𝛾𝑟 𝑎
𝑇𝐼𝑟𝑓(𝑡, 𝑦) + 𝛾𝑟 ∑

𝑛
𝑖=1

𝑘𝑖(𝑇−𝑎)
𝑟−𝑖

Γ(𝑟−𝑖+1)
. 

 

Now, when 0 < 𝛼 ≤ 1, r=1 and 𝑘1 =
1

𝛽1+𝛾1
[𝐶1 − 𝛾1 𝑎

𝑇𝐼1𝑓(𝑡, 𝑦)] then we obtain  

 

 𝛽1𝐷
(𝛼−1)𝑦(𝑎) + 𝛾1𝐷

(𝛼−1)𝑦(𝑇) = (𝛽1 + 𝛾1)𝑘1 + 𝛾1 𝑎
𝑇𝐼1𝑓(𝑡, 𝑦) = 𝐶1, (10) 
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when 1 < 𝛼 ≤ 2, r =1,2 and 𝑘2 =
1

𝛽2+𝛾2
[𝐶2 − 𝛾2 𝑎

𝑇𝐼2𝑓(𝑡, 𝑦) − 𝛾2𝑘1(𝑇 − 𝑎)], 

 

we have two boundary conditions, the first one is satisfied from equation (10) and the second condition 

it follows  

 

 𝛽2𝐷
(𝛼−2)𝑦(𝑎) + 𝛾2𝐷

(𝛼−2)𝑦(𝑇) = (𝛽2 + 𝛾2)𝑘2 + 𝛾2 𝑎
𝑇𝐼2𝑓(𝑡, 𝑦) + 𝛾2𝑘1(𝑇 − 𝑎) = 𝐶2, 

  

and using the same way, for 𝑛 − 1 < 𝛼 ≤ 𝑛, r=1,2,3,...,n. we find  

 𝛽𝑛𝐷
(𝛼−𝑛)𝑦(𝑎) + 𝛾𝑛𝐷

(𝛼−𝑛)𝑦(𝑇) = 𝛽𝑛𝑘𝑛 + 𝛾𝑛 𝑎
𝑇𝐼𝑛𝑓(𝑡, 𝑦) + 𝛾𝑛 ∑

𝑛
𝑖=1

𝑘𝑛(𝑇−𝑎)
𝑛−𝑖

Γ(𝑛−𝑖+1)
= 𝐶𝑛. 

 Then the equation (4) satisfies the boundary value problem (1)-(2).  

 

3  Main Results 

 In this section we establish the existence and uniqueness theorem of the boundary value problem (1)-

(2).  

 

Theorem 3.1 Assume that 

 

(𝑯𝟏) There exists a constant 𝑀 > 0, such that: |𝑓(𝑡, 𝑦)| ≤ 𝑀 for each 𝑡 ∈ 𝐼 and all 𝑦 ∈ 𝑅. 

(𝑯𝟐) There exists a constant 𝑄 > 0, such that: |𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2)| ≤ 𝑄|𝑦1 − 𝑦2|, for each 𝑦1, 𝑦2 ∈ 𝑅. 

 

Then the boundary value problem (1)-(2) has a unique solution.  

 

 Proof: Define the operator 𝐽: 𝐶([𝑎, 𝑇], 𝑅) ⟶ 𝐶([𝑎, 𝑇], 𝑅) by  

 (𝐽𝑦)(𝑡) = 𝑎
𝑡 𝐼𝛼𝑓(𝑡, 𝑦) + ∑𝑛𝑖=1

𝑘𝑖(𝑡−𝑎)
𝛼−𝑖

Γ(𝛼−𝑖+1)
 

where 

   𝑘𝑖 =
1

𝛽𝑖+𝛾𝑖
[𝐶𝑖 − 𝛾𝑖 𝑎

𝑇𝐼𝑖𝑓(𝑡, 𝑦) − 𝛾𝑖 ∑
𝑖−1
𝑚=1

𝑘𝑚(𝑇−𝑎)
𝑖−𝑚

Γ(𝑖−𝑚+1)
]. 

 

We have to show that J has a fixed point on 𝐵𝑟 which will be the solution of (1)-(2). First of all, we need 

to show that 𝐽𝐵𝑟 ⊂ 𝐵𝑟, where 𝐵𝑟 = {𝑦 ∈ 𝐶: ‖𝑦‖ ≤ 𝑟}. For 𝑦 ∈ 𝐵𝑟, we have  

 

 ∥ (𝐽𝑦)(𝑡) ∥≤
1

Γ(𝛼)
∫
𝑡

𝑎
(𝑡 − 𝑠)𝛼−1 ∥ 𝑓(𝑠, 𝑦) ∥ 𝑑𝑠 + ∑𝑛𝑖=1

∥𝑘𝑖∥(𝑡−𝑎)
𝛼−𝑖

Γ(𝛼−𝑖+1)
, (11) 

 

now, we need to find ‖𝑘𝑖‖ as follows  

 

 ‖𝑘𝑖‖ ≤
1

𝛽𝑖+𝛾𝑖
[𝐶𝑖 + 𝛾𝑖 𝑎

𝑇𝐼𝑖 ∥ 𝑓(𝑡, 𝑦) ∥ +𝛾𝑖 ∑
𝑖−1
𝑚=1

∥𝑘𝑚∥(𝑇−𝑎)
𝑖−𝑚

Γ(𝑖−𝑚+1)
], 

 

when 𝑖 = 1 and by using (𝐻1), we obtain ∥ 𝑘1 ∥≤
1

𝛽1+𝛾1
[𝐶1 +𝑀𝛾1(𝑇 − 𝑎)] = 𝑝1, 
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when 𝑖 = 2, we have ∥ 𝑘2 ∥≤
1

𝛽2+𝛾2
[𝐶2 +𝑀𝛾2

(𝑇−𝑎)2

2
+ 𝛾2𝑝1(𝑇 − 𝑎) = 𝑝2, 

by the same way, when 𝑖 = 𝑛, we obtain  

 

 ∥ 𝑘𝑛 ∥≤
1

𝛽𝑛+𝛾𝑛
[𝐶𝑛 + 𝛾𝑛𝑀

(𝑇−𝑎)𝑛

(𝑛!)
+ 𝛾𝑛

𝑝1(𝑇−𝑎)
𝑛−1

Γ(𝑛)
+ 𝛾𝑛

𝑝2(𝑇−𝑎)
𝑛−2

Γ(𝑛−1)
 

  

 +𝛾𝑛
𝑝3(𝑇−𝑎)

𝑛−3

Γ(𝑛−2)
+. . . +𝛾𝑛

𝑝𝑛−1(𝑇−𝑎)

Γ(2)
] = 𝑝𝑛. 

Thus from equation (11), we have 

 

∥ (𝐽𝑦)(𝑡) ∥≤
𝑀𝑇𝛼

Γ(𝛼 + 1)
+∑

𝑛

𝑖=1

𝑝𝑖𝜃

Γ(𝛼 − 𝑖 + 1)
     

 

where 

     𝜃 = {
𝑇𝑛−𝑖  𝑤ℎ𝑒𝑛   (𝑡 − 𝑎) ≥ 1
10  𝑤ℎ𝑒𝑛   0.1 ≤ (𝑡 − 𝑎) < 1

 

 

Now, take 𝑥, 𝑦 ∈ 𝐶 and for each 𝑡 ∈ [𝑎, 𝑇] we obtain 

 

 ∥ (𝐽𝑥)(𝑡) − (𝐽𝑦)(𝑡) ∥≤ 𝑎
𝑡 𝐼𝛼 ∥ 𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦) ∥ +∑𝑛𝑖=1

∥𝑘𝑖−𝑙𝑖∥(𝑡−𝑎)
𝛼−𝑖

Γ(𝛼−𝑖+1)
, (12) 

 where  

 𝑘𝑖 =
1

𝛽𝑖+𝛾𝑖
[𝐶𝑖 − 𝛾𝑖 𝑎

𝑇𝐼𝑖𝑓(𝑡, 𝑥) − 𝛾𝑖 ∑
𝑖−1
𝑚=1

𝑘𝑚(𝑇−𝑎)
𝑖−𝑚

Γ(𝑖−𝑚+1)
], 

 

 𝑙𝑖 =
1

𝛽𝑖+𝛾𝑖
[𝐶𝑖 − 𝛾𝑖 𝑎

𝑇𝐼𝑖𝑓(𝑡, 𝑦) − 𝛾𝑖 ∑
𝑖−1
𝑚=1

𝑙𝑚(𝑇−𝑎)
𝑖−𝑚

Γ(𝑖−𝑚+1)
]. 

 

Now, we have to find ∥ 𝑘𝑖 − 𝑙𝑖 ∥ as follows  

 

 ∥ 𝑘𝑖 − 𝑙𝑖 ∥≤
1

𝛽𝑖+𝛾𝑖
[𝛾𝑖 𝑎

𝑇𝐼𝑖 ∥ 𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦) ∥ +𝛾𝑖 ∑
𝑖−1
𝑚=1

∥𝑘𝑚−𝑙𝑚∥(𝑇−𝑎)
𝑖−𝑚

Γ(𝑖−𝑚+1)
], 

 

 when 𝑖 = 1, we have  

 

 ∥ 𝑘1 − 𝑙1 ∥≤ 𝑞1 ∥ 𝑥 − 𝑦 ∥ ,    𝑎𝑛𝑑  𝑞1 =
𝑄

𝛽1+𝛾1
[𝛾1(𝑇 − 𝑎)], 

 

when 𝑖 = 2, we have  

 

 ∥ 𝑘2 − 𝑙2 ∥≤ 𝑞2 ∥ 𝑥 − 𝑦 ∥ ,    𝑎𝑛𝑑  𝑞2 =
1

𝛽2+𝛾2
[𝛾2𝑄

(𝑇−𝑎)2

2
+ 𝛾2

𝑞1(𝑇−𝑎)

Γ(2)
] 

 

and so on until we find the general form of problem (1)-(2) when 𝑖 = 𝑛, we obtain  

 

 ∥ 𝑘𝑛 − 𝑙𝑛 ∥≤
1

𝛽𝑛+𝛾𝑛
[𝛾𝑛 𝑎

𝑇𝐼𝑛 ∥ 𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦) ∥ +𝛾𝑛 ∑
𝑛−1
𝑚=1

∥𝑘𝑚−𝑙𝑚∥(𝑇−𝑎)
𝑛−𝑚

Γ(𝑛−𝑚+1)
], 
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 ∥ 𝑘𝑛 − 𝑙𝑛 ∥≤ 𝑞𝑛 ∥ 𝑥 − 𝑦 ∥ ,      𝑎𝑛𝑑    𝑞𝑛 =
𝛾𝑛

𝛽𝑛+𝛾𝑛
[𝑄

(𝑇−𝑎)𝑛

𝑛!
+∑𝑛−1𝑚=1

𝑞𝑚(𝑇−𝑎)
𝑛−𝑚

Γ(𝑛−𝑚+1)
]. 

 

Then from equation(12), we get  

 
∥ (𝐽𝑥)(𝑡) − (𝐽𝑦)(𝑡) ∥≤ 𝑎

𝑡 𝐼𝛼 ∥ 𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦) ∥ +∑𝑛𝑖=1
𝑞𝑖∥𝑥−𝑦∥(𝑡−𝑎)

𝛼−𝑖

Γ(𝛼−𝑖+1)

∥ (𝐽𝑥)(𝑡) − (𝐽𝑦)(𝑡) ∥≤ [
𝑄

Γ(𝛼+1)
𝑇𝛼 +∑𝑛𝑖=1

𝜃𝑞𝑖

Γ(𝛼−𝑖+1)
] ∥ 𝑥 − 𝑦 ∥

 

 

 Since [
𝑄

Γ(𝛼+1)
(𝑇)𝛼 +∑𝑛𝑖=1

𝜃𝑞𝑖

Γ(𝛼−𝑖+1)
] < 1, then 𝐽 is a contraction mapping. Therefore, by using Banach 

contraction mapping, 𝐽 has a unique Fixed point which is a unique solution of the problem (1)-(2).  

 

Theorem 3.2  If (𝐻1) − (𝐻2) hold with 𝐻3: |𝑓(𝑡, 𝑦)| ≤ 𝜑(𝑡),  

 where 𝜑(𝑡) ∈ 𝐿1(𝐼), then the boundary value problem(1)-(2) has at least a solution.  

  

Proof:  To prove that the problem (1)-(2) has at least one solution, we need to define two operators 𝐴 and 

𝐵 that satisfy the three conditions of Krasnosel’skii fixed point theorem.  

 

 (𝐴𝑥)(𝑡) =
1

Γ(𝛼)
∫
𝑡

𝑎
(𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑥(𝑠))𝑑𝑠,    𝑎𝑛𝑑    (𝐵𝑥)(𝑡) = ∑𝑛𝑖=1

𝑘𝑖(𝑡−𝑎)
𝛼−𝑖

Γ(𝛼−𝑖+1)
, 

where 

     𝑘𝑖 =
1

𝛽𝑖+𝛾𝑖
[𝐶𝑖 − 𝛾𝑖 𝑎

𝑇𝐼𝑖𝑓(𝑡, 𝑥) − 𝛾𝑖 ∑
𝑖−1
𝑚=1

𝑘𝑚(𝑇−𝑎)
𝑖−𝑚

Γ(𝑖−𝑚+1)
] 

 

Let’s show that if 𝑥, 𝑦 ∈ 𝐵𝑟, then it is easy to see 𝐴𝑥 + 𝐵𝑦 ∈ 𝐵𝑟, we have  

 

 ∥ 𝐴𝑥(𝑡) + 𝐵𝑦(𝑡) ∥≤
𝑇𝛼‖𝜑‖𝐿1
Γ(𝛼+1)

+∑𝑛𝑖=1
𝑝𝑖𝜃

Γ(𝛼−𝑖+1)
. 

 Next, we can prove that 𝐵𝑥 is a contraction mapping,  

 

 ||𝐵𝑥1(𝑡) − 𝐵𝑥2(𝑡)|| ≤ ∑
𝑛
𝑖=1

||𝑘𝑖−𝑙𝑖||(𝑡−𝑎)
𝛼−𝑖

Γ(𝛼−𝑖+1)
, (13) 

 

 we have that ||𝑘𝑖 − 𝑙𝑖|| ≤ 𝑞𝑛||𝑥1 − 𝑥2||, then equation (13) become  

 

 ||𝐵𝑥1(𝑡) − 𝐵𝑥2(𝑡)|| ≤ ∑
𝑛
𝑖=1

𝑞𝑛𝜃

Γ(𝛼−𝑖+1)
||𝑥1 − 𝑥2||. 

 

It is clear that 𝐵 is a contraction mapping because ∑𝑛𝑖=1
𝑞𝑛𝜃

Γ(𝛼−𝑖+1)
< 1. Moreover, 𝑥(𝑡) is continuous 

and this implies that the operator 𝐴𝑥 is continuous as well.  

 

 ||𝐴𝑥(𝑡)|| ≤
1

Γ(𝛼)
∫
𝑡

𝑎
(𝑡 − 𝑠)𝛼−1||𝑓(𝑠, 𝑦)||𝑑𝑠 ≤

𝑇𝛼‖𝜑‖𝐿1
Γ(𝛼+1)

. 

 

Hence, A is uniformly bounded on 𝐵𝑟. Next, we prove that the operator 𝐴 is completely continuous. 



Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 76-88,2019 

 

 

83 

Let 𝑡1, 𝑡2 ∈ [𝑎, 𝑇], 𝑡1 < 𝑡2, and 𝑥 ∈ 𝐵𝑟   

 

||𝐴𝑥(𝑡2) − 𝐴𝑥(𝑡1)|| ≤
1

Γ(𝛼)
∫
𝑡2

𝑎

(𝑡2 − 𝑠)
𝛼−1||𝑓(𝑠, 𝑥(𝑠))||𝑑𝑠 +

1

Γ(𝛼)
∫
𝑡1

𝑎

(𝑡1 − 𝑠)
𝛼−1||𝑓(𝑠, 𝑥(𝑠))||𝑑𝑠, 

 

 ||𝐴𝑥(𝑡2) − 𝐴𝑥(𝑡1)|| ≤
𝑀1

Γ(𝛼+1)
[(𝑡2 − 𝑎)

𝛼 + (𝑡1 − 𝑎)
𝛼]. 

 

And this shows that A is relatively compact. And on the other hand By Arzela-Ascoli theorem, A is 

compact and this concludes the result of Krasnosel’skii theorem by fulfilling the three conditions.  

 

4  Example I 

 
 In this section, we applying the procedure of theorems (3.1)-(3.2) for the problem (1)-(2), when 1 <

𝛼 ≤ 2. Firstly, recall problem (1)-(2) as  

 

 𝐷𝛼𝑦(𝑡) = 𝑓(𝑡, 𝑦),1 < 𝛼 ≤ 2, (14) 

  

 
𝛽1𝑦

(𝛼−1)(𝑡)|𝑡=0 + 𝛾1𝑦
(𝛼−1)(𝑇) = 𝐶1,

𝛽2𝑦
(𝛼−2)(𝑡)|𝑡=0 + 𝛾2𝑦

(𝛼−2)(𝑇) = 𝐶2.
 (15) 

 

The solution of the fractional boundary value problem (14)-(15) is given by the following steps. By using 

the lemma (2.3), we can reduce (14) to an equivalent equation  

 

 𝑦(𝑡) = 0
𝑡 𝐼𝛼𝑓(𝑡, 𝑦) +

𝑘1𝑡
𝛼−1

Γ(𝛼)
+

𝑘2𝑡
𝛼−2

Γ(𝛼−1)
 

 

and then applying the boundary condition (14), we find  

 

 𝑘1 =
𝐶1−𝛾1 ∫

𝑇
0
𝑓(𝑠,𝑦)𝑑𝑠

(𝛽1+𝛾1)
, 

 

 𝑘2 =
1

(𝛽2+𝛾2)
[𝐶2 − 𝛾2𝑇(

𝐶1−𝛾1 ∫
𝑇
0
𝑓(𝑠,𝑦)𝑑𝑠

(𝛽1+𝛾1)
) −

𝛾2

Γ(2)
∫
𝑇

0
(𝑇 − 𝑠)𝑓(𝑠, 𝑦)𝑑𝑠]. 

 

Therefore the solution of (14)-(15) is  

 

 

𝑦(𝑡) =
𝑡𝛼−1𝐶1

(𝛽1+𝛾1)Γ(𝛼)
−
𝑡𝛼−1𝛾1 ∫

𝑇
0
𝑓(𝑠,𝑦(𝑠))𝑑𝑠

(𝛽1+𝛾1)Γ(𝛼)
+

𝑡𝛼−2𝐶2

(𝛽2+𝛾2)Γ(𝛼−1)

−
𝑇𝑡𝛼−2𝛾2𝐶1

(𝛾1+𝛽1)(𝛾2+𝛽2)Γ(𝛼−1)
+

𝑇𝑡𝛼−2𝛾1𝛾2 ∫
𝑇
0
𝑓(𝑠,𝑦)𝑑𝑠

(𝛾2+𝛽2)(𝛾1+𝛽1)Γ(𝛼−1)
−
𝑡𝛼−2𝛾2∫

𝑇
0
(𝑇−𝑠)𝑓(𝑠,𝑦)𝑑𝑠

(𝛾2+𝛽2)Γ(𝛼−1)

+ 0
𝑡 𝐼𝛼𝑓(𝑡, 𝑦)

 

  

Theorem 4.1 Assume that (H1)-(H2) are held. Then the boundary value problem (14)-(15) has a unique 

solution.  
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proof: Define the operator 𝐽: 𝐶([𝑎, 𝑇], 𝑅) ⟶ 𝐶([𝑎, 𝑇], 𝑅) by 

  

 (𝐽𝑦)(𝑡) = 0
𝑡 𝐼𝛼𝑓(𝑡, 𝑦) +

𝑘1𝑡
𝛼−1

Γ(𝛼)
+

𝑘2𝑡
𝛼−2

Γ(𝛼−1)
. 

 

We have to show that J has a fixed point on 𝐵𝑟, and this fixed point is then a solution of (14)-(15). Now 

we show that 𝐽𝐵𝑟 ⊂ 𝐵𝑟, where 𝐵𝑟 = {𝑦 ∈ 𝐶: ‖𝑦‖ ≤ 𝑟}. For 𝑦 ∈ 𝐵𝑟, we have  

 

 ∥ (𝐽𝑦)(𝑡) ∥≤ 0
𝑡 𝐼𝛼‖𝑓(𝑡, 𝑦)‖ +

‖𝑘1‖𝑡
𝛼−1

Γ(𝛼)
+
‖𝑘2‖𝑡

𝛼−2

Γ(𝛼−1)
 

 

 ∥ (𝐽𝑦)(𝑡) ∥≤
𝑀𝑇𝛼

Γ(𝛼+1)
+

𝑝1𝜃

Γ(𝛼)
+

𝑝2𝜃

Γ(𝛼−1)
    𝑤ℎ𝑒𝑟𝑒    𝜃 = {𝑇

𝑛−𝑖  𝑤ℎ𝑒𝑛   𝑡 ≥ 1,    𝑖 = 1,2
10  𝑤ℎ𝑒𝑛   0.1 ≤ 𝑡 < 1.

 

 

Now, take 𝑥, 𝑦 ∈ 𝐶 and for each 𝑡 ∈ [𝑎, 𝑇] we have  

 

 ∥ (𝐽𝑥)(𝑡) − (𝐽𝑦)(𝑡) ∥≤ (
𝑄  𝑇𝛼

Γ(𝛼+1)
∥ 𝑥 − 𝑦 ∥ +

‖𝑘1−𝑙1‖𝑡
𝛼−1

Γ(𝛼)
+
‖𝑘2−𝑙2‖𝑡

𝛼−2

Γ(𝛼−1)
), 

 

 ∥ (𝐽𝑥)(𝑡) − (𝐽𝑦)(𝑡) ∥≤ 𝜔 ∥ 𝑥 − 𝑦 ∥     

where 

   𝜔 = (
𝑄  𝑇𝛼

Γ(𝛼+1)
+

𝑞2𝜃

Γ(𝛼−1)
+

𝑞1𝜃

Γ(𝛼)
). 

 

Thus, we have proved the uniqueness of the solution of the problem (10)-(11) as 𝐽 has a unique fixed 

point because of 𝜔 < 1.  

 

Theorem 4.2 Assume that (𝐻1) − (𝐻2) are held with (𝐻3) : |𝑓(𝑡, 𝑦)| ≤ 𝜑(𝑡), where 𝜑(𝑡) ∈ 𝐿1(𝐼). 

Then there is at least one solution for the boundary value problem(14)-(15). 

  

Proof:  By the same procedure of theorem (3.2), we have two operators 

 

 (𝐴𝑥)(𝑡) =
1

Γ(𝛼)
∫
𝑡

𝑎
(𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑥(𝑠))𝑑𝑠,    𝑎𝑛𝑑    (𝐵𝑥)(𝑡) =

𝑘1𝑡
𝛼−1

Γ(𝛼)
+

𝑘2𝑡
𝛼−2

Γ(𝛼−1)
 

 

Now to show that 𝐴𝑥 + 𝐵𝑦 ∈ 𝐵𝑟, we have 

 

 ∥ 𝐴𝑥(𝑡) + 𝐵𝑦(𝑡) ∥≤
𝑇𝛼‖𝜑‖𝐿1
Γ(𝛼+1)

+
𝑝1𝜃

Γ(𝛼)
+

𝑝2𝜃

Γ(𝛼−1)
. 

 

Now, we need to show that 𝐵𝑥 is a contraction mapping  
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 ∥ 𝐵𝑥1(𝑡) − 𝐵𝑥2(𝑡) ∥≤ (
𝑞1𝜃

Γ(𝛼)
+

𝑞2𝜃

Γ(𝛼−1)
) ∥ 𝑥1 − 𝑥2 ∥. 

 

Since 
𝑞1𝜃

Γ(𝛼)
+

𝑞2𝜃

Γ(𝛼−1)
< 1, then 𝐵 is a contraction mapping. Moreover, continuity of 𝑥(𝑡) implies that 

the operator 𝐴𝑥 is continuous  

 ||𝐴𝑥(𝑡)|| ≤
𝑇𝛼‖𝜑‖𝐿1
Γ(𝛼+1)

. 

 

Hence, A is uniformly bounded on 𝐵𝑟. Now we prove that the operator 𝐴 is completely continuous. Let 

𝑡1, 𝑡2 ∈ [𝑎, 𝑇], 𝑡1 < 𝑡2, and 𝑥 ∈ 𝐵𝑟.  

 

 ||𝐴𝑥(𝑡2) − 𝐴𝑥(𝑡1)|| ≤
𝑀1

Γ(𝛼+1)
[(𝑡2 − 𝑎)

𝛼 + (𝑡1 − 𝑎)
𝛼]. 

 

Thus, A is relatively compact. Then, by the results of Arzela-Ascoli theorem, A is compact. And meets 

the theorems (3.1) -(3.2), then the problem (14)-(15) has at least a solution. 

 

Example1:.Consider the following boundary value problem:  

 {
𝐷𝛼𝑦(𝑡) =

𝑒𝑡

(10+𝑡)
𝑦,    0 < 𝛼 ≤ 1

𝑦(𝛼−1)(𝑎) + 𝑦(𝛼−1)(𝑇) = 1.      
 (16) 

  

(1) Let 𝑎 = 0, 𝑇 = 1, 𝛼 =
1

2
, 𝛽1 = 1, 𝛾1 = 1, by using (H2), we find 

 

 |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤
1

10
|𝑥 − 𝑦|,      𝑄 =

1

10
    𝑎𝑛𝑑    𝑞1 =

𝑄𝛾1𝑇

𝛽1+𝛾1
=

1

20
 

 

 𝑎𝑛𝑑      𝜃 = 10,      𝑤ℎ𝑒𝑛      0.1 ≤ 𝑡 < 1    𝑤𝑒ℎ𝑎𝑣𝑒 

 

 𝜔 =
𝑄

Γ(𝛼+1)
𝑇𝛼 +

𝜃𝑞1

Γ(𝛼)
=

1

20Γ(3/2)
+

𝜃

20Γ(1/2)
 

 

 we find 𝜔 = 0.338445644. The boundary value problem (16) has a unique solution. 

 

(2)  Let 𝛼 =
1

2
, 𝑎 = 1, 𝑇 = 2, 𝛽1 = 1, 𝛾1 = 1, by using (H2), we have  

 

 |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 0.2471165|𝑥 − 𝑦| ⟹   𝑄 = 0.2471165,    

 𝑞1 =
𝑄𝛾1(𝑇 − 1)

𝛽1 + 𝛾1
= 0.12355825 

 𝑎𝑛𝑑    𝜔 =
𝑄

Γ(𝛼+1)
𝑇𝛼 +

𝜃𝑞1

Γ(𝛼)
=

0.2471165(2)
1
2

Γ(3/2)
+
0.12355825𝜃

Γ(1/2)
 

 

from the condition 𝜃 = 𝑇𝑛−𝑖 ,    𝑤ℎ𝑒𝑛    (𝑡 − 1) ≥ 1, we find 𝜔 = 0.463957782. Then the boundary 

value problem (16) has a unique solution.  
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Example2:.Consider the following boundary value problem:  

 

{
 

 𝐷
𝛼𝑦(𝑡) =

𝑒𝑡|𝑦|

(9+𝑒𝑡)(1+|𝑦|)
,    1 < 𝛼 ≤ 2

𝑦(𝛼−1)(𝑎) + 𝑦(𝛼−1)(𝑇) = 1,

𝑦(𝛼−2)(𝑎) + 𝑦(𝛼−2)(𝑇) = 1.

 (17) 

 

 (1)  Let 𝑎 = 0, 𝑇 = 1, 𝛼 =
3

2
, 𝛾1 = 𝛾2 = 1, 𝛽1 = 𝛽2 = 1, using (H2), we have  

 |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤
1

10
|𝑥 − 𝑦|,      𝑄 =

1

10
,    𝑞1 =

𝑄𝛾1𝑇

𝛽1+𝛾1
=

1

20
, 

 

 𝑎𝑛𝑑    𝑞2 =
1

𝛽2+𝛾2
(𝛾2𝑄

𝑇2

2
+ 𝛾2

𝑞1𝑇

Γ(2)
) =

1

20
, 

 

 𝜔 =
𝑄  𝑇𝛼

Γ(𝛼+1)
+

𝑞1𝜃

Γ(𝛼)
+

𝑞2𝜃

Γ(𝛼−1)
=

1

10Γ(5/2)
+

𝜃

20Γ(3/2)
+

𝜃

20Γ(1/2)
, 

 

from the condition 𝜃 = 10,    𝑤ℎ𝑒𝑛  0.1 ≤ 𝑡 < 1, then 𝜔 = 0.921324354 , and problem (17) has a 

unique solution. 

 

(2) Let 𝛼 =
3

2
, 𝛾1 = 𝛾2 = 1, 𝛽1 = 𝛽2 = 1, 𝑎 = 1, 𝑇 = 2, from the problem (17) and using (H2), we 

obtain  

 |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤
𝑒𝑡

(9+𝑒𝑡)
|𝑥 − 𝑦| ≤ 0.231969316|𝑥 − 𝑦| ⟺ 𝑄 = 0.231969316, 

 

 𝑞1 =
𝑄𝛾1(𝑇−𝑎)

𝛽1+𝛾1
= 0.115984658    𝑞2 =

1

𝛽2+𝛾2
(
𝛾2𝑄(𝑇−𝑎)

2

2
+
𝛾2𝑞1(𝑇−𝑎)

Γ(2)
) = 0.115984658, 

 

 𝜔 =
𝑄𝑇𝛼

Γ(𝛼+1)
+

𝑞2𝜃

Γ(𝛼−1)
+

𝑞1𝜃

Γ(𝛼)
=

0.231969316(2)3/2

Γ(5/2)
+
0.115984658𝜃

Γ(3/2)
+
0.115984658𝜃

Γ(1/2)
, 

 

from the condition 𝜃 = 𝑇𝑛−𝑖 ,    𝑤ℎ𝑒𝑛    (𝑡 − 1) ≥ 1 , we find 𝜔 = 0.820580848  Therefore, by 

Theorem 3.1, the boundary value problem (17) has a unique solution. 
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