
Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp 109-114, 2019

hasan.hazim@uod.ac

901

ON MODIFICATION OF SYMMETRIC RANK ONE FOR TRAINING

NEURAL NETWORK BASED ON GRADIENT VECTOR

HASAN HAZIM JAMEEL*,and SALAH GHAZE SHAREEF**

*Dept. of Mathematics, College of Basic Education, University of Duhok, Kurdistan region – Iraq.

**Dept. of Mathematics, Faculty of Science, University of Zakho, Zakho, Kurdistan region – Iraq.

(Received: July 8, 2019; Accepted for Publication: November 28, 2019)

ABSTRACT
In this paper, a modification of Symmetric Rank One (SR1) is propounded on the grounds of

Modifying gradient-difference vector which meets Quasi condition and positive definite conditions. The

new method is compared with the standard test results of the SR1 algorithm. In general, the modified

method is more superior and efficient when compared to the standard Quasi-Newton method

KEY WORDS: SR1 method, Quasi-Newton method, Neural Network, optimization.

1. INTRODUCTION

rtificial Neural Networks (ANNs) are

greatly applied in various areas of

science, in pattern classification, function

approximation, optimization, pattern matching

and associative memories [2, 6]. Though the

success and the promise of artificial neural

networks in addressing practical problems, their

design procedure still requires trial-and-The

error. Attainment of the optimal structure of

artificial neural networks for a problem is one of

the typical problems in neural network design.

Back propagation (BP) learning can recognize

the training of feed-forward multilayer neural

network. The algorithm primarily revises neural

network weights pursuant to the gradient descent

methods to decrease errors.

The ANN is comprised of a set of processing

factors known as neurons or nodes which are

interconnected with each other [1]. Usually, the

node transfer function is a nonlinear function

suchlike a sigmoid function, a Gaussian

function, etc. In this study, sigmoid function is

employed.

 The optimization aim is to minimize the

objective function by optimizing the network

weight. E(w) means that a square function is

selected as a sum error function[10].

𝐸(𝑤) =
1

2
∑ ∑ (𝑂𝑙

𝑝
− 𝑡𝑟

𝑚)
2𝑝

𝑙=1
𝑚
𝑟=1 (1.1)

where 𝑤 is weight vector at each iteration;

𝑂𝑙
𝑝

 and 𝑡𝑟
𝑚 represent respectively the actual and

predicted value. For effectively training neural

networks in scientific and engineering, SR1

algorithm is considered one of the most

competitive formulations among the Quasi-

Newton methods which is known as one of the

most efficient manners to solve nonlinear

unconstrained or bound constrained optimization

problems. These methods are mostly utilized

when the second derivative matrix of the

objective function is either unavailable or too

pricey to compute, they allow. Therefore, the

curvature of the problem to be exploited in the

numerical algorithm, despite the fact that only

first derivatives (gradients) and function values

are required see [4, 5, 11, 12].

The Symmetric rank one produce the sequence

of weight {𝑤j}, is given by

𝑤𝑗+1 = 𝑤𝑗 + 𝛿𝑗𝑑𝑗 (1.2)

Where the search direction is and satisfies the

descent condition

𝑑𝑗 = −𝐻𝑗𝛻𝐸(𝑤𝑗) 𝑗 > 0 (1.3)

𝐻𝑗
 is usually required to be positive definite

to assure a descent direction for 𝐸 . 𝐻𝑗 is

upgraded at each iteration using gradient vector,

and 𝛿𝑗 > 0 is learning rate in machine learning.

The 𝐻𝑗
 is defined using sequences of vectors 𝑠𝑗

and 𝑦𝑗, which are given as

 𝑠𝑗 = 𝑤𝑗+1 − 𝑤𝑗 and 𝑦𝑗 = 𝛻𝐸(𝑤𝑗+1) − 𝛻𝐸(𝑤𝑗)

 (1.4)

A

Nipeal
Text Box
https://doi.org/10.26682/sjuod.2019.22.2.12

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp, 2019

990

The SR1 is the unique rank-one in the class

of Quasi Newton update satisfying Quasi-

Newton condition:

𝐻𝑗+1𝑦𝑗 = 𝑠𝑗 (1.5)

where 𝐻𝑗+1 = 𝐻𝑗 +
(𝑠𝑗−𝐻𝑗𝑦𝑗)(𝑠𝑗−𝐻𝑗𝑦𝑗)𝑇

𝑦𝑗
𝑇(𝑠𝑗−𝐻𝑗𝑦𝑗)

 ,

 (1.6)

where 𝑦𝑗 and 𝑠𝑗 are defined in (1.4) and

𝑦𝑗
𝑇(𝑠𝑗 − 𝐻𝑗𝑦𝑗) ≠ 0 for each 𝑗,

see [4,7].

Proving the positive definite condition of

Quasi-Newton method, SR1, usually needs that

the step size of 𝛿𝑗 achieves the following Wolfe

Conditions [13].

𝐸(𝑤𝑗 + 𝛿𝑗𝑑𝑗) ≤ 𝐸(𝑤𝑗) + 𝜎1𝛿𝑗∇𝐸(𝑤𝑗)
𝑇

𝑑𝑗

(1.7)

|∇𝐸(𝑤𝑗 + 𝛿𝑗𝑑𝑗)
𝑇

𝑑𝑗| ≤ 𝜎2|∇𝐸𝑗
𝑇𝑑𝑗| (1.8)

where 0 < 𝜎1 < 𝜎2 < 1.

So, the standard Wolfe condition is (1.7) and

∇𝐸(𝑤𝑗 + 𝛿𝑗𝑑𝑗)
𝑇

𝑑𝑗 ≥ 𝜎2∇𝐸𝑗
𝑇𝑑𝑗 (1.9)

This study is outlined as follows: in section

one, we present an introduction to neural

network. Section Two sheds light on SR1

modification whereas the third one deals with

the proof of quasi and positive definite condition

which verifies the SR1 modification. The forth

section illustrates the numerical results which

are compared with standard test results.

2. SYMMETRIC RANK ONE

MODIFICATION

 In this section, modified SR1 is suggested

for modifying SR1 by the usage of gradient-

difference vector given in (1.6)

𝑦𝑗̅ = 𝑦𝑗 + (1 − 𝜃)(𝐺𝑗𝑠𝑗 − 𝑦𝑗) where 0 < 𝜃 < 1

(2.1)

For more details see [8].

In a bid to use the Hessian in 𝐻𝑗 Andrei in [9]

suggested a nonlinear conjugate gradient

algorithm in which the Hessian/vector product

𝛻2𝐸(𝑤𝑗+1)𝑠𝑗 is approximated by finite

differences:

𝑦𝑗̅ = 𝑦𝑗 + (1 − 𝜃) (
𝑦𝑗

𝜎
− 𝑦𝑗) (2.2)

where 𝜎 =
2√𝜖𝑚(1+‖𝑤𝑗+1‖)

‖𝑠𝑗‖
 , and 𝜖𝑚 is error

machine used for accuracy which is the smallest

positive < 1.

Thus

𝐻𝑗+1
𝑛𝑒𝑤 = 𝐻𝑗 +

(𝑠𝑗−𝐻𝑗𝑦̅𝑗)(𝑠𝑗−𝐻𝑗𝑦̅𝑗)𝑇

 𝑦̅𝑗
𝑇(𝑠𝑗−𝐻𝑗𝑦̅𝑗)

 (2.3)

Algorithm 1.

Step (1) Let 𝑤0, an initial point, be given as

well as an identity nxn symmetric positive

definite 𝐻0 , 𝜀 is a termination scalar and set 𝑗 =
0.

Step (2) compute 𝑑𝑗 = −𝐻𝑗𝑔𝑗 where 𝑔𝑗 =

𝛻𝐸(𝑤𝑗).

Step (3) Calculate 𝛿𝑗 to minimize 𝐸(𝑤𝑗 + 𝛿𝑗𝑑𝑗).

Step (4) find new point of weight from (1.2)

Step (5) If ‖𝑔𝑗+1‖ < ε then 𝑤∗ = 𝑤𝑗 then stop

 Else find 𝑠𝑗 from 𝑠𝑗 = 𝑤𝑗+1 − 𝑤𝑗 go to

step (5)

Step (6) Evaluate the hessian matrix by using

(2.2) and (2.3).

Step (7) set 𝑗 = 𝑗 + 1 go to step 2.

3. QUASI AND POSITIVE DEFINITE

CONDITIONS

In this section, we have proved that the

modification of SR1 is satisfying Quasi and

positive definite conditions.

Theorem3.1 If the new algorithm is applied to

the quadratic with Hessian 𝐺 = 𝐺𝑇 , then

𝐻𝑗+1𝑦̅𝑗 = 𝑠𝑗 , 𝑗 > 0. (3.1)

Proof: Multiplying both sides of (2.3) by 𝑦̅𝑗

from right, we have:

𝐻𝑗+1
𝑛𝑒𝑤𝑦̅𝑗 = 𝐻𝑗𝑦̅𝑗 +

(𝑠𝑗−𝐻𝑗𝑦𝑗̅̅ ̅)(𝑠𝑗−𝐻𝑗𝑦𝑗̅̅ ̅)𝑇

 𝑦̅𝑗
𝑇(𝑠𝑗−𝐻𝑗𝑦𝑗̅̅ ̅)

𝑦̅𝑗

(3.2)

It is clear that (𝑠𝑗 − 𝐻𝑗𝑦𝑗̅)𝑇𝑦̅𝑗 is scalar and

 𝑦̅𝑗
𝑇(𝑠𝑗 − 𝐻𝑗𝑦𝑗̅)

 is also scalar

∴ (𝑠𝑗 − 𝐻𝑗𝑦̅𝑗)𝑇yj̅ = 𝑦̅𝑗
𝑇(𝑠𝑗 − 𝐻𝑗𝑦𝑗̅)

(3.3)

Therefore we have

𝐻𝑗+1
𝑛𝑒𝑤𝑦̅𝑗 = 𝐻𝑗𝑦̅𝑗 + (𝑠𝑗 − 𝐻𝑗𝑦̅𝑗)

(3.4)

𝐻𝑗+1
𝑛𝑒𝑤𝑦𝑗̅ = 𝑠𝑗∎

Theorem3.2 If 𝐻𝑗 is a positive definite, then the

matrix 𝐻𝑗+1 generated by the 𝐻𝑗+1
𝑛𝑒𝑤 algorithm is

also positive definite.

Proof: Multiplying both sides of (2.3) by 𝑦̅𝑗

from right and by 𝑦̅𝑗
𝑇from left, we have

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp, 2019

999

𝑦̅𝑗
𝑇𝐻𝑗+1

𝑛𝑒𝑤𝑦𝑗̅ = 𝑦𝑗̅
𝑇𝐻𝑗𝑦𝑗̅

+
𝑦𝑗̅

𝑇(𝑠𝑗 − 𝐻𝑗𝑦̅𝑗)(𝑠𝑗 − 𝐻𝑗𝑦𝑗̅)𝑇𝑦𝑗̅

 𝑦̅𝑗
𝑇(𝑠𝑗 − 𝐻𝑗𝑦𝑗̅)

So

 𝑦̅𝑗
𝑇𝐻𝑗+1

𝑛𝑒𝑤𝑦𝑗̅ = 𝑠𝑗
𝑇𝑦𝑗̅ (3.5)

By substituting (2.2) in (3.5) we get

𝑦𝑗̅
𝑇𝐻𝑗+1𝑦𝑗̅ = 𝑠𝑗

𝑇[(𝑦𝑗 + (1 − 𝜃) (
𝑦𝑗

𝜎
− 𝑦𝑗)] ,

where 0 < θ < 1.

 = 𝑠𝑗
𝑇𝑦𝑗 [1 + (1 − 𝜃) (

1

σ
− 1)]

Suppose that k = [1 + (1 − θ) (
1

σ
− 1)]

Because σ is between 0 & 1 so 𝑘 will always
be greater than zero.

𝑠𝑗
𝑇𝑦𝑗 = 𝑠𝑗

𝑇 (𝛻𝐸(𝑤𝑗+1) − 𝛻𝐸(𝑤𝑗))

 = 𝑠𝑗
𝑇𝛻𝐸(𝑤𝑗+1) − 𝑠𝑗

𝑇𝛻𝐸(𝑤𝑗)

 = 𝛼𝑗𝑑𝑗
𝑇𝛻𝐸(𝑤𝑗+1) + 𝛼𝑗𝛻𝐸(𝑤𝑗)

𝑇
𝐻𝑗𝛻𝐸(𝑤𝑗)

By using Wolfe condition in (1.9)

𝑠𝑗
𝑇𝑦𝑗 ≥ 𝛼𝑗𝜎2𝑑𝑗

𝑇𝛻𝐸(𝑤𝑗) + 𝛼𝑗𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗)

 = −𝛼𝑗𝜎2𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗) +

𝛼𝑗𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗), where 0 < 𝜎2 < 1

 = (1 − 𝜎2)𝛼𝑗𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗)
Since 0 < 𝜎2 < 1, and 𝐻𝑗 is positive definite

Then,(1 − 𝜎2)𝛼𝑗𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗) > 0

𝑠𝑗
𝑇𝑦𝑗 > 0.

∴ 𝑠𝑗
𝑇𝑦𝑗 [1 + (1 − 𝜃) (

1

𝜎.
− 1)] > 0.

So 𝑦𝑗̅
𝑇𝐻𝑗+1𝑦𝑗̅ ≥ 0∎

4.1 Numerical Results

 This section is devoted to testing the

implementation of the modified methods. The

modified method is compared to the standard

SR1. The results given in Table 1 specifically

quote the NOI and NOF. Table 1 shows that the

modified SR1 method is superior to standard

(SR1) method with respect to NOI and NOF.

Furthermore, the modified SR1 algorithms and

the standard SR1 algorithms are compared when

the input 𝑝 = [0.1 0.1] and target 𝑡 = [1 1]. The

target error has been set to 0.01 and the

maximum epochs to 3000. The numerical results

can be seen in Table 3.

Table (1): Comparison between Modified and Standard SR1 Algorithm

Test Function

 N Standard formula SR1 MODIFIED SR1

NOI NOF NOI NOF

G-Central 4

100

500

1000

5000

36

43

60

66

72

253

331

496

554

616

15

29

32

49

63

90

215

247

411

549

Miler 4

100

500

1000

5000

34

47

53

53

65

329

182999

183098

183098

189123

26

43

51

48

57

105

938

170

162

203

Rosen

4

100

500

1000

5000

31

32

33

37

37

90

94

98

115

120

30

30

30

30

31

81

81

81

80

84

GWolfe

4

100

500

1000

5000

11

44

47

50

106

24

89

95

101

294

11

44

47

49

105

24

89

95

99

212

Cubic

4

100

500

1000

15

16

16

16

48

66

51

55

12

16

16

16

34

46

46

46

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp, 2019

991

5000 16 50 16 46

Gpowell3 4

100

500

1000

5000

14

15

15

15

16

35

37

37

37

40

13

14

15

15

15

31

33

35

35

35

sum 4

100

500

1000

5000

3

14

21

23

38

11

83

119

123

176

3

14

21

23

38

11

80

118

121

176

Total - 1210

742985

1067

4909

Table (2): The Rate of Improvement between Modified Algorithm and Standard SR1 algorithm.

zTools SR1 Modified SR1

NOI 100% 88.1818

NOF 100% 0.6607

The above table illustrates the rate of

improvement in the modified standard SR1

algorithm. The numerical results of the new

algorithm are better than the standard algorithm.

As noted, the number of iterations and the

number of function evaluations of the standard

algorithm are about 100%. In other words, the

new algorithm has improvement as compared to

standard algorithm with 11.8182% in NOI and

99.3393% in NOF when 𝜃 ∈ (0,1).

Table (3): Comparing the Performance of Modified Algorithm with Standard SR1 Algorithm.

Methods No.

Running

Epochs

SR1 1

2

3

4

5

1000

1000

833

1000

1000

Modified 1

2

3

4

5

677

165

268

224

1000

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp, 2019

991

Fig.(1): Performance of standard SR1 algorithm for training neural networks.

 Fig. (2): Performance of modified SR1 algorithm for training neural networks.

4. CONCLUSION

This work, propounded a modification of

SR1 by using gradient-difference vector. The

quasi-newton condition and positive definite

have been proved. In addition, the modification

algorithms are used for training neural networks

according to outcomes a modified method is

more superior and effective than the standard

SR1.

REFERENCES

X. Yao, Evolving artificial neural networks,

Proceedings of the IEEE, 1999, vol. 87, no.

9, pp. 1423-1447,.

J. Dayhoff, An Introduction to Neural Network

Architectures, New York: Van Nostrand

Reinhold, 1990.

J. Nocedal and S. J. Wright. Numerical

Optimization. Springer, New York, 2006, 2nd

edition.

J.E. Dennis and J.J. Mor6, Quasi-Newton methods,

motivation and theory, SIAM Review 1977,

19, 46-89.

J.E. Dennis and R.B. Schnabel, Numerical Methods

for Unconstrained Optimization and

Nonlinear Equations, Prentice-Hall,

Englewood Cliffs, NJ, 1983, 4.

Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp, 2019

991

K. Mehrotra, C. K. Mohan, and S. Ranka, Elements

of Artificial Neural Networks, Cambridge,

MA: MIT Press, 1997.

L. Bottou, F. Curtis, and J. Nocedal. Optimization

methods for large-scale machine learning,

SIAM Review, 2018, 60(2):223311.

M. Al-Baali and H. Khalfan, An Overview of Some

Practical QuasiNewton Methods for

Unconstrained Optimization, SQU Journal For

Science, 2007, 12 (2) 199-209.

N. Andrei, Accelerated conjugate gradient

algorithm with finite difference

Hessian/vector product approximation for

unconstrained optimization, J. Comput. Appl.

Math, 2009, 230, no. 2, 570–582.

Ngoc Tam Bui and Hiroshi Hasegawa, Training

Artificial Neural Network Using

Modification of Differential Evolution

Algorithm, International Journal of Machine

Learning and Computing, February 2015, Vol.

5, No. 1.

P.E. Gill, W. Murray and M.H. Wright, Practical

Optimization Academic Press, New York,

1981, 8.

R. Fletcher, Practical Methods of Optimization:

Unconstrained Optimization, Wiley,

Chichester, 1980.

Stephen J. Wright and Jorge Nocedal, numerical

optimization. Springer new york 2006.

