
Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

armanamedi@gmail.com

89

A NEW IMAGE CLASSIFICATION SYSTEM USING DEEP CONVOLUTION

NEURAL NETWORK AND MODIFIED AMSGRAD OPTIMIZER

ARMAN I. MOHAMMED* and AHMED AK. TAHIR**

 Dept.Information Technology, Presidency, Duhok Polytechnic University, Kurdistan Region,

Iraq
** Dept. Of Computer Science, College of Science, University of Duhok, Kurdistan Region, Iraq

(Received: June 11, 2019; Accepted for Publication: September 25, 2019)

ABSTRACT: A new deep Convolutional Neural Network (CNN) with six convolutional layers and one

fully-connected layer is developed and trained by backpropagation using a new optimization algorithm

called Fast-AMSgrad which is modified from AMSgrad. The aims are to speed up the training process

while achieving acceptable accuracy. The application of the network using both, the Fast-AMSgrad and

the AMSgrad algorithms to CIFAR-10 dataset for image classification reveals that the developed CNN

performs better when trained with Fast-AMSgrad for both cases, with and without Batch Normalization

(BN) layers. The training time is reduced by 50% when Fast-AMSgrad algorithm is used. Also the

accuracy and loss values of the training and validation are improved when Fast-AMSgrad is used. The

training and validation accuracies provided by Fast-AMSgrad with BN are (91.18% and 86.92%) at epoch

number (50) and (94.13% and 86.758%) at epoch number (100), while the corresponding accuracies that

are provided by AMSgrad with BN are (82.65% and 81.4%) at epoch (50) and (88.82% and 85.85%) at

epoch (100). The overall test accuracy and classification metric measures indicate that the given

architecture of CNN and optimization algorithm perform reasonably well.

KEYWORDS: Adam, AMSgrad, CNN, Deep neural networks, Image classification, Optimization

algorithms.

1. INTRODUCTION

mage classification is the process of

extracting features upon which the

object(s) are classified in an image. These

features could be edges, lines, ridges, any

localized point of interest, or it could be texture

or structure of any shape information that

describe objects. The objects could be human

face, car, buildings, train, airplane, face, defected

tissues, etc.

Image classification has become an important

tool in many applications that are based on

computer vision and artificial intelligence such

as medical imaging, security and authentication,

military surveillance, office automation, etc.

The previous approach of image

classification, the hand-grafted features utilizes

methods and algorithms that aim the extraction

of features or attributes that are effective for

object discrimination in an image, [Wu et al,

2014]. Typical methods are the Scale Invariance

Feature Transform (SIFT) which was developed

by [Lowe, 1999] for object recognition and

Histogram of Oriented Gradient (HOG) which

was developed by [Dalal and Triggs, 2005] for

object detection. However, the approach of

hand-crafted features suffers some shortcomings

especially when dealing with large scale images

it needs the incorporation of more discriminate

features and expert knowledge or ancillary data

such as texture, geometry, etc. Whereas

incorporating many features and data types will

complicate the task of designing the feature

extraction methods and may lead to tremendous

computational complexity.

In recent years, the approach of deep

convolutional neural networks (CNN) has

opened up prospects for superior image

classification and detection outperforming

traditional methods [Krizhevsky et al, 2012:

Zhang et al, 2017: Hoseini et al, 2018]. Deep

CNN could learn rich highly abstract image

features to represent complex objects effectively.

I

Nipeal
Text Box
https://doi.org/10.26682/sjuod.2019.22.2.10

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

90

CNN can directly learn data representations

from the samples of training dataset and detect

data-driven features for specific tasks. In

contrast to hand-crafted features, deep learning

can extract and organize the discriminative

information from large scale images and can be

faster. Many structures of deep CNN have

already been developed. Examples of the well

known deep CNNs are AlexNet by [Krizhevsky

et al, 2012], ZFNet by [Zeiler and Fergus, 2014]

and VGG-19 by [Simonyan and Zisserman,

2015]. In addition, many optimization

algorithms for CNN have been developed with

the aim to improve the performance of CNN

networks, [Kingma and Ba, 2015: Reddi et al,

2018: Ma and Yarats, 2019]. However,

developing a CNN that performs well for image

classification will remain as one of the most

challenging issue and require a good

coordination between the CNN architecture,

optimization algorithm, training parameters,

training data etc. Good performance can be

achieved when the combination of these criteria

provides good training and validation accuracy

with least overfitting.

The objective of this paper is introducing a

CNN with efficient architecture and optimization

algorithm for image classification using CIFAR-

10 dataset. The main goals are to reduce the

training time and at the same time to achieve

best validation and testing accuracy.

The remainder of this paper is organized as

follows. In Section 2, a brief review of the

related work is given. In Section 3, the proposed

CNN architecture and the Fast-AMSgrad

optimization algorithm are presented. In section

4, the results of applying the proposed CNN to

CIFAR-10 dataset are presented and discussed.

In section 5, the conclusions are given.

2. RELATED WORK

Much of research works on convolutional

neural network (CNN) has been done to improve

the CNN performance for various types of

applications including image classification.

Many of deep learning networks of different

architecture have already been designed and

many optimization algorithms for updating the

weights during the training of these networks

have been developed. In 2012, Krizhevsky and

others proposed one convolutional neural

network for image classification called AlexNet

[Krizhevsky et al, 2012]. This deep CNN

contained five convolutional layers and three

fully-connected layers and trained by

backpropagation learning algorithm and SGD

with Momentum, [Qian, 1999], as optimizer is

used for update rules to minimize the loss

function. This CNN is applied to a subset of

ImageNet dataset containing 1000 categories and

1000 image for each category and achieved test

top-1 error of 37.5% and top-5 error as 17.0%.

In 2014, [Zeiler and Fergus, 2014] modified

AlexNet to ZFNet by reducing the filter size,

reducing the stride from 4 to 2 and increasing the

size of activation map. In addition, they used

deconvolution for visualizing the learnt features

in order to illustrate how CNNs should be

developed for image classification. The ZFNet

was trained on a single GTX580 GPU and

achieved top-5 error rate 14.8%. The field of

CNNs continued to progress and very deep

CNNs have also been developed to be used for

large scale images. An example of very deep

CNN is the VGG network, which has been

developed by Visual Geometry Group (VGG) at

Oxford University. The last version of this

network VGG-19 was much deeper than

previous ones, [Simonyan and Zisserman, 2015].

The VGG-19 contained 16 convolution layers, 3

fully-connected layers, five max pooling layers,

ReLu activation and Batch Normalization layer.

The network was trained using backpropagation

with SGD optimization algorithm, [Qian, 1999].

The application of VGG-19 to ImageNet dataset

with 1000 categories achieved top-5 error of 8%.

Moreover, deeper CNN which are called very

deep CNN have been developed to be used with

larger scale datasets. For instance, a team from

Google Inc., designed another CNN known as

Inception v1 also called GoogleNet [Szegedy et

al, 2015: Szegedy et al, 2016] The Inception v1

CNN consisted of 22 layers of inception

modules in total and a ReLU activation function

is used with each convolution operation. The

dropout rate of 0.7 and SDG optimization

method for updates were used. Another very

deep CNN was developed by the Microsoft

research team called Residual Network or

ResNet [He et al, 2016]. The ResNet-152

consists of 152 convolution layers accompanied

by ReLU activation function. The main idea of

ResNet is to add the input to the output after few

convolutional layers, this scheme is call skip or

shortcut connections which solves the problem

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

91

of gradient vanishing or exploding. The bottle

neck design is also used within this network that

was suggested in Network in Network or (NiN)

[Lin et al, 2013] and GoogleNet by using 1x1

convolution layers before and after each

convolution layer which are used for

dimensionality reduction. The ResNet was

applied to ImageNet dataset and achieved top-5

error rate of 3.57% and was the first CNN to

beat the Human error rate which is 5%

[Russakovsky et al, 2015].

Other networks such as Aggregated Residual

Transformations for Deep Neural Networks (Xie

et al, 2017) which was designed by UC San

Diego and Facebook AI research and the

Squeeze-and-Excitation (SENet) networks was

introduced by [Hu et al, 2018] to work with very

large scale datasets. Both of these networks

succeeded to achieve top-5 error of less than 3%.

In order to increase the performance of CNN,

special attention was given to the methods of

optimization. The main purpose of optimization

algorithms is to find the optimal minima of the

gradient which indicates the process of learning

in neural networks. More specifically, it is the

process of finding or extracting features form

training data and it has no tasks during the

testing phase. Many algorithms of optimization

have been developed. The most common of

these algorithms are Gradient-Based learning,

Newton’s method, Stochastic Gradient Descent

with Momentum (SGD with Momentum),

Resilient Propagation (RPROP), Adaptive

Subgradient Method (AdaGrad), Adadelta, The

Root Mean Square Propagation Optimization

(RMSProp), The Adaptive Moment Estimation

(Adam), Adaptive Method Setup Gradient

(AMSgrad), Adam with decoupled weight decay

(AdamW) and AdaptAhead, [Riedmiller and

Braun, 1993: Qian, 1999: Duchi, 2011: Zeiler,

2012: Tieleman and Hinton, 2012: Kingma,

2015: Reddi, 2018: Loshchilov and Hutter,

2019: and Hoseini et al, 2019]. In addition, the

problem of overfitting and underfitting that may

occur during the training mode and decreases the

performance of CNN was investigated, [Hinton

et al, 2012: Srivastava et al, 2014: Wu et al

2015]. This problem appears when a difference

between the training accuracy and the validation

accuracy occurs. This problem was solved to a

good extend by dropout technique (dropout

some of the convolution parameters). Also the

research works included other specific problems

in the deep CNN such as selecting and

regulating the receptive field automatically, [Wei

et al 2018]. The progress in the field of CNN

covered also the preparation of many datasets of

various volume and characteristics for CNN

training. Examples are CIFAR-10, CIFAR-100

and ImageNet [Krizhevsky, 2009: Deng et al,

2009].

3. THE PROPOSED CNN ARCHITECTURE

Generally speaking, there are several criteria

that must be considered during the design of the

CNN as these criteria will have direct effect on

the computational time of training process

classification results. These criteria are the size

of the dataset used for CNN training, the

resolution of the dataset images and the number

of classes. For instance, using large dataset with

high resolution images and large number of

classes will require CNN structure with more

convolutional layers and this in turns needs more

filters and more Batch Normalization and fully-

connected layers, [Krizhevsky et al, 2012]. In

addition, dropout layers are needed to reduce the

effect of overfitting, [Hinton et al 2012].

In this work, taking the aforementioned

details in the consideration one reasonable

structure is suggested to be designed for image

classification using the CIFAR-10 dataset. The

suggested structure consists of 6 convolutional

layers with 6 BN layers, 6 ReLU layers, 3

dropout layers, 3 pooling layers and one fully-

connected layer as shown in figure 1. Using 6

convolutional layers will achieve acceptable

accuracy. This CNN consists of (417,734)

parameters for learning the features of CIFAR-

10 dataset. The dropout rates of all three layers

are (0.3, 0.4 and 0.5) respectively. This

architecture is implemented in two modes, with

BN and without BN for each the Fast-AMSgrad

and AMSgrad. All four schemes were trained on

Floydhub deep learning server with Xeon 2

Cores CPU, [Floyhub Server ,

https://www.floyhub.com/jobs, 2018].

https://www.floyhub.com/jobs

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

92

Fig. (1): CNN Architecture

4. THE PROPOSED FAST-AMSGRAD

OPTIMIZER

Recently several optimization algorithms that

are based on adaptive learning rate have been

developed and used widely in training CNN for

image classification. Examples of these

optimizers are RMSProp, Adam, AMSgrad

Adam W and Quasi-Hyperbolic Momentum

(QHAdam), [Tieleman T. and Hinton G., 2012:

Kingma and Ba, 2015: Reddi et al, 2018:

Loshchilov and Hutter, 2019: Ma and Yarats,

2019]. However, it has been noticed by [Huang

et al, 2017 and Johnson et al, 2017] that the

adaptive learning rate optimizers may fail to

convergence and may not able to find the

optimal minima, especially for applications such

as image classification, object recognition and

machine translation. To overcome this problem,

[Reddi et al, 2018] modified AMSgrad algorithm

from Adam algorithm by changing the rule of

computing the second moment and has achieved

better performance as claimed by the authors.

However, more recent work such as

[Korzeniowski, 2018] proved that even after the

modification, the performance of AMSgrad did

not outrage Adam.

In this paper, a new optimization algorithm

called Fast-AMSgrad is modified from

AMSgrad. The modification is done by dividing

the weight change ∆𝑤𝑡 of AMSgrad by the

square root of the corrected second moment.

This means, instead of using √𝑣̂𝑡 in the

denominator of the weight change equation, just

𝑣̂𝑡 is used. This is equivalent to raising the

power of the denominator to 2. Thus the pseudo

code of Fast-AMSgrad becomes as shown in

table (1) below:

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

93

Table (1): The Pseudo Code of the Developed Optimizer (Fast-AMSgrad) with Criteria Definitions

Pseudo Code Parameter definition

1 Input: w, ϵ, 𝔶, β1, β2 w weight

2 Initialize:𝑚𝑡 = 0, 𝑣𝑡 = 0, 𝑡 = 0, 𝑣̂𝑡 = 0 𝔶 Learning rate

3 𝑾𝒉𝒊𝒍𝒆 𝑤 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝒅𝒐 ϵ Small value = 10-8

4 𝑡 = 𝑡 + 1 t Iteration number

5 𝑔𝑡 = 𝛻𝑓𝑡(𝑤𝑡) gt Gradient at iteration t

6 𝑚𝑡 = 𝛽1 . 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡 𝛻𝑓𝑡 Computational gradient function

7 𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2 mt First moment

8 𝑣̂𝑡 = 𝑚𝑎𝑥 (𝑣̂𝑡−1, 𝑣𝑡) β1 Hyperparameter (Decay rate=0.9)

9 ∆𝑤𝑡 = −
𝔶

𝑣̂𝑡
. 𝑚𝑡 , 𝑤ℎ𝑒𝑛 𝑣̂𝑡 > 0 β2

𝑣𝑡

Hyperparameter (Decay rate=0.99)

Second moment

10 𝑤𝑡 = 𝑤𝑡−1 + ∆𝑤𝑡 𝑣̂𝑡 Bias correction of second moment

 ∆𝑤𝑡 Weight change

11 𝑬𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

It can be shown that the power of the

denominator in the equation of calculating ∆𝑤𝑡

controls the speed of the learning throughout the

stages of the training. In doing so, the equations

of weight change ∆𝑤𝑡 in both Fast-AMSgrad

and AMSgrad are reformulated to modulation

functions without losing their mathematical

meaning as shown below:

The weight change in AMSgrad according to

[Reddi et al, 2018] is given in equation (1)

below:

 ∆𝑤𝑡 = −
𝔶

√𝑣̂𝑡
. 𝑚𝑡 (1)

The weight change in Fast-AMSgrad is chosen

as in equation (2) below:

 ∆𝑤𝑡 = −
𝔶

𝑣̂𝑡
. 𝑚𝑡 (2)

Where, ∆𝑤𝑡 is the update in weight, 𝔶 is the

learning rate, 𝑚𝑡 is the first moment, 𝑣̂𝑡 is the

second moment.

Equations (1 and 2) can be re-written as follow:

For AMSgrad ∆𝑤𝑡 =
 −𝔶. 𝑀1. 𝑚𝑡 (3)

For Fast-AMSgrad ∆𝑤𝑡 =
 −𝔶. 𝑀′1. 𝑚𝑡 (4)

Where, (𝑀1 𝑎𝑛𝑑 𝑀′1) are the first

modulation functions in the two optimizers such

that:

For AMSgrad 𝑀1 =
1

√𝑣̂𝑡

 (5)

For Fast-AMSgrad 𝑀′1 =
1

𝑣̂𝑡

 (6)

The difference between these two functions is

shown graphically in figure 2.

Fig. (2): The Modulation Functions for AMSgrad and Fast-AMSgrad

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

armanamedi@gmail.com

94

In this figure the red color represents the

modulation function of AMSgrad, while the blue

color represents the modulation function of Fast-

AMSgrad.

Comparison of these two curves reveals the

followings:

1- At 𝑣̂𝑡 > 1, looking at figure 2 it can be

observed that at 𝑣̂𝑡 > 1 the modulation function

of Fast-AMSgrad has lower value than that of

the AMSgrad modulation function. Thus, it can

be said that the changes on ∆𝑤𝑡 that are made by

the modulation function of Fast-AMSgrad are

less than that made by the modulation function

of AMSgrad. Keeping in mind that increasing

∆𝑤𝑡 by large amount may lead to overpass the

global minima, then it can be said that with Fast-

AMSgrad optimizer there will be less chance to

overpass the global minima than with AMSgrad.

In fact the case when 𝑣̂𝑡 > 1 is expected to be

the dominant case in AMSgrad and Fast-

AMSgrad since at each iteration the maximum

value of 𝑣̂𝑡 from the current and the previous

iteration is chosen. That is the value of 𝑣̂𝑡 is

increasing continuously from the first iteration to

the last iteration.

2- At 𝑣̂𝑡 = 1, both functions have the same

value. The point at 𝑣̂𝑡 = 1 represents the turning

point, at which the value of the modulation

function of Fast-AMSgrad equals the value of

the modulation function of AMSgrad. Inspecting

figure 2, it can be realized that at 𝑣̂𝑡 = 1 the

curve of the modulation function of Fast-

AMSgrad in blue color looks as a clockwise-

rotation of the modulation function of AMSgrad

in red color.

3- At 0 < 𝑣̂𝑡 < 1 the situation is reversed, the

values of Fast-AMSgrad modulation function

(blue color) is higher than that of AMSgrad.

This means, at 0 < 𝑣̂𝑡 < 1 the change in

∆𝑤𝑡 that is made by Fast-AMSgrad modulation

function is higher than that made by the

modulation function of AMSgrad. Keeping in

mind that in both optimizers the value of 𝑣̂𝑡

always increases with increasing the iteration,

this means that the step size of the modulation

function of Fast-AMSgrad is higher than that of

the modulation function of AMSgrad. This in

turns will allow Fast-AMSgrad modulation

functions to help the process of training to

continue without sticking in local minima.

4- In term of speed, since the step size of the

modulation function of Fast-AMSgrad is higher

than that of the modulation function of AMSgrad

at 0 < 𝑣̂𝑡 < 1 , then the difference between the

values of ∆𝑤𝑡 from the current iteration to the

previous iteration will be larger. This will speed

up the process of training when 0 < 𝑣̂𝑡 < 1.

When 𝑣̂𝑡 > 1 the step size of the modulation

functions for both optimizers from iteration to

iteration will be almost the same but the values

of ∆𝑤𝑡 that are made by the Fast-AMSgrad

optimizer are smaller than those made by the

MASgrad optimizer. Thus, there will be more

chance for the Fast-AMSgrad to find the local

minima in less number of iterations. While in the

AMSgrad there will be more chances that the

global minima may be bypassed or found after

quiet large number of iteration.

5. RESULTS AND DISCUSSIONS

In order to reveal the performance of the

Fast-AMSgrad optimizer and the developed

CNN and to show the effect of Batch

Normalization (BN), four models of

classification are implemented using CIFAR-10

dataset. These are Fast-AMSgrad with and

without BN and AMSgrad with and without BN.

The performance measures including the

training, validation and their Loss values versus

epoch numbers of the four models are given in

table (2). The results are discussed in details in

the following subsections. Also the testing

accuracy and the evaluation metrics are

calculated for each model.

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

95

Table (2): Performance Measures of the Proposed CNN with Different Optimizers

Method Training

Accuracy

Training

Loss

Validation

Accuracy

Validation

Loss

Time Epoch

No.

AMSgrad with BN 0.7633 0.6751 0.7857 0.6187 6:5:21 25

0.8265 0.4952 0.8140 0.5528 12:10:42 50

0.8882 0.3193 0.8585 0.4354 24:21:12 100

Fast AMSgrad with

BN

0.8690 0.3844 0.8374 0.5046 6:8:8 25

0.9118 0.2644 0.8692 0.4500 12:16:17 50

0.9413 0.1937 0.8675 0.4974 24:32:33 100

AMSgrad without

BN

0.6969 0.8685 0.7280 0.7909 3:4:7 25

0.7851 0.6209 0.7889 0.6126 6:8:13 50

0.8524 0.4278 0.8354 0.4997 12:16:25 100

Fast AMSgrad

without BN

0.8463 0.4493 0.8289 0.5369 3:5:5 25

0.8842 0.3443 0.8421 0.5380 6:10:9 50

0.9074 0.2901 0.8568 0.5514 12:19:30 100

5.1 Training Accuracy

In the evaluation of training mode three

criteria are considered instantly, accuracy, loss

value and computation time. As mentioned

previously, CIFAR-10 dataset is used. This

dataset consists of 50 000 images for training

and 10000 for validation and test. The image

resolution is 32 by 32 pixels. The evaluation

metrics training accuracy of the four models of

classification versus epoch number is given in

figure 3. According to this figure, the following

results can be pointed out:

1- A comparison between Fast-AMSgrad

without BN (Green color) and AMSgrad without

BN (the violet color) shows that the accuracy of

Fast-AMSgrad without BN is higher than that of

AMSgrad without BN. Figure 3 also shows that

the improvement of the accuracy from epoch to

epoch in the case of Fast-AMSgrad is higher

than that of AMSgrad without BN. For instance

Fast-AMSgrad accuracy at the end of epoch (1)

is 31.11% while for the AMSgrad without BN is

12.58%. This indicates that the Fast-AMSgrad

can reach to the convergence state in less

number of epochs (less time) than AMSgrad.

Table 2 shows the training accuracy and loss,

validation accuracy and loss, the time at epoch

(25), (50) and (100). According to this table the

training accuracy of Fast-AMSgrad at epoch

number (50) is 88.42% while the training

accuracy of AMSgrad is 78.51% and becomes

85.24% at epoch number (100). This means that

by Fast-AMSgrad without BN the training time

is reduced to half of that of the AMSgrad

without BN and at the same time the achieved

accuracy by Fast-AMSgrad is higher.

2- A comparison between Fast-AMSgrad with

BN (Orange color) and AMSgrad with BN (Blue

color) in figure 3, shows that the training

accuracy of Fast-AMSgrad with BN is higher

than that of AMSgrad with BN. Figure 3 also

shows that the improvement of the accuracy

from epoch to epoch in the case of Fast-

AMSgrad with BN is higher than that of

AMSgrad with BN. For instance Fast-AMSgrad

accuracy at the end of epoch (1) is 39.97% while

for the AMSgrad with BN is 26.81%. This

indicates that the Fast-AMSgrad can reach to the

convergence state in less number of epochs (less

time) than AMSgrad. Table 2 shows the training

accuracy and loss, validation accuracy and loss,

the time at epoch (25), (50) and (100).

According to this table the training accuracy of

Fast-AMSgrad at epoch number (50) is 91.18%

while the training accuracy of AMSgrad is

82.65% and at epoch number (100) the training

accuracy by the Fast-AMSgrad with BN

becomes 94.13% and for AMSgrad with BN

becomes 88.82%. This means that by Fast-

AMSgrad with BN the training time is reduced

to half of that of the AMSgrad with BN and at

the same time the achieved accuracy by Fast-

AMSgrad is higher.

3- A comparison between Fast-AMSgrad

without BN and AMSgrad with BN (the orange

and blue colors) shows that even Fast-AMSgrad

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

96

without BN performs better than AMSgrad with

BN. That means, much of computation time can

be saved by Fast-AMSgrad while the accuracy is

remained better than of AMSgrad. The

computation time for the Fast-AMSgrad without

BN is (12 h and 19 min) while AMSgrad with

BN is 24 h 21 min.

4- In general, the improvement in the accuracy

of all the schemes of classification is high at the

beginning epochs and this improvement

becomes lower at the ending epochs.

Fig. (3). The Training Accuracy for the Four Models of Classification for 100 Epochs.

5.2 Training Loss
Loss value is related inversely to the level of

confidence of classification. For high level of

confidence loss value must be small. The value

of loss is measured from the average of the

losses of the training samples within mini-batch

in the current iteration. In this work, the size of

mini-batch is 64 samples. However, the loss is

an important metric that shows how good the

model is. The main goal is to reduce the loss as

much as possible. Figure 4 shows that the

smallest loss value is found for Fast-AMSgrad

with BN (0.1937) at epoch number (100) and the

next smallest value is for the Fast-AMSgrad

without BN (0.2901) at epoch number (100).

While the loss values for the AMSgrad without

and with BN are (0.4278 and 0.2901)

respectively. This leads to the conclusion that

Fast-AMSgrad is performing better than

AMSgrad for both cases with and without BN.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Tr
ai

n
in

g
A

cc
u

ra
cy

Epochs

AMSgrad with BN Fast-AMSgrad with BN

AMSgrad without BN Fast-AMSgrad without BN

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

97

Fig. (4): The Loss Values for the Training of the Four models of Classification for 100 Epochs.

5.3 Validation Accuracy

Validating the classification system

represents one good indicator for evaluating the

level of success of the network performance. For

instance, validation accuracy can be used to

detect the overfitting and underfitting states of

the network during the training mode. When the

accuracy of validation and training are close and

reasonably high, it can be said that the training is

acceptable. Vice versa, when there is a quit

difference between the accuracy of validation

and training, it can be said that the training has

either overfitting or underfitting problem.

Overfitting is the case when the network

performs well for training data and badly for

validation and testing. In order to evaluate the

validation of the network, the accuracy and loss

of the validation are measured for the four

schemes of classifications.

The validation accuracy of the four schemes of

classification against epoch number is given in

figures 5. According to this figure, the following

results can be pointed out:

1. The validation accuracy at epoch number (1)

for AMSgrad with BN is (38.27%) and for

AMSgrad without BN is (23.25%) the difference

of accuracy among these two schemes is (15.02).

While, the accuracy of Fast-AMSgrad with and

without BN is (54.25%) and (46.25%)

respectively, having the difference of (8) which

is quite lower than the difference of AMSgrad

schemes. This is a good indicator that the BN

layer doesn’t have much impact on the new

proposed optimizer while its effect on AMSgrad

is very high.

2. At epoch number (50) the accuracy of Fast-

AMSgrad with BN is (0.8692) which is the

convergence state of this network and the

training process can be terminated for this

optimizer. While the accuracy of AMSgrad with

BN at epoch number (50) is (81.4%) and at

epoch number (100) is (85.85%). This assures

the good performance (accuracy and speed) of

the Fast-AMSgrad with BN over that of

AMSgrad with BN and much faster to find the

global minima.

3. The accuracy of Fast-AMSgrad without BN at

epoch number (100) is (85.68%) that is very

close to accuracy of AMSgrad with BN accuracy

which is (85.85%). While the accuracy of

AMSgrad without BN is (83.54) at epoch

number (100).

4. It can be clearly seen from figure 5, that the

new proposed optimizer provides smooth

learning with less oscillation.

0

0.5

1

1.5

2

2.5

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Tr
ai

n
in

g
Lo

ss

Epochs

AMSgrad with BN Fast-AMSgrad with BN

AMSgrad without BN Fast-AMSgrad without BN

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

98

Fig. (5): The Validation Accuracy for the Four Models of Classification for 100 Epochs.

5.4 Validation Loss

The validation loss can also be used as an

indicator to detect whether the CNN is

overfitting or not. In addition, it shows the level

of confidence of the predicted values made by

CNN. As shown in figure 6 and in table 2, the

validation loss values achieved by all four

optimizers are decreasing with the number of

epochs.

For Fast-AMSgrad with BN the validation

loss values at epoch number (25) is (0.5046) and

decreases to (0.4974) at epoch number (100).

For AMSgrad with BN the validation loss

values at epoch number (25) is (0.6187) and

decreases to (0.4354) at epoch number (100).

For Fast-AMSgrad without BN the validation

loss values at epoch number (25) is (0.5369) and

decreases to (0.5514) at epoch number (100).

For AMSgrad without BN the validation loss

values at epoch number (25) is (0.7909) and

decreases to (0.4997) at epoch number (100).

Since the loss values are decreasing with

epoch number then this indicates that the

training of the CNN with four optimizers is

acceptable.

Fig. (6): The Loss Values for Validation for the Four Models of Classification for 100 Epochs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

V
al

id
at

io
n

 A
cc

u
ra

cy

Epochs

AMSgrad with BN Fast-AMSgrad with BN

AMSgrad without BN Fast-AMSgrad without BN

0

0.5

1

1.5

2

2.5

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

V
al

is
at

io
n

 L
o

ss

Epochs

AMSgrad with BN Fast-AMSgrad with BN

AMSgrad without BN Fast-AMSgrad without BN

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

armanamedi@gmail.com

99

To illustrate better, the differences between

the performances of the four optimizations

algorithms at different epoch number, tables 3 is

given. It can be seen that the fastest model is

Fast-AMSgrad with BN and Fast-AMSgrad

without BN comes in second place, while

AMSgrad without BN is performing poorly.

Table (3): Accuracy and speed of the CNN with four optimizers at different epoch number

Method Training

Accuracy

Validation

Accuracy

Epoch Number Time / h

AMSgrad with BN 0.8299% 0.8333% 52 12:66

Fast AMSgrad with BN 0.8423% 0.835% 18 4:41

AMSgrad without BN 0.8475% 0.832% 94 11:53

Fast AMSgrad without BN 0.8303% 0.8306% 20 2:46

5

.5 Testing Accuracy

In testing mode, 2000 images are used. The

predicted labels with true labels are fed to

confusion matrix, and then the classification

metrics, classification accuracy, precision, Kapa

and error measures are calculated, [Drăgulescu

et al, 2015]. Table 4 shows the results.

According to this table, Fast-AMSgrad performs

better than AMSgrad for both cases, without and

with BN. It can be seen that Fast-AMSgrad

without BN performs even better than AMSgrad

with BN. This result coincides with that

achieved for the validation during the training

mode. That is, with FAST-AMSgrad the CNN

does not need BN layers and much of

computation time can be saved for the CNN

training while still performing better than

AMSgrad with BN. In this table, the

classification metrics are also shown. The error

values for the Fast-AMSgrad with and without

BN are 0.1414 and 0.1554 which are acceptable

compared to previous works such as [Zeiler and

Fergus, 2014: Krizhevsky et al, 2012]. The

kappa coefficient values also indicate the

confidentiality of the results.

Table (4): Performance measures for Testing Mode

Method Overall

Accuracy

Precision Error Kappa

Coefficient

AMSgrad with BN 0.8415 0.8457 0.1585 0.8238

Fast AMSgrad with BN 0.8585 0.8634 0.1414 0.8427

AMSgrad without BN 0.818 0.8230 0.1820 0.7977

Fast AMSgrad without BN 0.8445 0.8477 0.1554 0.8272

6. CONCLUSIONS

The implementation of the CNN with and

without BN has shown that with Fast-AMSgrad

algorithm the training time is reduced to half of

the time needed by AMSgrad while achieving

better accuracy for training, validation and

testing. The decrease in the validation loss

values with increasing the epoch number

indicate that the training was working properly.

The division of the update weight by the second

order moment has let the Fast-AMSgrad to be

less affected by the use of BN since even when

used without BN it has performed better than

AMSgrad with BN and thus saving a lot of

computation time. The kappa coefficient values

for all schemes of classification were within the

range of perfect agreement which means that the

classification performance is good compared to

just randomly assigning values. The error

percents and precisions for all schemes were

acceptable compared to the results of previous

works. In particular the error percent provided

by Fast-AMSgrad was good. These error

percents assure that the architecture of CNN is

adaptable for both optimization algorithms.

According to the classification metrics of table

3, Fast-AMSgrad with BN was the best and Fast-

AMSgrad without BN was the second best.

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

100

ACKNOWLEDGEMENTS

 This research work was implemented at the

Computer Science Department / College of

Science / University of Duhok as a part of the

Master degree requirements, 2016-2019.

 The authors would like to express their

sincere gratitude to the University of Duhok and

the College of Science for their continuous

support to make this work possible.

 The first author wants to use this opportunity

to express his special thanks to the Duhok

Polytechnic University for its invaluable

support.

REFERENCES

Dalal N. and Triggs B., 2005, “Histograms of

oriented gradients for human detection”,

in international Conference on computer

vision & Pattern Recognition, ,CVPR'05,

June, IEEE Computer Society ,Vol. 1, pp.

(886-893).

Deng J., Dong W., Socher R., Li L.J., Li K., and

Fei-Fei, L., 2009, “ImageNet: A large-

scale hierarchical image database”, IEEE

Conference on Computer Vision and

Pattern Recognition. (pp. 248-255).

Drăgulescu B., Bucos M., Vasiu R., 2015,

“Predicting Assignment Submissions in a

Multi-class Classification Problem”, TEM

Journal, Vol. 4, No. 3, Pp.(244-254).

Duchi J., Hazan E. and Singer Y., 2011,

“Adaptive subgradient methods for online

learning and stochastic optimization”,

Journal of Machine Learning Research,

12(Jul), pp. (2121-2159).

Floyhub Server, “Deep Learning Platform-Cloud

GP”, https://www.floyhub.com/jobs,

Visiting Date, Oct-2018.

He K., Zhang X., Ren S. and Sun J., 2016,

”Deep residual learning for image

recognition”, in Proceedings of the IEEE

conference on computer vision and pattern

recognition (CVPR). (pp. 770-778).

Hinton G. E., Srivastava N., Krizhevsky

A., Sutskever I., SalakhutdinovR.R., 2012,

“Improving neural networks by preventing

co-adaptation of feature detectors”,

arXiv:pp. (1207.0580).

Hoseini1 F., Shahbahrami A. and Bayat P.,

2018, “An Efficient Implementation of

Deep Convolutional Neural Networks for

MRI Segmentation”, Journal of Digital

Imaging, Vol. 31, No. 5, pp. (738-747).

Hoseini1 F., Shahbahrami A. and Bayat P.,

2019, “AdaptAhead Optimization

Algorithm for Learning Deep CNN

Applied to MRI Segmentation”, Journal of

Digital Imaging, Society of imaging

informatics in medicine, Springer, Vol.

32, issue 1, Pp. (105-115).

Huang G., Liu Z., Van Der Maaten L. and

Weinberger K.Q., 2017, “Densely

connected convolutional networks”, in

Proceedings of the IEEE conference on

computer vision and pattern recognition.

(pp. 4700-4708).

Hu J., Shen L. and Sun G., 2018, “Squeeze-and-

excitation networks”, in Proceedings of

the IEEE conference on computer vision

and pattern recognition (pp. 7132-7141).

Johnson M., Schuster M., Le Q. V., Krikun M.,

Wu Y., Chen, Z., … Dean, J. (2017).

Google’s Multilingual Neural Machine

Translation System: Enabling Zero-Shot

Translation. Transactions of the

Association for Computational

Linguistics, Vol. 5, (pp. 339–351).
Kingma, D. P., and Ba, J. L., 2015, “Adam: A

Method for Stochastic Optimization”, in

Proceedings of the International

Conference on Learning Representations

(ICLR), pp. (1-15).

Korzeniowski F., 2018, “Experiments with

AMSGrad” Retrieved December 24, 2018,

from

https://fdlm.github.io/post/amsgrad/.

Krizhevsky A., 2009, “Learning Multiple Layers

of Features from Tiny Images”, Chapter 3,

Object Classification Experiments, pp.

(32-35).

Krizhevsky A., Sutskever I. and Hinton G.E.,

2012, “ImageNet classification with deep

convolutional neural networks”,

Proceedings of the 25th International

Conference on neural information

processing systems (NIPS), Lake Tahoe,

December, pp. (1097-1105).

Lin M., Chen Q. and Yan S., 2013, “Network In

Network”, arXiv preprint: (pp.

1312.4400).

Lowe, D.G. (1999) Object Recognition from

Local Scale-Invariant Features.

Proceedings of the 7th IEEE International

Conference on Computer Vision, Kerkyra,

20-27 September, pp. (1150-1157).

https://www.floyhub.com/jobs
https://arxiv.org/search/cs?searchtype=author&query=Hinton%2C+G+E
https://arxiv.org/search/cs?searchtype=author&query=Srivastava%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Krizhevsky%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Sutskever%2C+I
https://arxiv.org/search/cs?searchtype=author&query=Salakhutdinov%2C+R+R
https://fdlm.github.io/post/amsgrad/

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 89-101, 2019

101

 Loshchilov I. and Hutter F., 2019, “Decoupled

Weight Decay Regularization”,

Proceedings of the International

Conference on Learning Representations

(ICLR), pp. (1-8).

Ma J. and Yarats D., 2019, “Quasi-Hyperbolic

Momentum And Adam For Deep

Learning”, International Conference on

Learning Representations (ICLR), pp. (1-

38).

Qian, N. 1999, “On the momentum term in

gradient descent learning algorithms”,

Neural Networks, ELSEVIER, Vol. 12,

Issue 1, (pp. 145–151).

Reddi S. J., Kale S. and Kumar S., 2018, “On the

Convergence of Adam And Beyond”,

Proceedings of the International

Conference on Learning Representations

(ICLR), pp. (1-23).

Riedmiller M. and Braun H., 1993, “A Direct

Adaptive Method for Faster

Backpropagation Learning: The RPROP

Algorithm”, in: Ruspini, H., (Ed.) Proc. of

the International Congress on

Nanoscience and Nanotechnology (ICNN

93), San Francisco, pp. (586-591).

Russakovsky, O., Deng, J., Su, H., Krause, J.,

Satheesh, S., Ma, S., Huang Z. · Karpathy

A., Khosla A., Bernstein M., Berg A. C.

and Fei-Fei, L., 2015, “ImageNet Large

Scale Visual Recognition Challenge”,

Springer International Journal of

Computer Vision, Vol. 115, Issue 3, pp.

(211–252).

Simonyan, K. and Zisserman A., 2015, “Very

deep convolutional networks for large-

scale image recognition”, International

Conference on Learning Representations

(ICLR), (pp. 1409.1556).

Srivastava N., Hinton G. E., Krizhevsky A.,

Sutskever I., SalakhutdinovR., 2014,

“Dropout: A Simple Way to Prevent

Neural Networks from Overfitting”,

Journal of Machine Learning Research 15,

pp. (1929-1958).

zegedy C., Liu W., Jia Y., Sermanet P., Reed S.,

Anguelov D., Erhan D., Vanhoucke V.

and Rabinovich, A., 2015, “Going deeper

with convolutions”, in Proceedings of the

IEEE conference on computer vision and

pattern recognition, (pp. 1-9).

Szegedy C., Vanhoucke V., Ioffe S., Shlens J.,

and Wojna Z., 2016, “Rethinking the

Inception Architecture for Computer

Vision”, IEEE Conference on Computer

Vision and Pattern Recognition (CVPR),

Las Vegas, Nov. 2016, pp. (2818-2826).

Tieleman T. and Hinton G., 2012, “Lecture 6.5-

rmsprop: Divide the Gradient by a

Running Average of Its Recent

Magnitude”, COURSERA: Neural

Networks for Machine Learning, 4, pp.

(26-31).

Wei Z., Sun Y., Lin J. and Liu S., 2018,

“Learning adaptive receptive fields for

deep image parsing networks”, Journal of

Computational Visual Media, Vol. 4, No.

3, pp. (231-244).

Wu W., Xia R., Xiang W., Hui B., Chang Z., Liu

Y., and Zhang Y., 2014, “Recognition of

Airport Runways in FLIR Images Based

on Knowledge” , IEEE Geosci. Remote

Sens. Lett., vol. 11, no. 9, pp. (1534–

1538)

Wu H. and X. Gu X., 2015, “Towards dropout

training for convolutional neural

networks”, Neural Networks, 71, pp. (1–

10).

Xie S., Girshick R., Dollár P., Tu Z. and He K.,

2017, “Aggregated residual

transformations for deep neural

networks”, in Proceedings of the IEEE

Conference on Computer Vision and

Pattern Recognition. (pp. 1492-1500).

 Zeiler M. D., 2012, “Adadelta: An Adaptive

Learning Rate Method”, arXiv preprint

arXiv, pp. (1212-5701).

Zeiler M.D., Fergus R., 2014, “Visualizing and

Understanding Convolutional

Networks”,in Fleet D., Pajdla T., Schiele

B., Tuytelaars T., (eds) Computer Vision

– European Conference on
Zhang P., Niu X., Dou Y., and Xia F., 2017,

“Airport Detection on Optical Satellite

Images Using Deep Convolutional Neural

Networks”, IEEE Geoscience and Remote

Sensing Letters, Vol. 14, No. 8, pp.

(1183–1187).

