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ABSTRACT 
The production of the undesirable impacts on the least squares estimators is by multicollinearity and 

outliers which are considered as problems in multi regression models. In the current study, an 

experimental comparative investigation is made for diverse estimation methods. which namely the 

Ordinary Least Squares (LS), Ridge Regression (RID), Hampel Weighted Ridge Least Absolute Value 

(HRLAV) and Hampel Weighted Ridge Least Trimmed Squares (HRLTS). From a numerical example 

and a simulation study, the resulting Hampel Weighted Ridge Least Trimmed Squares (HRLTS) is 

efficient than other estimators, using the Standard Error (SE) for real data and Root Mean Squared 

Error (RMSE) criterion for normal disturbance distribution and different degree of multicollinearity. 
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1. INTRODUCTION 

 

n regression analysis, there are two 

significant issues, namely: 

multicollinearity and outliers. The regular least 

square estimators (LS) of coefficients are shown 

to have some optimal properties when there is 

no correlation among explanatory variables. The 

information will not be precise about the 

regression coefficients when there is correlation 

among the variables. To add more, there will 

very poor estimates produced by the least square 

estimator when outlines exist.  Therefore, some 

diverse remedial techniques have been put 

forward for each problem in isolation. 

Ridge regression is a curative technique 

when dealing with multicollinearity and the 

outliers do not powerfully affect the robust 

estimation techniques. Despite of the fact of 

thinking of the two problems each in isolation, 

there is a simultaneous occurrence of both of 

them. Montgomery and Peck (1982) have stated 

that one of the methods of ridge estimation or 

robust estimation can be enough in dealing with 

combined problem.  

For solving the two problems that occur at 

the same time, many robust ridge regression 

estimators have been suggested in the sense that 

multicollinearity and outliers do not affect vastly 

the estimators. To make a combination of the 

ridge regression techniques of both the least 

absolute deviation (LAD) robust and the ridge 

was the notion proposed by Askin and 

Montgomery (1980). The current study adopts 

the idea of combining as the researcher attempts 

to remedy the two problems by developing a 

more robust technique. 

The Hampel weighted function with robust 

ridge regression, called the WRLAV and the 

Hampel weighted function with ridge 

regression, known as HRLTS, as high 

breakdown point estimator. Depending on both 

RLAV and RLTS, the researcher calls the 

method modified as the robust ridge regression. 

It is assumed that there will be less sensitivity of 

the method modified towards the problems of 

both multicollinearity and outliers.    

Therefore, this paper aims at examining 

some estimators that resist the problems of 

multicollinearity and outliers combined. To be 

more precise, the combination of ridge and 

robust estimators will be more effective than 

each one of them in isolation. In section (2) and 

(3), the techniques of ridge estimator and robust 

estimation will be discussed, respectively while 

the combination of both will be demonstrated in 

section (4). Weighted robust ridge regression is 

discussed in Section 5. Section (6) and Section 
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(7) presents the results of a numerical example 

and Monte Carlo simulation study to investigate 

how such estimators perform well and some 

conclusion is presented in Section (8). 

  

2. RIDGE REGRESSION ESTIMATORS 

 

Consider the following linear regression 

model 

Y = X  + ,             (1) 

where y is an (n × 1) vector of observations 

on the response variable, X is an (n × p) matrix 

of observations on the explanatory variables, 

is  a ( p × 1) vector of regression coefficients to 

be estimated and   is an (n × 1) vector of 

disturbances. The least squares estimator of 

can be written as:  

 
1ˆ

LS X X X Y


                (2) 

Among all the neutral linear estimators, this 

method provides variance that is minimum and 

unbiased. To add more, there is independent, 

normal, and identical distribution of the errors. 

In contrary, when there is multicollinearity, the 

singularities are  XX   matrix and this ill-

conditioned X matrix can result in very poor 

estimates.  

There will be improvement of the 

conditioning of a matrix and this will lead to the 

reduction of VIF when there is addition of a 

small constant to the diagonal of a matrix. The 

definition of the ridge regression is as follows 

(Hoerl and Kennard, 1970): 
 

 
1ˆ

RID X X kI X Y


                   

(3)
 
Where I is the ( p × p) identity matrix and k 

is the biasing constant. In the literature, there 

have been diverse methods that determine k 

value, as provided by Hoerl and Kennard (1970) 

and (Gibbons, 1981) as:  

   

2

ˆ ˆ
LS

LS LS

pS
k

 



                (4) 

where, 

 
   

2

ˆ ˆ
LS LS

LS

Y X Y X
S

n p

 


 




  (5)  

when k= 0, ˆ ˆ
RID LS  , when k> 0, ˆ

RID is 

biased but more stable and precise, than LS 

estimator but when k , ˆ
RID   0. (Hoerl 

and Kennard, 1970) have shown that, there 

always exist a value k> 0such that MSE ( ˆ
RID ) 

<MSE ( ˆ
LS ).  

3. Robust Regression Estimators 

There is more reliability and efficiency of 

robust regression estimators than least square 

estimators. This is the case in the situation that 

there are many heavy and fatter tails of the 

disturbances compared with the normal 

distribution and there is tendency towards the 

production of outliers. There is much influence 

of outliers on estimated coefficients, statistics 

and standard errors; because of the precise 

impact on the estimator, the statistical procedure 

is the least efficient. Several different 

classifications of robust regression exist. Two of 

the most commonly considered groups are LAV 

and LTS estimators. The first estimator is LAV 

can be defined as the solution to the following 

minimization problem 

  
1

min
n

i LAV

i

Y i X 


  

  (6) 

Rather than minimizing the sum of squared 

residuals as in least squares estimation, the sum 

of the absolute values of the residuals is 

minimized. Thus, the effect of outliers on the 

LAV estimates will be less than that on LS 

estimates.   

The second estimator is LTS this estimator 

was introduced by (Rousseeuw and Leroy, 

1987) as 

  2ˆ min
1

h

LTS i
i

  


 

 (7) 

The sum of the square residuals is minimized 

rather than minimizing the sum of squared 

residuals as in least squares estimation. Thus, 

this estimator will be effect of outliers less than 

that on LS estimates.  

 
4. ROBUST RIDGE REGRESSION 

ESTIMATORS 
 

The idea of making a combination of robust 

the techniques of biased and robust regression  

has been explained by Askin and Montgomery 

(1980). The employment of the procedure of 
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weighted least squares and the computation of 

the robust estimates are counted as facts on 

which the combination procedure is based on. In 

dealing with each problem at the same time, the 

combined method is the best solution in the case 

of the occurrence of both multicollinearity and 

outliers in a data set. The presentation of some 

of ridge and robust regression estimation is 

necessary here, but a full account of them will 

be demonstrated in sections (2) and (3).  

(Pfaffenberger and Dielman 1984 and 1985) 

proposed combining the ridge and the Least 

Absolute Value (LAV) robust regression 

techniques. In this paper, we take the initiative 

to develop a more robust technique to rectify 

these two problems. We proposed combining the 

ridge regression with the high breakdown point 

estimator, namely the RLTS. The estimator 

RLAV can be written as: 

 
1ˆ

RLAV LAVX X k I X Y


   ,  

   (8) 

Where the value of LAVk  is determined from 

data using: 
2

ˆ ˆ
LAV

LAV

LAV LAV

pS
k

 



   

   (9) 

and 

 
   

2

ˆ ˆ
LAV LAV

LAV

Y X Y X
S

n p

 


 




,           (10) 

ˆ
RLAV is the LAV estimator defined as the 

solution to equation (6). It be noted that the 

value of LAVk  is the estimator of k presented by 

equation (4) with two changes. First, the LAV 

estimator of  is used rather than LS estimator. 

Second, the estimator of 
2

LAVS used in equation 

(10) is modified by the LAV coefficient 

estimates rather than the least squares estimates. 

In addition, another robust ridge estimator is 

RLTS estimator can be written as: 

 
1ˆ

RLTS LTSX X k I X Y


    

  (11) 

where the value of LTSk is determined from 

data using: 

2

ˆ ˆ
LTS

LTS

LTS LTS

pS
k

 



   

  (12) 

and 

 
   

2

ˆ ˆ
LTS LTS

LTS

Y X Y X
S

n p

 


 




   (13) 

ˆ
RLTS is the LTS estimator defined as the 

solution to equation (7). It be noted that the 

value of LTSk  is the estimator of k presented by 

equation (4) with two changes. First, the LTS 

estimator of  is used rather than LS estimator. 

Second, the estimator of 
2

LTSS used in equation 

(13) is modified by the LTS coefficient 

estimates rather than the least squares estimates. 

These changes are aimed to reduce the effect of 

extreme points on the value chosen for the 

biasing parameter. 

 

5. WEIGHTED ROBUST RIDGE 

REGRESSION ESTIMATORS 
 

We suggested using Hampel weighted 

function to compute the WRLAV and WRLTS 

estimates; (Andrews et al. 1972) was proposed 

by Hampel in the “Princeton Robustness Study” 

and is defined as follows 

 

1

( )

0 . .

x a

a
a x b

x
W H

c xa
b x c

x c b

O W



 




 












      (14) 

where the constant a, b, c are called tuning 

constants satisfying 0 a b c    .  

Finally, in this respect, the proposed Hampel 

weighted robust ridge estimator, called Hampel 

weighted ridge least absolute values estimator 

can be used to determine the biasing parameter k 

as 
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2

ˆ ˆ
WLAV

WLAV

WLAV WLAV

PS
k 

β β
  

     

 (15) 

where the WLAV estimation procedure of 

 is used rather than LS estimator in computing 

the k and S2 values in order to reduce the effect 

of no normality on the value, chosen the S2 value 

as      

  

   
2

ˆ ˆ
WLAV WLAV

WLAV

Y X Y X
S

n p


 




β β

    

 

  (16) 

In this case, the ridge WLAV estimator of 

the parameter  is given by 

 
1ˆ ' 'WLAVWRLAV

X WX k I X WY


  ,

     

 (17) 

where, 
WLAV

k  are given in equation (15) 

and the Hampel weights are determined from 

equation (14). 

As for the Hampel weighted ridge least 

trimmed square estimator we can apply the same 

procedure for Hampel weighted ridge least 

absolute values estimator replace the estimator 

of the LTS instead of LAV estimator. 

 

6. Numerical Example 

 

A Diabetes data set taken from (Bradley et 

al., 2004) is adopted for the evaluation of the 

performance of these two proposed estimators. 

The ten explanatory values (age, average blood, 

sex, six blood serum measurements, and body 

mass index) and the response variable y. are 

contained in this data. Each of 442 diabetes 

patients showed one response variable. The 

response of interest is a quantitative measure of 

disease progression after one year. 

The degree of multicollinearity is often 

indicated by Variance Inflation Factor (VIF) 

given as 2

2
,

1

1
R

R
VIF


  is the determinant 

of the matrix X'X . If VIF>10 indicating the 

existence of multicollinearity in the data. Table 

1 shows VIF for the explanatory variables of the 

real data especially the VIF for some variables 

high the variables are X4, X5, X6 and X8 > 10.  

Likewise, we can identify the outliers in the 

data by computing the residuals associated with 

LMS regression. 

 25
1.4826 1

i
s med

n p
 



 
 
 

, 

where i=1, 2… n, and med is the median of the 

squared residuals, p is the number of 

explanatory variables. The points 

 1, ,...,i i ipy x x are labeled as regression 

outliers if the corresponding standardized 

residual is large. In particular (Rousseeuw and 

Van Zomeren, 1990) labeled the i-th vector a 

regression outlier if 2.5/i s  , implies the 

value is outlier. The ordinary or simple residuals 

(observed- predicted values) are the most 

commonly used measures for detecting outliers. 

The data contained 25 outliers while these 

outliers affected the data and give the poor 

estimates.  

 
Table (1): The VIF for the diabetes data 

Variable VIF 

X1 1.311 

X2 1.723 

X3 1.489 

X4 59.677 

X5 39.303 

X6 15.389 

X7 8.914 

X8 10.482 

X9 1.462 

X10 2.073 
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Table (2): Estimated parameters 1β̂ , 2β̂ , ..., 10β̂  and SE of diabetes for the proposed methods 

(HRLAV and HRLTS) and existing methods (OLS, RID) using Hampel weighted function. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We compared the results of the SE from the 

Table 2 for all methods see that the SE for the 

proposed method HRLTS less than the other 

proposed method HRLAV and the existing 

methods RID and OLS for all parameters.  

 

7. SIMULATION STUDY 

 

In comparing the performance of some 

selected alternative estimators combined, this 

research adopts Monte Carlo simulation. It 

allows the simultaneous occurrence of both 

multicolinearity and outliers, and the diverse 

degrees of multicolinearity. Besides, for the 

generation of the outliers, the regular 

disturbance distribution is employed. 

The study contains four estimators which are  

(1) The least squares estimator (LS). 

(2) The ridge regression estimator (RID). 

(3) The Hampel weighted ridge least absolute 

value estimator (HRLAV). 

(4) The Hampel weighted ridge least trimmed 

square estimator (HRLTS).  

Suppose, we have the following linear 

regression model  

0 1 1 2 2 3 3i i i i i
y x x x        

where i=1,2,…,n         (18) 

The parameters values 0 1 2 3,  ,  and    are 

set equal to one [11]. The explanatory variables 

, and 
1 2 3

x x x
i i i

 are generated as: 

2
(1 )x z z

ij ij ij
    where          i=1, 

2,…, n,   j =1, 2, 3   (19) 

The values of 
2

 between two explanatory 

variables selected are0.0, 0.5 and 0.99. The 

generation of the explanatory variables values is 

made once for the sample size n. The significant 

factor employed in the current study is the 

regular disturbance distribution and there is 

examination of 25, 50 and 100 as sample sizes. 

In this case, normal disturbance distribution 

is generated independently of the explanatory 

variables used 0.20 of outliers. Programs were 

written in Rx64 3.0.3. Simulation study was 

carrying out for every 500 Monte Carlo trials. 

We compare the results of simulated data for 

the following tables using the Root Mean 

Squared Error (RMSE) to evaluate the resistance 

of these estimators.

Coef. Estimate OLS RID HRLAV HRLTS 

1β̂  

parameter 

S.E. 

2.620 

1.312 

0.096 

0.043 

0.070 

0.085 
 

0.093 

0.042 
 

2β̂  

parameter 

S.E. 

-0.009 

0.170 

0.006 

0.048 

0.009 

0.091 
 

0.014 

0.046 
 

3β̂  

parameter 

S.E. 

0.199 

0.051 

0.194 

0.045 

0.192 

0.088 
 

0.191 

0.044 
 

4β̂  

parameter 

S.E. 

-0.051 

0.128 

0.069 

0.036 

0.071 

0.058 
 

0.076 

0.032 
 

5β̂  

parameter 

S.E. 

0.103 

0.118 

0.063 

0.043 

0.038 

0.072 
 

0.060 

0.040 
 

6β̂  

parameter 

S.E. 

0.135 

0.174 

0.054 

0.048 

0.064 

0.083 
 

0.054 

0.045 
 

7β̂  

parameter 

S.E. 

-0.388 

1.324 

-0.031 

0.059 

-0.009 

0.092 
 

-0.033 

0.053 
 

8β̂  

parameter 

S.E. 

4.567 

3.547 

0.091 

0.049 

0.095 

0.090 
 

0.089 

0.047 
 

9β̂  

parameter 

S.E. 

0.166 

0.060 

0.135 

0.046 

0.136 

0.089 
 

0.125 

0.044 
 

10β̂  

parameter 

S.E. 

-0.002 

0.011 

0.001 

0.050 

-0.006 

0.094 
 

0.006 

0.048 
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Table (3):Values of Bias, RMSE and SE associated for the estimation of parameters 1̂ , 2̂  and 3̂  

for proposed and existing methods using Hampel weighted function for  =0.0 and 0% of outliers 

Prob. Distribution of 

Error 

Sample 

size 

Par. Est. OLS RID HRLAV HRLTS 

Normal 25 
1̂  

Bias 0.015 -0.493 -0.498 -0.496 

RMSE 0.227 0.507 0.512 0.517 

SE 0.226 0.117 0.120 0.147 

2̂  

Bias -0.001 -0.496 -0.500 -0.499 

RMSE 0.221 0.510 0.515 0.518 

SE 0.221 0.120 0.121 0.139 

3̂  

Bias -0.001 -0.505 -0.509 -0.506 

RMSE 0.229 0.521 0.525 0.526 

SE 0.229 0.128 0.127 0.144 

50 
1̂  

Bias 0.005 -0.499 -0.499 -0.494 

RMSE 0.147 0.505 0.506 0.501 

SE 0.147 0.081 0.084 0.085 

2̂  

Bias -0.002 -0.501 -0.503 -0.498 

RMSE 0.144 0.508 0.510 0.506 

SE 0.144 0.082 0.084 0.085 

3̂  

Bias -0.002 -0.500 -0.503 -0.503 

RMSE 0.153 0.510 0.510 0.507 

SE 0.153 0.086 0.086 0.084 

100 
1̂  

Bias -0.001 -0.499 -0.501 -0.497 

RMSE 0.100 0.503 0.504 0.500 

SE 0.100 0.057 0.058 0.056 

2̂  

Bias 0.004 -0.500 -0.500 -0.500 

RMSE 0.109 0.504 0.504 0.503 

SE 0.109 0.058 0.060 0.054 

3̂  

Bias 0.004 -0.499 -0.500 -0.503 

RMSE 0.103 0.503 0.507 0.503 

SE 0.103 0.059 0.060 0.059 

 

 

From the results of Table 3 under the 

condition of no multicollinearity and no outliers 

in the data we see that the OLS estimators for 1̂

, 2̂  and 3̂ when the normal disturbance 

distribution produced less RMSE as compared 

with the other estimators for all sample size. 

Therefore, as the OLS estimator is clearly 

superior to all the estimators, followed by RID 

also produced less RMSE for 25 sample size and 

HRLTS for the 50, 100 sample size.
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Table (4): Values of Bias, RMSE and SE associated for the estimation of parameters 1̂ , 2̂  and 3̂  

for proposed and existing methods using Hampel weighted function for  =0.5 and 20% of outliers 

Prob. Distribution of 

Error 

Sample 

size 

Par. Est. OLS RID HRLAV HRLTS 

Normal 25 
1̂  

Bias -1.399 -1.007 -0.983 -0.980 

RMSE 15.596 1.048 0.983 0.981 

SE 15.533 0.291 0.030 0.036 

2̂  

Bias 1.134 -0.961 -0.979 -0.979 

RMSE 16.588 1.011 0.979 0.980 

SE 16.549 0.313 0.032 0.036 

3̂  

Bias 0.582 -0.973 -0.980 -0.981 

RMSE 16.359 1.022 0.980 0.982 

SE 16.348 0.312 0.033 0.036 

50 
1̂  

Bias -0.378 -0.989 -0.980 -0.979 

RMSE 11.060 1.016 0.980 0.979 

SE 11.054 0.232 0.020 0.019 

2̂  

Bias 0.324 -0.974 -0.982 -0.980 

RMSE 10.717 0.999 0.982 0.980 

SE 10.712 0.224 0.020 0.019 

3̂  

Bias -0.202 -0.983 -0.981 -0.979 

RMSE 10.450 1.008 0.981 0.980 

SE 10.448 0.220 0.019 0.018 

100 
1̂  

Bias -0.372 -0.987 -0.981 -0.981 

RMSE 7.552 1.002 0.981 0.980 

SE 7.543 0.175 0.014 0.014 

2̂  

Bias 0.126 -0.979 -0.981 -0.980 

RMSE 7.540 0.994 0.981 0.980 

SE 7.539 0.174 0.014 0.014 

3̂  

Bias 0.151 -0.976 -0.981 -0.980 

RMSE 7.647 0.991 0.981 0.980 

SE 7.646 0.177 0.013 0.014 
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Table  (5): Values of Bias, RMSE and SE associated for the estimation of parameters 1̂ , 2̂  and 3̂  

for proposed and existing methods using Hampel weighted function for  =0.99 and 20% of outliers 

Prob. Distribution 

of Error 

Sample 

size 
Par. Est. OLS RID HRLAV HRLTS 

Normal 

25 

1̂  

Bias -80.660 -2.639 -1.068 -0.944 

RMSE 75.655 16.917 1.521 1.606 

SE 75.349 16.710 1.083 1.300 

2̂  

Bias 55.772 0.267 -0.914 -0.940 

RMSE 78.031 17.495 1.453 1.729 

SE 78.055 17.493 1.129 1.452 

3̂  

Bias 25.178 -0.559 -0.950 -1.048 

RMSE 79.664 17.821 1.502 1.662 

SE 79.264 17.812 1.163 1.290 

 

50 

1̂  

Bias -12.079 -1.263 -0.966 -0.941 

RMSE 53.670 12.906 1.326 1.246 

SE 53.533 12.844 0.908 0.817 

2̂  

Bias 17.499 -0.553 -0.967 -1.062 

RMSE 51.739 12.652 1.359 1.311 

SE 51.444 12.640 0.885 0.847 

3̂  

Bias -5.467 -1.116 -0.998 -0.928 

RMSE 51.956 12.565 1.326 1.230 

SE 51.927 12.515 0.873 0.808 

100 

1̂  

Bias -15.684 -1.339 -0.996 -0.947 

RMSE 36.560 9.842 1.213 1.157 

SE 36.222 9.750 0.692 0.666 

2̂  

Bias 6.599 -0.914 -0.989 -0.989 

RMSE 36.387 9.822 1.207 1.181 

SE 36.327 9.779 0.692 0.645 

3̂  

Bias 9.182 -0.675 -0.947 -0.996 

RMSE 36.090 9.776 1.178 1.157 

SE 36.974 9.753 0.664 0.630 

 

From Tables (4) and (5), we see that the 

HRLTS estimator marginally is superior to 

HRLAV when the  = 0.5 and  = 0.99 and 

20% of outliers for 50 and 100 sample size. 

Otherwise HRLAV is superior.  

In comparing the estimators HRLTS to 

HRLAV, RID, and LS, the properties of the 

various estimators are not foreshadowed. As a 

result, the superiority of the HRLTS estimator is 

shown over HRLAV over a wide range of 

values of   for the given disturbance normal of 

the regular distribution as the ridge regression. 
 

 

 

 

8. CONCLUSION 

  

In regression analysis there are two common 

problems which are multicollinearity and 

outliers. Despite the fact that of dealing with the 

two problems in isolation, there is a 

simultaneous occurrence of the two. Two deals 

with the two problems, a numerical example and 

Monte Carlo simulation study were devised for 

the sake of making a comparison of the 

performance of robust regression estimators.  

The results of comparisons indicate estimator 

is superior to HRLTS estimator for normal 

disturbances distribution and degree of 

multicollinearity Tables (2, 3, 4 and 5). Only, 

this estimator RID is less efficient than the 

HRLAV estimator when disturbances are 
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normal. In addition, HRLTS outperforms both 

HRLAV and RID estimators when the degree of 

multicollinearity is high. Therefore, the HRLTS 

estimator appears to be a suitable alterative too 

there estimators when both multicollinearity and 

normal disturbances distribution are present. 

Other authors have discussed the weighting 

forms can potentially be employed for the 

construction of the estimators. 
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