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ABSTRACT: A new deep Convolutional Neural Network (CNN) with six convolutional layers and one 

fully-connected layer is developed and trained by backpropagation using a new optimization algorithm 

called Fast-AMSgrad which is modified from AMSgrad. The aims are to speed up the training process 

while achieving acceptable accuracy. The application of the network using both, the Fast-AMSgrad and 

the AMSgrad algorithms to CIFAR-10 dataset for image classification reveals that the developed CNN 

performs better when trained with Fast-AMSgrad for both cases, with and without Batch Normalization 

(BN) layers. The training time is reduced by 50% when Fast-AMSgrad algorithm is used. Also the 

accuracy and loss values of the training and validation are improved when Fast-AMSgrad is used.  The 

training and validation accuracies provided by Fast-AMSgrad with BN are (91.18% and 86.92%) at epoch 

number (50) and (94.13% and 86.758%) at epoch number (100), while the corresponding accuracies that 

are provided by AMSgrad with BN are (82.65% and 81.4%) at epoch (50) and (88.82% and 85.85%) at 

epoch (100). The overall test accuracy and classification metric measures indicate that the given 

architecture of CNN and optimization algorithm perform reasonably well. 

 
KEYWORDS: Adam, AMSgrad, CNN,  Deep neural networks, Image classification, Optimization 

algorithms. 

 

 

 
1. INTRODUCTION 

 
mage classification is the process of 

extracting features upon which the 

object(s) are classified in an image. These 

features could be edges, lines, ridges, any 

localized point of interest, or it could be texture 

or structure of any shape information that 

describe objects. The objects could be human 

face, car, buildings, train, airplane, face, defected 

tissues, etc. 

Image classification has become an important 

tool in many applications that are based on 

computer vision and artificial intelligence such 

as medical imaging, security and authentication, 

military surveillance, office automation, etc.   

The previous approach of image 

classification, the hand-grafted features utilizes 

methods and algorithms that aim the extraction 

of features or attributes that are effective for 

object discrimination in an image, [Wu et al, 

2014]. Typical methods are the Scale Invariance 

Feature Transform (SIFT) which was developed 

by [Lowe, 1999] for object recognition and 

Histogram of Oriented Gradient (HOG) which 

was developed by [Dalal and Triggs, 2005] for 

object detection.  However, the approach of 

hand-crafted features suffers some shortcomings 

especially when dealing with large scale images 

it needs the incorporation of more discriminate 

features and expert knowledge or ancillary data 

such as texture, geometry, etc. Whereas 

incorporating many features and data types will 

complicate the task of designing the feature 

extraction methods and may lead to tremendous 

computational complexity. 

In recent years, the approach of deep 

convolutional neural networks (CNN) has 

opened up prospects for superior image 

classification and detection outperforming 

traditional methods [Krizhevsky et al, 2012: 

Zhang et al, 2017: Hoseini et al, 2018]. Deep 

CNN could learn rich highly abstract image 

features to represent complex objects effectively. 

I 
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CNN can directly learn data representations 

from the samples of training dataset and detect 

data-driven features for specific tasks. In 

contrast to hand-crafted features, deep learning 

can extract and organize the discriminative 

information from large scale images and can be 

faster. Many structures of deep CNN have 

already been developed. Examples of the well 

known deep CNNs are AlexNet by [Krizhevsky 

et al, 2012], ZFNet by [Zeiler and Fergus, 2014] 

and VGG-19 by [Simonyan and Zisserman, 

2015]. In addition, many optimization 

algorithms for CNN have been developed with 

the aim to improve the performance of CNN 

networks, [Kingma and Ba, 2015: Reddi et al, 

2018: Ma and Yarats, 2019]. However, 

developing a CNN that performs well for image 

classification will remain as one of the most 

challenging issue and require a good 

coordination between the CNN architecture, 

optimization algorithm, training parameters, 

training data etc. Good performance can be 

achieved when the combination of these criteria 

provides good training and validation accuracy 

with least overfitting.  

The objective of this paper is introducing a 

CNN with efficient architecture and optimization 

algorithm for image classification using CIFAR-

10 dataset. The main goals are to reduce the 

training time and at the same time to achieve 

best validation and testing accuracy. 

The remainder of this paper is organized as 

follows. In Section 2, a brief review of the 

related work is given. In Section 3, the proposed 

CNN architecture and the Fast-AMSgrad 

optimization algorithm are presented. In section 

4, the results of applying the proposed CNN to 

CIFAR-10 dataset are presented and discussed. 

In section 5, the conclusions are given. 

 

2. RELATED WORK 

 

Much of research works on convolutional 

neural network (CNN) has been done to improve 

the CNN performance for various types of 

applications including image classification. 

Many of deep learning networks of different 

architecture have already been designed and 

many optimization algorithms for updating the 

weights during the training of these networks 

have been developed. In 2012, Krizhevsky and 

others proposed one convolutional neural 

network for image classification called AlexNet 

[Krizhevsky et al, 2012]. This deep CNN 

contained five convolutional layers and three 

fully-connected layers and trained by 

backpropagation learning algorithm and SGD 

with Momentum, [Qian, 1999], as optimizer is 

used for update rules to minimize the loss 

function. This CNN is applied to a subset of 

ImageNet dataset containing 1000 categories and 

1000 image for each category and achieved test 

top-1 error of 37.5% and top-5 error as 17.0%. 

In 2014, [Zeiler and Fergus, 2014] modified 

AlexNet to ZFNet by reducing the filter size, 

reducing the stride from 4 to 2 and increasing the 

size of activation map. In addition, they used 

deconvolution for visualizing the learnt features 

in order to illustrate how CNNs should be 

developed for image classification. The ZFNet 

was trained on a single GTX580 GPU and 

achieved top-5 error rate 14.8%. The field of 

CNNs continued to progress and very deep 

CNNs have also been developed to be used for 

large scale images. An example of very deep 

CNN is the VGG network, which has been 

developed by Visual Geometry Group (VGG) at 

Oxford University. The last version of this 

network VGG-19 was much deeper than 

previous ones, [Simonyan and Zisserman, 2015]. 

The VGG-19 contained 16 convolution layers, 3 

fully-connected layers, five max pooling layers, 

ReLu activation and Batch Normalization layer. 

The network was trained using backpropagation 

with SGD optimization algorithm, [Qian, 1999]. 

The application of VGG-19 to ImageNet dataset 

with 1000 categories achieved top-5 error of 8%. 

Moreover, deeper CNN which are called very 

deep CNN have been developed to be used with 

larger scale datasets. For instance, a team from 

Google Inc., designed another CNN known as 

Inception v1 also called GoogleNet [Szegedy et 

al, 2015: Szegedy et al, 2016] The Inception v1 

CNN consisted of 22 layers of inception 

modules in total and a ReLU activation function 

is used with each convolution operation. The 

dropout rate of 0.7 and SDG optimization 

method for updates were used. Another very 

deep CNN was developed by the Microsoft 

research team called Residual Network or 

ResNet [He et al, 2016]. The ResNet-152 

consists of 152 convolution layers accompanied 

by ReLU activation function. The main idea of 

ResNet is to add the input to the output after few 

convolutional layers, this scheme is call skip or 

shortcut connections which solves the problem 
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of gradient vanishing or exploding. The bottle 

neck design is also used within this network that 

was suggested in Network in Network or (NiN) 

[Lin et al, 2013] and GoogleNet by using 1x1 

convolution layers before and after each 

convolution layer which are used for 

dimensionality reduction. The ResNet was 

applied to ImageNet dataset and achieved top-5 

error rate of 3.57% and was the first CNN to 

beat the Human error rate which is 5% 

[Russakovsky et al, 2015]. 

Other networks such as Aggregated Residual 

Transformations for Deep Neural Networks (Xie 

et al, 2017) which was designed by UC San 

Diego and Facebook AI research and the 

Squeeze-and-Excitation (SENet) networks was 

introduced by [Hu et al, 2018] to work with very 

large scale datasets. Both of these networks 

succeeded to achieve top-5 error of less than 3%. 

In order to increase the performance of CNN, 

special attention was given to the methods of 

optimization. The main purpose of optimization 

algorithms is to find the optimal minima of the 

gradient which indicates the process of learning 

in neural networks. More specifically, it is the 

process of finding or extracting features form 

training data and it has no tasks during the 

testing phase. Many algorithms of optimization 

have been developed.  The most common of 

these algorithms are Gradient-Based learning, 

Newton’s method, Stochastic Gradient Descent 

with Momentum (SGD with Momentum), 

Resilient Propagation (RPROP), Adaptive 

Subgradient Method (AdaGrad), Adadelta, The 

Root Mean Square Propagation Optimization 

(RMSProp), The Adaptive Moment Estimation 

(Adam), Adaptive Method Setup Gradient 

(AMSgrad), Adam with decoupled weight decay 

(AdamW) and AdaptAhead, [Riedmiller and 

Braun, 1993: Qian, 1999: Duchi, 2011: Zeiler, 

2012: Tieleman and Hinton, 2012: Kingma, 

2015: Reddi, 2018:  Loshchilov and Hutter, 

2019: and Hoseini et al, 2019]. In addition, the 

problem of overfitting and underfitting that may 

occur during the training mode and decreases the 

performance of CNN was investigated, [Hinton 

et al, 2012: Srivastava et al, 2014: Wu et al 

2015]. This problem appears when a difference 

between the training accuracy and the validation 

accuracy occurs. This problem was solved to a 

good extend by dropout technique (dropout 

some of the convolution parameters). Also the 

research works included other specific problems 

in the deep CNN such as selecting and 

regulating the receptive field automatically, [Wei 

et al 2018]. The progress in the field of CNN 

covered also the preparation of many datasets of 

various volume and characteristics for CNN 

training. Examples are CIFAR-10, CIFAR-100 

and ImageNet [Krizhevsky, 2009: Deng et al, 

2009]. 

3. THE PROPOSED CNN ARCHITECTURE 

  

Generally speaking, there are several criteria 

that must be considered during the design of the 

CNN as these criteria will have direct effect on 

the computational time of training process 

classification results. These criteria are the size 

of the dataset used for CNN training, the 

resolution of the dataset images and the number 

of classes. For instance, using large dataset with 

high resolution images and large number of 

classes will require CNN structure with more 

convolutional layers and this in turns needs more 

filters and more Batch Normalization and fully-

connected layers, [Krizhevsky et al, 2012]. In 

addition, dropout layers are needed to reduce the 

effect of overfitting, [Hinton et al 2012]. 

In this work, taking the aforementioned 

details in the consideration one reasonable 

structure is suggested to be designed for image 

classification using the CIFAR-10 dataset. The 

suggested structure consists of 6 convolutional 

layers with 6 BN layers, 6 ReLU layers, 3 

dropout layers, 3 pooling layers and one fully-

connected layer as shown in figure 1. Using 6 

convolutional layers will achieve acceptable 

accuracy. This CNN consists of (417,734) 

parameters for learning the features of CIFAR-

10 dataset. The dropout rates of all three layers 

are (0.3, 0.4 and 0.5) respectively. This 

architecture is implemented in two modes, with 

BN and without BN for each the Fast-AMSgrad 

and AMSgrad. All four schemes were trained on 

Floydhub deep learning server with Xeon 2 

Cores CPU, [Floyhub Server , 

https://www.floyhub.com/jobs, 2018].

 

https://www.floyhub.com/jobs
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Fig. (1): CNN Architecture 

 
4. THE PROPOSED FAST-AMSGRAD 

OPTIMIZER 

 

Recently several optimization algorithms that 

are based on adaptive learning rate have been 

developed and used widely in training CNN for 

image classification. Examples of these 

optimizers  are RMSProp, Adam, AMSgrad 

Adam W and Quasi-Hyperbolic Momentum 

(QHAdam), [Tieleman T. and Hinton G., 2012: 

Kingma and Ba, 2015: Reddi et al, 2018: 

Loshchilov and Hutter, 2019: Ma and Yarats, 

2019].  However, it has been noticed by [Huang 

et al, 2017 and Johnson et al, 2017] that the 

adaptive learning rate optimizers may fail to 

convergence and may not able to find the 

optimal minima, especially for applications such 

as image classification, object recognition  and 

machine translation. To overcome this problem, 

[Reddi et al, 2018] modified AMSgrad algorithm 

from Adam algorithm by changing the rule of 

computing the second moment and has achieved 

better performance as claimed by the authors. 

However, more recent work such as 

[Korzeniowski, 2018] proved that even after the 

modification, the performance of AMSgrad did 

not outrage Adam.  

In this paper, a new optimization algorithm 

called Fast-AMSgrad is modified from 

AMSgrad. The modification is done by dividing 

the weight change ∆𝑤𝑡 of AMSgrad by the 

square root of the corrected second moment.  

This means, instead of using √𝑣̂𝑡 in the 

denominator of the weight change equation, just 

𝑣̂𝑡 is used. This is equivalent to raising the 

power of the denominator to 2. Thus the pseudo 

code of Fast-AMSgrad becomes as shown in 

table (1) below:
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Table (1): The Pseudo Code of the Developed Optimizer (Fast-AMSgrad) with Criteria Definitions 

Pseudo Code Parameter definition 

1 Input: w, ϵ, 𝔶, β1, β2  w weight 

2 Initialize:𝑚𝑡 = 0, 𝑣𝑡 = 0, 𝑡 = 0, 𝑣̂𝑡 = 0  𝔶 Learning rate 

3 𝑾𝒉𝒊𝒍𝒆 𝑤 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝒅𝒐 ϵ Small value = 10-8 

4 𝑡 = 𝑡 + 1 t Iteration number 

5 𝑔𝑡  = 𝛻𝑓𝑡(𝑤𝑡) gt Gradient at iteration t 

6 𝑚𝑡 = 𝛽1 . 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡 𝛻𝑓𝑡 Computational gradient function 

7 𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2 mt First moment 

8 𝑣̂𝑡 = 𝑚𝑎𝑥 (𝑣̂𝑡−1, 𝑣𝑡) β1 Hyperparameter (Decay rate=0.9) 

9 ∆𝑤𝑡 =  − 
𝔶

𝑣̂𝑡
. 𝑚𝑡  , 𝑤ℎ𝑒𝑛 𝑣̂𝑡 > 0 β2 

𝑣𝑡 

Hyperparameter (Decay rate=0.99) 

Second moment 

10 𝑤𝑡 = 𝑤𝑡−1 +  ∆𝑤𝑡 𝑣̂𝑡 Bias correction of  second moment 

  ∆𝑤𝑡 Weight change 

11 𝑬𝒏𝒅 𝒘𝒉𝒊𝒍𝒆   

 
It can be shown that the power of the 

denominator in the equation of calculating  ∆𝑤𝑡 

controls the speed of the learning throughout the 

stages of the training. In doing so, the equations 

of weight change  ∆𝑤𝑡  in both Fast-AMSgrad 

and AMSgrad are reformulated to modulation 

functions without losing their mathematical 

meaning as shown below: 

 

The weight change in AMSgrad according to 

[Reddi et al, 2018] is given in equation (1) 

below: 

    ∆𝑤𝑡 =  − 
𝔶

√𝑣̂𝑡
. 𝑚𝑡     (1) 

The weight change in Fast-AMSgrad is chosen 

as in equation (2) below: 

    ∆𝑤𝑡 =  − 
𝔶

𝑣̂𝑡
. 𝑚𝑡     (2) 

Where, ∆𝑤𝑡 is the update in weight, 𝔶 is the 

learning rate, 𝑚𝑡 is the first moment, 𝑣̂𝑡 is the 

second moment. 

Equations (1 and 2) can be re-written as follow: 

For AMSgrad         ∆𝑤𝑡 =
 −𝔶. 𝑀1. 𝑚𝑡   (3) 

For Fast-AMSgrad        ∆𝑤𝑡 =
 −𝔶. 𝑀′1. 𝑚𝑡   (4) 

 

Where, (𝑀1 𝑎𝑛𝑑 𝑀′1) are the first 

modulation functions in the two optimizers such 

that: 

For AMSgrad   𝑀1 =  
1

√𝑣̂𝑡
  

 (5) 

For Fast-AMSgrad  𝑀′1 =  
1

𝑣̂𝑡
       

 (6) 

The difference between these two functions is 

shown graphically in figure 2.

 

 
Fig. (2): The Modulation Functions for AMSgrad and Fast-AMSgrad 
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In this figure the red color represents the 

modulation function of AMSgrad, while the blue 

color represents the modulation function of Fast-

AMSgrad. 

Comparison of these two curves reveals the 

followings: 

1-  At 𝑣̂𝑡 > 1, looking at figure 2 it can be 

observed that at 𝑣̂𝑡 > 1 the modulation function 

of Fast-AMSgrad has lower value than that of 

the AMSgrad modulation function. Thus, it can 

be said that the changes on ∆𝑤𝑡 that are made by 

the modulation function of Fast-AMSgrad are 

less than that made by the modulation function 

of AMSgrad. Keeping in mind that increasing 

∆𝑤𝑡 by large amount may lead to overpass the 

global minima, then it can be said that with Fast-

AMSgrad optimizer there will be less chance to 

overpass the global minima than with AMSgrad. 

In fact the case when  𝑣̂𝑡 > 1 is expected to be 

the dominant case in AMSgrad and Fast-

AMSgrad since at each iteration the maximum 

value of  𝑣̂𝑡 from the current and the previous 

iteration is chosen. That is the value of  𝑣̂𝑡 is 

increasing continuously from the first iteration to 

the last iteration. 

2- At 𝑣̂𝑡 = 1, both functions have the same 

value. The point at 𝑣̂𝑡 = 1 represents the turning 

point, at which the value of the modulation 

function of Fast-AMSgrad equals the value of 

the modulation function of AMSgrad. Inspecting 

figure 2, it can be realized that at  𝑣̂𝑡 = 1 the 

curve of the modulation function of Fast-

AMSgrad in blue color looks as a clockwise-

rotation of the modulation function of AMSgrad 

in red color. 

3- At 0 < 𝑣̂𝑡 < 1 the situation is reversed, the 

values of Fast-AMSgrad modulation function 

(blue color) is higher than that of AMSgrad.  

This means, at 0 < 𝑣̂𝑡 < 1 the change in 

∆𝑤𝑡 that is made by Fast-AMSgrad modulation 

function is higher than that made by the 

modulation function of AMSgrad. Keeping in 

mind that in both optimizers the value of 𝑣̂𝑡 

always increases with increasing the iteration, 

this means that the step size of the modulation 

function of Fast-AMSgrad is higher than that of 

the modulation function of AMSgrad. This in 

turns will allow Fast-AMSgrad modulation 

functions to help the process of training to 

continue without sticking in local minima. 

4- In term of speed, since the step size of the 

modulation function of Fast-AMSgrad is higher 

than that of the modulation function of AMSgrad 

at 0 < 𝑣̂𝑡 < 1 , then the difference between the 

values of  ∆𝑤𝑡 from the current iteration to the 

previous iteration will be larger. This will speed 

up the process of training when 0 < 𝑣̂𝑡 < 1. 

When 𝑣̂𝑡 > 1  the step size of the modulation 

functions for both optimizers from iteration to 

iteration will be almost the same but the values 

of ∆𝑤𝑡 that are made by the Fast-AMSgrad 

optimizer are smaller than those made by the 

MASgrad optimizer. Thus, there will be more 

chance for the Fast-AMSgrad to find the local 

minima in less number of iterations. While in the 

AMSgrad there will be more chances that the 

global minima may be bypassed or found after 

quiet large number of iteration. 

 

5. RESULTS AND DISCUSSIONS 

 

In order to reveal the performance of the 

Fast-AMSgrad optimizer and the developed 

CNN and to show the effect of Batch 

Normalization (BN), four models of 

classification are implemented using CIFAR-10 

dataset. These are Fast-AMSgrad with and 

without BN and AMSgrad with and without BN. 

The performance measures including the 

training, validation and their Loss values versus 

epoch numbers of the four models are given in 

table (2). The results are discussed in details in 

the following subsections. Also the testing 

accuracy and the evaluation metrics are 

calculated for each model.
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Table (2): Performance Measures of the Proposed CNN with Different Optimizers 

Method Training 

Accuracy 

Training 

Loss 

Validation 

Accuracy 

Validation 

Loss 

Time Epoch 

No.  

AMSgrad with BN 0.7633 0.6751 0.7857 0.6187 6:5:21 25 

0.8265 0.4952 0.8140 0.5528 12:10:42 50 

0.8882 0.3193 0.8585 0.4354 24:21:12 100 

Fast AMSgrad with 

BN 

0.8690 0.3844 0.8374 0.5046 6:8:8 25 

0.9118 0.2644 0.8692 0.4500 12:16:17 50 

0.9413 0.1937 0.8675 0.4974 24:32:33 100 

AMSgrad without 

BN 

0.6969 0.8685 0.7280 0.7909 3:4:7 25 

0.7851 0.6209 0.7889 0.6126 6:8:13 50 

0.8524 0.4278 0.8354 0.4997 12:16:25 100 

Fast AMSgrad 

without BN 

0.8463 0.4493 0.8289 0.5369 3:5:5 25 

0.8842 0.3443 0.8421 0.5380 6:10:9 50 

0.9074 0.2901 0.8568 0.5514 12:19:30 100 

 
5.1 Training Accuracy 

In the evaluation of training mode three 

criteria are considered instantly, accuracy, loss 

value and computation time. As mentioned 

previously, CIFAR-10 dataset is used. This 

dataset consists of 50 000 images for training 

and 10000 for validation and test. The image 

resolution is 32 by 32 pixels.  The evaluation 

metrics training accuracy of the four models of 

classification versus epoch number is given in 

figure 3. According to this figure, the following 

results can be pointed out: 

1- A comparison between Fast-AMSgrad 

without BN (Green color) and AMSgrad without 

BN (the violet color) shows that the accuracy of 

Fast-AMSgrad without BN is higher than that of  

AMSgrad without BN. Figure 3 also shows that 

the improvement of the accuracy from epoch to 

epoch in the case of Fast-AMSgrad is higher 

than that of AMSgrad without BN. For instance 

Fast-AMSgrad accuracy at the end of epoch (1) 

is 31.11% while for the AMSgrad without BN is 

12.58%. This indicates that the Fast-AMSgrad 

can reach to the convergence state in less 

number of epochs (less time) than AMSgrad.  

Table 2 shows the training accuracy and loss, 

validation accuracy and loss, the time at epoch 

(25), (50) and (100). According to this table the 

training accuracy of Fast-AMSgrad at epoch 

number (50) is 88.42% while the training 

accuracy of AMSgrad is 78.51% and becomes 

85.24% at epoch number (100). This means that 

by Fast-AMSgrad without BN the training time 

is reduced to half of that of the AMSgrad 

without BN and at the same time the achieved 

accuracy by Fast-AMSgrad is higher. 

2- A comparison between Fast-AMSgrad with 

BN (Orange color) and AMSgrad with BN (Blue 

color) in figure 3, shows that the training 

accuracy of Fast-AMSgrad with BN is higher 

than that of AMSgrad with BN. Figure 3 also 

shows that the improvement of the accuracy 

from epoch to epoch in the case of Fast-

AMSgrad with BN is higher than that of 

AMSgrad with BN. For instance Fast-AMSgrad 

accuracy at the end of epoch (1) is 39.97% while 

for the AMSgrad with BN is 26.81%. This 

indicates that the Fast-AMSgrad can reach to the 

convergence state in less number of epochs (less 

time) than AMSgrad. Table 2 shows the training 

accuracy and loss, validation accuracy and loss, 

the time at epoch (25), (50) and (100). 

According to this table the training accuracy of 

Fast-AMSgrad at epoch number (50) is 91.18% 

while the training accuracy of AMSgrad is 

82.65% and at epoch number (100) the training 

accuracy by the Fast-AMSgrad with BN 

becomes 94.13% and for AMSgrad with BN 

becomes 88.82%. This means that by Fast-

AMSgrad with BN the training time is reduced 

to half of that of the AMSgrad with BN and at 

the same time the achieved accuracy by Fast-

AMSgrad is higher. 

3- A comparison between Fast-AMSgrad 

without BN and AMSgrad with BN (the orange 

and blue colors) shows that even Fast-AMSgrad 
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without BN performs better than AMSgrad with 

BN. That means, much of computation time can 

be saved by Fast-AMSgrad while the accuracy is 

remained better than of AMSgrad. The 

computation time for the Fast-AMSgrad without 

BN is (12 h and 19 min) while AMSgrad with 

BN is 24 h 21 min. 

4- In general, the improvement in the accuracy 

of all the schemes of classification is high at the 

beginning epochs and this improvement 

becomes lower at the ending epochs.

 

 

 
Fig. (3). The Training Accuracy for the Four Models of Classification for 100 Epochs. 

 
 

5.2 Training Loss  
Loss value is related inversely to the level of 

confidence of classification. For high level of 

confidence loss value must be small. The value 

of loss is measured from the average of the 

losses of the training samples within mini-batch 

in the current iteration. In this work, the size of 

mini-batch is 64 samples.  However, the loss is 

an important metric that shows how good the 

model is. The main goal is to reduce the loss as 

much as possible. Figure 4 shows that the 

smallest loss value is found for Fast-AMSgrad 

with BN (0.1937) at epoch number (100) and the 

next smallest value is for the Fast-AMSgrad 

without BN (0.2901) at epoch number (100). 

While the loss values for the AMSgrad without 

and with BN are (0.4278 and 0.2901) 

respectively. This leads to the conclusion that 

Fast-AMSgrad is performing better than 

AMSgrad for both cases with and without BN. 
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Fig. (4): The Loss Values for the Training of the Four models of Classification for 100 Epochs. 

 
5.3 Validation Accuracy 

Validating the classification system 

represents one good indicator for evaluating the 

level of success of the network performance. For 

instance, validation accuracy can be used to 

detect the overfitting and underfitting states of 

the network during the training mode. When the 

accuracy of validation and training are close and 

reasonably high, it can be said that the training is 

acceptable. Vice versa, when there is a quit 

difference between the accuracy of validation 

and training, it can be said that the training has 

either overfitting or underfitting problem. 

Overfitting is the case when the network 

performs well for training data and badly for 

validation and testing. In order to evaluate the 

validation of the network, the accuracy and loss 

of the validation are measured for the four 

schemes of classifications. 

The validation accuracy of the four schemes of 

classification against epoch number is given in 

figures 5. According to this figure, the following 

results can be pointed out: 

1. The validation accuracy at epoch number (1) 

for AMSgrad with BN is (38.27%) and for 

AMSgrad without BN is (23.25%) the difference 

of accuracy among these two schemes is (15.02). 

While, the accuracy of Fast-AMSgrad with and 

without BN is (54.25%) and (46.25%) 

respectively, having the difference of (8) which 

is quite lower than the difference of AMSgrad 

schemes. This is a good indicator that the BN 

layer doesn’t have much impact on the new 

proposed optimizer while its effect on AMSgrad 

is very high. 

2. At epoch number (50) the accuracy of Fast-

AMSgrad with BN is (0.8692) which is the 

convergence state of this network and the 

training process can be terminated for this 

optimizer. While the accuracy of AMSgrad with 

BN at epoch number (50) is (81.4%) and at 

epoch number (100) is (85.85%). This assures 

the good performance (accuracy and speed) of 

the Fast-AMSgrad with BN over that of 

AMSgrad with BN and much faster to find the 

global minima. 

3. The accuracy of Fast-AMSgrad without BN at 

epoch number (100) is (85.68%) that is very 

close to accuracy of AMSgrad with BN accuracy 

which is (85.85%). While the accuracy of 

AMSgrad without BN is (83.54) at epoch 

number (100).  

4. It can be clearly seen from figure 5, that the 

new proposed optimizer provides smooth 

learning with less oscillation.
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Fig. (5): The Validation Accuracy for the Four Models of Classification for 100 Epochs. 

 
5.4 Validation Loss 

The validation loss can also be used as an 

indicator to detect whether the CNN is 

overfitting or not. In addition, it shows the level 

of confidence of the predicted values made by 

CNN. As shown in figure 6 and in table 2, the 

validation loss values achieved by all four 

optimizers are decreasing with the number of 

epochs.  

For Fast-AMSgrad with BN the validation 

loss values at epoch number (25) is (0.5046) and 

decreases to (0.4974) at epoch number (100).  

For AMSgrad with BN the validation loss 

values at epoch number (25) is (0.6187) and 

decreases to (0.4354) at epoch number (100).  

For Fast-AMSgrad without BN the validation 

loss values at epoch number (25) is (0.5369) and 

decreases to (0.5514) at epoch number (100).  

For AMSgrad without BN the validation loss 

values at epoch number (25) is (0.7909) and 

decreases to (0.4997) at epoch number (100).  

Since the loss values are decreasing with 

epoch number then this indicates that the 

training of the CNN with four optimizers is 

acceptable.

 

 
Fig. (6): The Loss Values for Validation for the Four Models of Classification for 100 Epochs. 
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To illustrate better, the differences between 

the performances of the four optimizations 

algorithms at different epoch number, tables 3 is 

given. It can be seen that the fastest model is 

Fast-AMSgrad with BN and Fast-AMSgrad 

without BN comes in second place, while 

AMSgrad without BN is performing poorly.

  

 
Table (3):  Accuracy and speed of the CNN with four optimizers at different epoch number 

Method Training 

Accuracy 

Validation 

Accuracy 

Epoch Number Time / h  

AMSgrad with BN 0.8299% 0.8333% 52 12:66 

Fast AMSgrad with BN 0.8423% 0.835% 18 4:41 

AMSgrad without BN 0.8475% 0.832% 94 11:53 

Fast AMSgrad without BN 0.8303% 0.8306% 20 2:46 

 
5

.5 Testing Accuracy 

In testing mode, 2000 images are used. The 

predicted labels with true labels are fed to 

confusion matrix, and then the classification 

metrics, classification accuracy, precision, Kapa 

and error measures are calculated, [Drăgulescu 

et al, 2015]. Table 4 shows the results. 

According to this table, Fast-AMSgrad performs 

better than AMSgrad for both cases, without and 

with BN. It can be seen that Fast-AMSgrad 

without BN performs even better than AMSgrad 

with BN. This result coincides with that 

achieved for the validation during the training 

mode. That is, with FAST-AMSgrad the CNN 

does not need BN layers and much of 

computation time can be saved for the CNN 

training while still performing better than 

AMSgrad with BN. In this table, the 

classification metrics are also shown. The error 

values for the Fast-AMSgrad with and without 

BN are 0.1414 and 0.1554 which are acceptable 

compared to previous works such as  [Zeiler and 

Fergus, 2014: Krizhevsky et al, 2012]. The 

kappa coefficient values also indicate the 

confidentiality of the results.

 
Table (4): Performance measures for Testing Mode 

Method Overall 

Accuracy 

Precision Error  Kappa 

Coefficient 

AMSgrad with BN 0.8415 0.8457 0.1585 0.8238 

Fast AMSgrad with BN 0.8585 0.8634 0.1414 0.8427 

AMSgrad without BN 0.818 0.8230 0.1820 0.7977 

Fast AMSgrad without BN 0.8445 0.8477 0.1554 0.8272 

 

6. CONCLUSIONS 

 

The implementation of the CNN with and 

without BN has shown that with Fast-AMSgrad 

algorithm the training time is reduced to half of 

the time needed by AMSgrad while achieving 

better accuracy for training, validation and 

testing.  The decrease in the validation loss 

values with increasing the epoch number 

indicate that the training was working properly. 

The division of the update weight by the second 

order moment has let the Fast-AMSgrad to be 

less affected by the use of BN since even when 

used without BN it has performed better than 

AMSgrad with BN and thus saving a lot of 

computation time. The kappa coefficient values 

for all schemes of classification were within the 

range of perfect agreement which means that the 

classification performance is good compared to 

just randomly assigning values. The error 

percents and precisions for all schemes were 

acceptable compared to the results of previous 

works. In particular the error percent provided 

by Fast-AMSgrad was good. These error 

percents assure that the architecture of CNN is 

adaptable for both optimization algorithms. 

According to the classification metrics of table 

3, Fast-AMSgrad with BN was the best and Fast-

AMSgrad without BN was the second best.  
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