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ABSTRACT  
In this paper, a modification of Symmetric Rank One (SR1) is propounded  on the grounds of 

Modifying gradient-difference vector which meets Quasi condition and positive definite conditions. The 

new method is compared with the standard test results of the SR1 algorithm. In general, the modified 

method is more superior and efficient when compared to the standard Quasi-Newton method
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1. INTRODUCTION 
 

rtificial Neural Networks (ANNs) are 

greatly applied in various areas of 

science, in pattern classification, function 

approximation, optimization, pattern matching 

and associative memories [2, 6]. Though the 

success and the promise of artificial neural 

networks in addressing practical problems, their 

design procedure still requires trial-and-The 

error. Attainment of the optimal structure of 

artificial neural networks for a problem is one of 

the typical problems in neural network design. 

Back propagation (BP) learning can recognize 

the training of feed-forward multilayer neural 

network. The algorithm primarily revises neural 

network weights pursuant to the gradient descent 

methods to decrease errors.   

The ANN is comprised of a set of processing 

factors known as neurons or nodes which are 

interconnected with each other [1]. Usually, the 

node transfer function is a nonlinear function 

suchlike a sigmoid function, a Gaussian 

function, etc. In this study, sigmoid function is 

employed. 

 The optimization aim is to minimize the 

objective function by optimizing the network 

weight. E(w) means that a square function  is 

selected as a  sum error function[10]. 

𝐸(𝑤) =
1

2
∑  ∑ (𝑂𝑙

𝑝
− 𝑡𝑟

𝑚)
2𝑝

𝑙=1
𝑚
𝑟=1            (1.1)  

where 𝑤 is weight vector at each iteration; 

𝑂𝑙
𝑝

 and 𝑡𝑟
𝑚 represent respectively the actual and 

predicted value. For effectively training neural 

networks in scientific and engineering, SR1 

algorithm is considered one of the most 

competitive formulations among the Quasi-

Newton methods which is known as one of the 

most efficient manners to solve nonlinear 

unconstrained or bound constrained optimization 

problems. These methods are mostly utilized 

when the second derivative matrix of the 

objective function is either unavailable or too 

pricey to compute, they allow. Therefore, the 

curvature of the problem to be exploited in the 

numerical algorithm, despite the fact that only 

first derivatives (gradients) and function values 

are required  see [4, 5, 11, 12]. 

The Symmetric rank one produce the sequence 

of weight {𝑤j}, is given by  

𝑤𝑗+1 = 𝑤𝑗 + 𝛿𝑗𝑑𝑗                                         (1.2)  

Where the search direction is and satisfies the 

descent condition  

𝑑𝑗 =  −𝐻𝑗𝛻𝐸(𝑤𝑗)   𝑗 > 0                             (1.3)  

𝐻𝑗
  is usually required to be positive definite 

to assure a descent direction for 𝐸 . 𝐻𝑗 is 

upgraded at each iteration using gradient vector, 

and 𝛿𝑗 > 0 is learning rate in machine learning. 

The 𝐻𝑗
  is defined using sequences of vectors 𝑠𝑗  

and 𝑦𝑗, which are given as 

 𝑠𝑗 = 𝑤𝑗+1 − 𝑤𝑗  and 𝑦𝑗 = 𝛻𝐸(𝑤𝑗+1) − 𝛻𝐸(𝑤𝑗) 

                    (1.4) 
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The SR1 is the unique rank-one in the class 

of Quasi Newton update satisfying Quasi-

Newton condition: 

𝐻𝑗+1𝑦𝑗 = 𝑠𝑗                                             (1.5)  

where 𝐻𝑗+1 = 𝐻𝑗 +
(𝑠𝑗−𝐻𝑗𝑦𝑗)(𝑠𝑗−𝐻𝑗𝑦𝑗)𝑇

𝑦𝑗
𝑇(𝑠𝑗−𝐻𝑗𝑦𝑗)

 ,                   

                              (1.6) 

where 𝑦𝑗 and 𝑠𝑗   are defined in (1.4) and 

𝑦𝑗
𝑇(𝑠𝑗 − 𝐻𝑗𝑦𝑗) ≠ 0 for each 𝑗, 

see [4,7]. 

Proving the positive definite condition of 

Quasi-Newton method, SR1, usually needs that 

the step size of 𝛿𝑗 achieves the following Wolfe 

Conditions [13].  

𝐸(𝑤𝑗 + 𝛿𝑗𝑑𝑗) ≤ 𝐸(𝑤𝑗) + 𝜎1𝛿𝑗∇𝐸(𝑤𝑗)
𝑇

𝑑𝑗                                                    

(1.7) 

|∇𝐸(𝑤𝑗 + 𝛿𝑗𝑑𝑗)
𝑇

𝑑𝑗| ≤ 𝜎2|∇𝐸𝑗
𝑇𝑑𝑗|           (1.8) 

where 0 < 𝜎1 < 𝜎2 < 1. 

So, the standard Wolfe condition is (1.7) and 

∇𝐸(𝑤𝑗 + 𝛿𝑗𝑑𝑗)
𝑇

𝑑𝑗 ≥ 𝜎2∇𝐸𝑗
𝑇𝑑𝑗                 (1.9) 

This study is outlined as follows: in section 

one, we present an introduction to neural 

network. Section Two sheds light on SR1 

modification whereas the third one deals with 

the proof of quasi and positive definite condition 

which verifies the SR1 modification. The forth 

section illustrates the numerical results which 

are compared with standard test results.       

 

2. SYMMETRIC RANK ONE 

MODIFICATION 

 

     In this section, modified SR1 is suggested 

for modifying SR1 by the usage of gradient-

difference vector given in (1.6)  

𝑦𝑗̅ = 𝑦𝑗 + (1 − 𝜃)(𝐺𝑗𝑠𝑗 − 𝑦𝑗)  where 0 < 𝜃 < 1                                           

(2.1)  

For more details see [8]. 

In a bid to use the Hessian in 𝐻𝑗 Andrei in [9] 

suggested a nonlinear conjugate gradient 

algorithm in which the Hessian/vector product 

𝛻2𝐸(𝑤𝑗+1)𝑠𝑗 is approximated by finite 

differences: 

𝑦𝑗̅ = 𝑦𝑗 + (1 − 𝜃) (
𝑦𝑗

𝜎
− 𝑦𝑗)                       (2.2) 

where  𝜎 =
2√𝜖𝑚(1+‖𝑤𝑗+1‖)

‖𝑠𝑗‖
 , and 𝜖𝑚 is error 

machine used for accuracy which is the smallest 

positive < 1. 

Thus  

𝐻𝑗+1
𝑛𝑒𝑤  = 𝐻𝑗 +

(𝑠𝑗−𝐻𝑗𝑦̅𝑗)(𝑠𝑗−𝐻𝑗𝑦̅𝑗)𝑇

 𝑦̅𝑗
𝑇(𝑠𝑗−𝐻𝑗𝑦̅𝑗)

                (2.3)   

Algorithm 1. 

Step (1) Let 𝑤0, an initial point, be given as 

well as an identity nxn symmetric positive 

definite 𝐻0 , 𝜀 is a termination scalar  and set 𝑗 =
0.  

Step (2) compute 𝑑𝑗 = −𝐻𝑗𝑔𝑗  where 𝑔𝑗 =

𝛻𝐸(𝑤𝑗). 

Step (3) Calculate 𝛿𝑗 to minimize 𝐸(𝑤𝑗 + 𝛿𝑗𝑑𝑗). 

Step (4) find new point of weight from (1.2) 

Step (5) If ‖𝑔𝑗+1‖ < ε then 𝑤∗ = 𝑤𝑗  then stop  

              Else find 𝑠𝑗  from 𝑠𝑗 = 𝑤𝑗+1 − 𝑤𝑗 go to 

step (5) 

Step (6) Evaluate the hessian matrix by using 

(2.2) and (2.3). 

Step (7) set 𝑗 = 𝑗 + 1 go to step 2. 

 

3. QUASI AND POSITIVE DEFINITE 

CONDITIONS 

 

In this section, we have proved that the 

modification of SR1 is satisfying Quasi and 

positive definite conditions.  

 

Theorem3.1 If the new algorithm is applied to 

the quadratic with Hessian 𝐺 = 𝐺𝑇 , then  

𝐻𝑗+1𝑦̅𝑗 = 𝑠𝑗 , 𝑗 > 0.                                  (3.1) 

Proof: Multiplying both sides of (2.3) by 𝑦̅𝑗 

from right, we have:   

𝐻𝑗+1
𝑛𝑒𝑤𝑦̅𝑗 = 𝐻𝑗𝑦̅𝑗 +

(𝑠𝑗−𝐻𝑗𝑦𝑗̅̅ ̅)(𝑠𝑗−𝐻𝑗𝑦𝑗̅̅ ̅)𝑇

 𝑦̅𝑗
𝑇(𝑠𝑗−𝐻𝑗𝑦𝑗̅̅ ̅) 

 
𝑦̅𝑗                                                            

(3.2) 

It is clear that (𝑠𝑗 − 𝐻𝑗𝑦𝑗̅)𝑇𝑦̅𝑗  is scalar and  

 𝑦̅𝑗
𝑇(𝑠𝑗 − 𝐻𝑗𝑦𝑗̅) 

  is also scalar  

∴ (𝑠𝑗 − 𝐻𝑗𝑦̅𝑗)𝑇yj̅ =  𝑦̅𝑗
𝑇(𝑠𝑗 − 𝐻𝑗𝑦𝑗̅) 

                                                                

(3.3) 

Therefore we have  

𝐻𝑗+1
𝑛𝑒𝑤𝑦̅𝑗 = 𝐻𝑗𝑦̅𝑗 + (𝑠𝑗 − 𝐻𝑗𝑦̅𝑗)                                                                        

(3.4) 

𝐻𝑗+1
𝑛𝑒𝑤𝑦𝑗̅ = 𝑠𝑗∎ 

 

Theorem3.2 If 𝐻𝑗 is a positive definite, then the 

matrix 𝐻𝑗+1 generated by the 𝐻𝑗+1
𝑛𝑒𝑤 algorithm is 

also positive definite. 

Proof: Multiplying both sides of (2.3) by 𝑦̅𝑗 

from right and by 𝑦̅𝑗
𝑇from left, we have   
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𝑦̅𝑗
𝑇𝐻𝑗+1

𝑛𝑒𝑤𝑦𝑗̅ = 𝑦𝑗̅
𝑇𝐻𝑗𝑦𝑗̅

+
𝑦𝑗̅

𝑇(𝑠𝑗 − 𝐻𝑗𝑦̅𝑗)(𝑠𝑗 − 𝐻𝑗𝑦𝑗̅)𝑇𝑦𝑗̅

 𝑦̅𝑗
𝑇(𝑠𝑗 − 𝐻𝑗𝑦𝑗̅) 

 
 

So  

 𝑦̅𝑗
𝑇𝐻𝑗+1

𝑛𝑒𝑤𝑦𝑗̅ = 𝑠𝑗
𝑇𝑦𝑗̅                                 (3.5) 

By substituting (2.2) in (3.5) we get  

𝑦𝑗̅
𝑇𝐻𝑗+1𝑦𝑗̅ = 𝑠𝑗

𝑇[(𝑦𝑗 + (1 − 𝜃) (
𝑦𝑗

𝜎
− 𝑦𝑗)] , 

where 0 < θ < 1. 

                 = 𝑠𝑗
𝑇𝑦𝑗 [1 + (1 − 𝜃) (

1

σ
− 1)]

 
 

Suppose that k = [1 + (1 − θ) (
1

σ
− 1)] 

Because σ is between 0 & 1 so 𝑘 will always 
be greater than zero. 

𝑠𝑗
𝑇𝑦𝑗 = 𝑠𝑗

𝑇 (𝛻𝐸(𝑤𝑗+1) − 𝛻𝐸(𝑤𝑗)) 

         = 𝑠𝑗
𝑇𝛻𝐸(𝑤𝑗+1) − 𝑠𝑗

𝑇𝛻𝐸(𝑤𝑗) 

         = 𝛼𝑗𝑑𝑗
𝑇𝛻𝐸(𝑤𝑗+1) + 𝛼𝑗𝛻𝐸(𝑤𝑗)

𝑇
𝐻𝑗𝛻𝐸(𝑤𝑗) 

By using Wolfe condition in (1.9) 

𝑠𝑗
𝑇𝑦𝑗 ≥ 𝛼𝑗𝜎2𝑑𝑗

𝑇𝛻𝐸(𝑤𝑗) + 𝛼𝑗𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗) 

         = −𝛼𝑗𝜎2𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗) +

𝛼𝑗𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗), where 0 < 𝜎2 < 1 

         = (1 − 𝜎2)𝛼𝑗𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗) 
Since 0 < 𝜎2 < 1, and 𝐻𝑗 is positive definite 

Then,(1 − 𝜎2)𝛼𝑗𝛻𝐸(𝑤𝑗)
𝑇

𝐻𝑗𝛻𝐸(𝑤𝑗) > 0 

𝑠𝑗
𝑇𝑦𝑗 > 0. 

∴  𝑠𝑗
𝑇𝑦𝑗 [1 + (1 − 𝜃) (

1

𝜎.
− 1)] > 0. 

So  𝑦𝑗̅
𝑇𝐻𝑗+1𝑦𝑗̅ ≥ 0∎ 

 
4.1 Numerical Results 

     This section is devoted to testing the 

implementation of the modified methods. The 

modified method is compared to the standard 

SR1. The results given in Table 1 specifically 

quote the NOI and NOF. Table 1 shows that the 

modified SR1 method is superior to standard 

(SR1) method with respect to NOI and NOF. 

Furthermore, the modified SR1 algorithms and 

the standard SR1 algorithms are compared when 

the input 𝑝 = [0.1 0.1] and target 𝑡 = [1 1]. The 

target error has been set to 0.01 and the 

maximum epochs to 3000. The numerical results 

can be seen in Table 3.

   

Table (1): Comparison between Modified and Standard SR1 Algorithm 

Test Function 

 

      N Standard formula SR1  MODIFIED SR1 

NOI NOF NOI NOF 

G-Central 4 

100 

500 

1000 

5000 

36 

43 

60 

66 

72 

253 

331 

496 

554 

616 

15 

29 

32 

49 

63 

90 

215 

247 

411 

549 

Miler 4 

100 

500 

1000 

5000 

34 

47 

53 

53 

65 

329 

182999 

183098 

183098 

189123 

26 

43 

51 

48 

57 

105 

938 

170 

162 

203 

 

 

Rosen 

4 

100 

500 

1000 

5000 

31 

32 

33 

37 

37 

90 

94 

98 

115 

120 

30 

30 

30 

30 

31 

81 

81 

81 

80 

84 

 

 

GWolfe 

 

 

4 

100 

500 

1000 

5000 

11 

44 

47 

50 

106 

24 

89 

95 

101 

294 

11 

44 

47 

49 

105 

24 

89 

95 

99 

212 

Cubic 

 

4 

100 

500 

1000 

15 

16 

16 

16 

48 

66 

51 

55 

12 

16 

16 

16 

34 

46 

46 

46 



Journal of University of Duhok, Vol. 22, No.2 (Pure and Eng. Sciences), Pp, 2019 
  

 

 
 

991 

5000 16 50 16 46 

Gpowell3 4 

100 

500 

1000 

5000 

14 

15 

15 

15 

16 

35 

37 

37 

37 

40 

13 

14 

15 

15 

15 

31 

33 

35 

35 

35 

sum 4 

100 

500 

1000 

5000 

3 

14 

21 

23 

38 

11 

83 

119 

123 

176 

3 

14 

21 

23 

38 

11 

80 

118 

121 

176 

Total - 1210  

742985 

 

1067  

4909 

 

 

 
Table (2): The Rate of Improvement between Modified Algorithm and Standard SR1 algorithm. 

 
zTools SR1  Modified SR1 

NOI 100% 88.1818 

NOF 100% 0.6607 

 
The above table illustrates the rate of 

improvement in the modified standard SR1 

algorithm. The numerical results of the new 

algorithm are better than the standard algorithm. 

As noted, the number of iterations and the 

number of function evaluations of the standard 

algorithm are about 100%. In other words, the 

new algorithm has improvement as compared to 

standard algorithm with 11.8182% in NOI and 

99.3393% in NOF when 𝜃 ∈ (0,1).

 
Table (3): Comparing the Performance of Modified Algorithm with Standard SR1 Algorithm. 

Methods  No.  

Running  

Epochs 

SR1 1 

2 

3 

4 

5 

1000 

1000 

833 

1000 

1000 

Modified 1 

2 

3 

4 

5 

677 

165 

268 

224 

1000 
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Fig.(1): Performance of standard SR1 algorithm for training neural networks. 
 

 

 

 

 

 

 

 

 

 

 

 

 
    

  Fig. (2): Performance of modified SR1 algorithm for training neural networks. 

 
4. CONCLUSION 

 

This work, propounded a modification of 

SR1 by using gradient-difference vector. The 

quasi-newton condition and positive definite 

have been proved. In addition, the modification 

algorithms are used for training neural networks 

according to outcomes a modified method is 

more superior and effective than the standard 

SR1.  
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