
Journal of University of Duhok, Vol. 20, No.1 (Pure and Eng. Sciences), Pp 716-726, 2017 
eISSN: 2521-4861 & pISSN: 1812-7568 

https://doi.org/10.26682/sjuod.2017.20.1.62 

 

 

716 

STUDY THE PERFORMANCE OF THE TWO WAVELET-BASED 

ADAPTATION SCHEMES FOR THE SHALLOW WATER FLOW MODELLING 

 
Dilshad Abdul Jabbar Haleem

*
 , George Kesserwani 

**
 Aza Hani Shukri

 *
 and Alan Saheen Saifaldeen

 * 

 
*College of Engineering, University of Duhok, Kurdistan-Iraq 

**Department of Civil Engineering, University of Sheffield, Sheffield-UK 

ABSTRACT  

This work proposed a new adaptive method which avails from the wavelets theory for 

transforming the local single resolution information into multiresolution information. This 

information became accessible and by deactivating or activating them, the spatial resolution 

adaptation was achieved. The adaptive technique was  combined with two standard numerical 

modelling schemes (i.e. finite volume and discontinuous Galerkin schemes) to produce two new 

adaptive schemes for modelling one dimensional shallow water flows so-called the Haar wavelets 

finite volume (HWFV) and multiwavelet discontinuous Galerkin (MWDG) schemes. Both adaptive 

schemes were tested using hydraulic test cases. The results demonstrated that the proposed 

adaptive technique could serve as the foundation on which to construct complete adaptive schemes 

for simulating the real problems of shallow water flow.   
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1. INTRODUCTION 

 
n the computational hydraulic, the 

Godunov-type framework and its extension 

discontiunus Galerkin method have been 

extensively used in modelling of the shallow water 

flows due to its properties such as locality, 

numerical mass conservation and its ability to 

accommodate the transient complex flow within 

the numerical solution (see e.g. [1-3]).  

The original Godunov-type method was 

introduced by Godunov in (1959) for the gas 

dynamic equations by presuming the 

representation of the numerical solution over each 

control volume within the discrete domain is 

piecewise constant and this makes the scheme 

well suited for solving the problems containing the 

discontinuities [4]. Later further theoretical and 

numerical considerations have been given to use 

the method for simulation the realistic shallow 

water flow problems such as involving the source 

term (i.e. the topography term) into the numerical 

solution and evolving wet/dry region within the 

computational domain (see e.g. [1, 3, 5-10]). 

Consequently it is widely applied to real-scale 

flood simulation and has been integrated into 

industrial hydraulic modelling software packages. 

However, large real scale shallow flows present a 

wide range of spatial scales make the scheme to 

use dense mesh to obtain accurate results for 

which mesh adaptation is an optimal solution. 

Furthermore if the numerical solution of the flow-

field contains the complex flow such as shocks or 

contact discontinuities. The whole discretization 

domain should be refined uniformly into a large 

numbers of cells because the position of the 

complex flows are usually unknown and it is 

difficult to capture all small scales of shocks 

waves with the coarse mesh discretization . On the 

other hand the refinement of the entire domain 

during the computational flow is trivial task due to 

the extraordinary computational power required. 

Therefore the Godunov-type method requires 

performing mesh adaptation without losing its 

features. Recently, various adaptive techniques 

based on domain or solution adaptivity within the 

context art of finite volume method and its 

extension to higher order which is called 

discontinues Galerkin method for modelling 

shallow water equations, (SWE) have been 

developed. They include moving mesh methods 

(see, e.g. [11]) or static grid with locally 

refinement methods (see, e.g. [12]). These 

techniques rely on the a priori or posterior 

knowledge of the numerical solution to produce an 

adaptive mesh and this leads to introduce 

uncertainties into the numerical solution [13-14] 

and to be compromised an error-sensor is designed 

I 
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within the numerical scheme. However, an 

accurate mathematical approach is not available 

yet to determine an accurate error-sensor for the 

system of SWE [13].  To avoid using these types 

of error-estimator sensors the theory of discrete-

wavelets theory incorporates with the context of 

finite volume method and its extension to higher 

order which is called discontinues Galerkin 

method are used for solving the system of 

conservation law (see e.g.[15-16]). The method 

takes an advantage of the compression capability 

of wavelets and dynamically evolves the sparse 

representation of the locally-structured solution 

via certain thresholding techniques [15, 17]. 

However, the implementation of this idea in 

solving the system of SWEs preserving the 

stationary solution (well-balanced) and the 

evolution of the wet/dry fronts water wave over 

the topography are not reflected in the literatures 

apart of recent paper works see [23, 24]. In this 

work, the Godunov-type finite volume framework 

and its extension are reformulated by introducing 

the Haar wavelet bases and Multiwavelets (after 

scaling and translating) respectively into the 

framework of the method, in order to obtain an 

adaptive multiresolution scheme. Here the 

solution adaptivity can be achieved by omitting 

the detail coefficients over each cell in which its 

value falls below a certain prescribed threshold 

value [13]. The performances of the new adaptive 

schemes are verified in terms of introducing the 

friction source term in the shallow water equations 

and wetting and drying over irregular bed 

conditions. The paper is organized as follow:  

Section 2 presents the brief overview of the 

shallow water model in 1D  and section 3 we 

recall the framework of Godunov-type framework 

and its extension. In section 4, we introduce the 

Haar wavelets and multiwavelets bases and their 

key features. Section 5 demonstrates how the 

details and its scaling basis can be incorporated 

into the Godunov-type method. Section 6 we show 

several numerical test cases that support our 

discussion. We close in section 7 with some 

conclusions and perspectives for future works. 

2. Shallow water equations (SWE) 

In the one dimensional ( 1D ) shallow water 

flow considering the mass and momentum 

principle including the topography of the bed, the 

mathematical model can be cast in a conservative 

matrix form: 

 

  ( )xt FU U S    (1) 

 
 
 


h

q
U ,

 
 
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 2 2

2

( )
q

gh q

h

F U ,
 
   


0

gh z
S  (2) 

t time (sec), x space (m) and U , ( )F U and S  are  

vectors containing the conserved variables, the 

flux and the sources term respectively, in which h

is the water depth ( )m , q  is the flow rates per unit 

width 2( / )m s , g  is the acceleration gravity ( 2/m s

) and z  is the bed elevation ( )m . 

 3. Godunov's framework. 

In this section, we present the basic ideas of the 

Godunov finite volume method. For further details 

we refer the reader to [1, 5, 9]. The computational 

domain of 1D is divided into N  uniform and non-

overlapping cells with boundary points

    1/2 3/2 1/20 ..... Nx x x L . A cell i is defined 

as   1/2 1/2[ , ]i i iI x x  with a cell size

   1/2 1/2i ix x x  and a centre

  1/2 1/2( )/2i i ix x x . By integrating the equation 

(2) in space and time 1[ , ]n nt t  over the thi cell 

yields the following discrete conservative form of 

the SWE: 

 


 


  




1

1/2 1/2

n n

i i i i i

i

t t t

x
tU U F F S   (3) 

Where
1n

i
tU represents the computing value of 

the conserved variables in the next time level and 

the discrete values 
n

i
tU propose the average 

approximated numerical solution in the current 

time level. 1/2iF , is the numerical fluxes at cell 

interfaces and in this work it is based on the Roe's 

Riemann solver [18]. The local numerical source 

flux is iS . Hence the scheme is defined as explicit. 

The equation (3) can be written in the semi-

discrete form with considering the three values of 

numerical solution ( 1iU , iU , 1iU ) such that . 


 
1

( )
n n

i i i
t t tLU U U   (4) 
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 
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( , ) ( , ) ( )

i
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  (5) 

 
According to the stability condition of the 

scheme the Courant-Friedrichs- Lewy (CFL) is 

defined and will be discussed later. The bed 

discretization technique that has been defined 

within the Godunov-type method by Bouchut [1] 

is adopted in this work in order to preserve the 

stationary solution (well-balanced) of the system 

(1). Furthermore, the techniques that have been 

employed to deal with wet/ dry zones over the 

computational domain are taken from the 

Auduse's work [10]. 

4. Scaling basis function and Haar wavelets 

In this section, we summarize the basic 

conceptual properties of scaling basis functions, 

multiresolution analysis, Haar wavelets and the 

main steps of algorithm of WFV method of 

employing the local decomposition and 

reconstruction algorithm of the numerical 

solution. More details can be found in [17, 19] 

The first step of obtaining the wavelets 

functions is presuming all scaling functions are 

belonging to the Hilbert space 2( )L and they are 

non-overlapping i.e. orthogonal among 

themselves. Thus we can span the space of these 

functions only by applying dilation (scaling) and 

translation (shifting) processes on the mother 

function 2( )L . This means a function ( )x  can 

be written as a linear combination of   2x ,

  2 1x  with respect to the compact support of 

the mother function. The general form of the 

refinement scaling function can be written as 

follow:- 

    2( ) 2 (2 ( 1) 2 1)
l

n n
j x x j   ,   , 0,1,...2 1nn j Z   2( )L         (6) 

 

Where n  refer to the resolution level and the 

translation factor is j . Here we also define a 

closed span which are scaled and translated 

version of ( )n
j x  

 2{2 (2 )}
l

n n
n j

j

V Span x j                    (7) 

If we define two-scale sequence of    i.e. 

 0,1l  and substitute them into (6), we will obtain 

a set of bases functions that allow us to represent 

any function  2( )f x L  into the subspaces 0V and 1V

respectively.  

Since these bases are scaled and shifted within 

closed span then the bases in 0V  contained in 1V  

or 0 1V V .This leads to obtain the same shape 

pattern of represented function in both subspaces 

with different resolution. This representation leads 

to generate the concept of nested subspaces which 

is known the corner stone of wavelet theory. Here 

the single scale functions are modified to support 

interval [ 1,1]  instead of [0,1]  see figures 1- 4. 

Furthermore, their dilation and translation at 

coarse level  0n  generates the nested subspaces 

of closed space 0V and satisfies the following 

properties which called also the multiresolution 

properties MRA. 

1.   0 1 2.... lV V V V   

2.   


 {0}i
l Z
V     

3.  


 2( )n
i Z

V L     

4.     1( ) (2 ) , 0,1,...,k kf x V f x V k n Z  

Consider the nested sequences of subspaces nV  

as in property 1 of MRA. These subspaces are 

non-overlapping. Thus, we can define the 

orthogonal complement subspace nW  (wavelets 

space) between any two sequences of subspaces 

1nV and nV  that is, 

   ,l n n nV V W n Z ,   n nV W           (8) 

Since all these subspaces are orthogonal. 

Consider the properties 2 and 3 of MRA, this 

leads to introduce an orthogonal decomposition of 

Hilbert space 2( )L . 
 




  
1

2

0
( )

n k

n n k
k

L V W for     , ,n k n k Z        (9) 

Furthermore, the nW  spaces inherit the MRA 

property 4 from the lV ;  

    1( ) (2 ) , 0,1,...,k kf x W f x W k n Z  

Thus, given any scaling function  in nV , there 

exists another function   in nW  called wavelets 

see figure 2 and 3, such that  

    2( ) 2 (2 ( 1) 2 1)
l

n n
j x x j   ,   , 0,1,...2 1nn j Z  
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Fig.(1):- The scaling function of Haar wavelets in 

level  0n . 

Fig.( 2):- The Haar wavelets in level  0n .  

  
Fig.( 3):- The scaling functions of Multiwavelets in 

level  0n ., p = 0,1,2 

Fig.( 4):- The Multiwavelets in level  0n . 

considering the associated scaling functions 
 

The decomposition and reconstructions 

structure of the local numerical solution across 

different resolution is obtained via considering the 

two types of filters: the averaging filter 


 

1 ,2

0 ,1 ,..,2 1

n
nj

n
jh  

(belong to the scale functions) and the 

differencing filter 

 

1,2
0,1,..,2 1n

n
nj
j

g  (belong to the  

wavelets and multiwavelet functions) where

  1 ,n n n
j j jh ,   1 ,n n n

j j jg .The relationship that 

allows us to downscale the local solution such as 

from level  1n  to the level  0n with 

corresponded details coefficient n
jD can be define 

via the average and different filtering as follow: 

  0 1 1 1 1
0 0 0 1 1. .

1

2
.i i ih hU U U              (10)    

  0 1 1 1 1
,0 0 0 1 1

1
. .

2
.i i ig gD U U               (11) 

By using the same filters which together with 

the local solution in level zero and their associated 

detail coefficients allow us to upscale the local 

solution from the level zero to the level one as 

follows: 

   1 1 0 1 0
0 0 0 0 0. . . 2i i ih gU U D     (12)     

    1 1 0 1 0
1 1 0 1 0. . . 2i i ih gU U D                (13) 

 By the recursive application of equations (10) 

to (13) the solution can be promoted to higher 

resolution level or alternatively demoted to a 

lower resolution levels (see Figure 5). 

 

 

Fig.( 5):- Sketch demonstrates the up-scaling and downscaling of the numerical solution across different 

resolution levels. 
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5. Adaptive Schemes  

In order to obtain adaptive scheme the discrete 

Haar wavelets, Multiwavelets and their 

transformation in section 4 are combined with the 

corresponding non-adaptive schemes in section 3 

which yield Haar adaptive finite volume scheme 

(HWFV) and Multiwavelets discontinuous 

Galerkin scheme considering second order 

accuracy (MWDG2) . The combination is 

straightforward to extend the full discretisation in 

space and time. The starting point is a given 

Godunov-type framework discretization is defined 

on the uniform highest resolution level (  2n ). 

Then performing the downscale of the numerical 

solution over each cell to obtain all detail 

coefficients plus the numerical solution in level 

zero and then apply the thresholding to discard the 

non-significant details in order to reduce the 

complexity of the evolution system and again 

perform the up-scale to obtain an adaptive 

numerical solution.  

Here we restrict ourselves to the discretization 

mesh in the section 3 considering that 

discretization mesh is conducted for coarse level 

i.e.  0n  and for introducing a high resolution 

mesh again each cell is subdivided by 2n  and 

define as  
          1 1[ /2( 1 2 ), /2( 1 2 ( 1))]n n n

ij i iI x x j x x j  

with the spatial resolution
  2n nx x . A sub-cell 

centre is denoted by 

    , 1/2 ( 1/2), ( 0,1,...,2 1)n n n
i j ix x x j j (see 

Figure 6). Hence the equations (4) and (5) will be 

reformulated to obtain the multiresolution 

explicated semi- discrete formulations. 



 
1

, , ,( )
n n

i i ni
i j i j i j
nt n t tLU U U                   (14) 

 

 

 
   

  
 

1 1

.

. . . . .1.1 .

2
( , ) ( , ) ( )

i

i i i i i i

i j

n Roe Roe
n n n n n n
i j i j i j i j i j i j

i niI
x

L U U U U UF F S   (15) 

Here the index j is associated with the resolution level of the local cell.  

 

 
 

Fig.(6):- The Multiple resolution levels over the reference cell ,
n
i jI  with associated local numerical solution. 

 

5.1 CFL Criterion   

The current wavelet- based finite volume 

scheme is overall explicit and its numerical 

stability is controlled by imposing the Courant-

Friedrichs- Lewy (CFL) criterion.  The suitable 

time step t  can be obtained by the following 

formula: 

 

 
  
  , ,

2
.min

n

n n
i j i j

x
t C

u gh
         (16)  

 

Where x the dimension of the cell at is coarse 

level; ,
n
i ju is the depth-averaged velocity at the 

centre of the cell or sub-cell which depends to the 

local resolution level of the cell. ,
n
i jgh is the wave 

celerity and C  is the Courant number (  0 1C ), 

in the computation, it is normally set to be 0.98 

[20]. 

5.2 Thresholding 

Recall in Haar wavelets the filter H  is an 

averaging filter while its mirror counterpart G  

produces details. The wavelets coefficients 

correspond to details. When the details are small 
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i.e. the numerical solution is smooth, they could 

be cancelled without substantially affected to the 

accuracy of solution. Therefore, the idea of 

thresholding the details coefficients is a way of 

reducing the density of the adaptive cells over the 

computational domain. However, in the real 

computations, it is impossible to compute the 

exact value of it because it is test case depended 

[13, 21]. Here, the threshold value at coarse level 

is   0.01and it is normalized in correspond with 

the resolution level. 

5.3 Prediction step 

 In WFV scheme, it is important after each 

time step to predict the local resolution level over 

each cell, in order to guarantee that no significant 

(future) feature of the numerical solution is 

omitted. It is only based on the information 

available at the current level and it is associated 

with numerical solution that requires to be updated 

by the WFV scheme. The following steps requires 

throughout its employed  

Step (i). Find the scale coefficients of the 

conserved variables at level n =0. 

Step (ii). The normalized gradient ( ) between 

the local cell and its neighbor cell was calculated 

by using this formula:   






0 0
,0 1,0

0
,0max(1, )

i i

i

U U

U
       (17) 

Step (iii). The resolution mesh between the 

local cell and its neighbor cell has the following 

forms. If (  0.1 ) the resolution mesh would be as 

illustrated in the upper row of figure 7. Whereas 

the form of mesh would be the same as in the 

middle row of figure 7 if (  0.1 0.05 ) and if (

0.05 ) the mesh has the form which is 

illustrated in the lower row of Figure 4. 

Here, the values of 0.1 and 0.05 is only used as 

indicators for deciding the mesh forms and these 

are not affected to the numerical solution of the 

predicted cells  because in this scheme the 

algorithms of transformation from the low 

resolution level to the high resolution level for 

those cells need only the zeros detail coefficients. 

Furthermore, that algorithm was utilized by 

Harten [15]. With concerned the significant details 

coefficients in the context of finite volume for 

numerical solution of the hyperbolic system and 

this turned out to give the satisfactory results.  It is 

convenient to introduce the two indicators to 

decide the resolution levels of the active cells 

neighbors without destroy the numerical solution 

and that is necessary to capture all features of the 

propagation of water wave during the 

computational time.  

 
 

 

Fig.( 7):-  Illustrates the spatial resolution level due to the prediction step between cells i  and  1i : the upper 

row (  0.1 ), the middle row (  0.1 0.05 ), the lower row ( 0.05 ). 

 

6. Numerical results 

6.1 Steady hydraulic jump with friction in a 

rectangular channel 

The purpose of this test case is to illustrate the 

behaviour of both schemes in performing the 

adaptivity process considering the bed-friction 

with the source term. This test case is based on the 

set-up proposed by MacDonald [25]. A hydraulic 

jump is assumed to be formed in a prismatic 

rectangular channel which has 1000 m long and 20 

m width. The Manning's roughness coefficient is 

set to 0.02 and the bed slope is spatially varied. 

The initial flow rate and the water depth are set to 

20 m
3
/s and 1.334899 m in every cell respectively. 

Boundary conditions at the upstream are set to q = 

2 m
2
/s and h = 0.543853 m to obtain a supercritical 

flow and the flow condition changes via a 

hydraulic jump to be a subcritical flow at the mid 

of the channel. The flow remains subcritical until 

the end of the channel, therefore the boundary 

condition at the downstream requires only one 

physical condition to be specified. Here, the water 

depth is set to 1.334899 m and for the flow rate; it 

is proceed by a numerical boundary condition.  
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6.1.1 HWFV solution 

The baseline mesh has 30 cells, which results 

120 cells at the highest level (i.e. n = 2). The non-

adaptive computation is performed using the same 

number of cells that the adaptive solution is 

needed to converge the steady hydraulic jump. 

The convergence of the adaptive solution is 

achieved with 46 cells. This is performed for the 

purpose of comparison. 

The simulations are noted to converge at 

around T = 600 s. Figure 8 shows the results of the 

adaptive and uniform conditions, together with the 

exact solution. Generally, the numerical solutions 

match together with the analytical solution and 

they overlap almost fully. However, some 

differences exist, particularly in the flow rate 

solutions, see Figure 8.b, and that due to the 

chosen discretisation of the friction source term, 

as previously reported by Burguete Tolosa  

et.al.[26]  Clearly, the adaptive solution has more 

cells for capturing the hydraulic jump compared to 

the uniform schemes solution and, at the 

subcritical region, the uniform solution is slightly 

less accurate, see Figure 8.a. Based on this, the 

adaptive scheme can refine more cells through 

promoting the local solution (n = 2 at the 

hydraulic jump region and n = 1 at the subcritical 

region, see Figure 8.c), to minimize errors at the 

same computational cost.  

   
a. water surface elevation b. Flow rate c. Level 

Fig.( 8):- The results of HWFV scheme for Steady hydraulic jump in a prismatic rectangular channel 

 

6.1.2 MWDG2 solution 

The domain of the computation at n = 0 is 

divided into 15 cells and the adaptive computation 

is performed with n = 2 levels, which results in 60 

cells. This discretization of the domain provides 

120 degrees of freedom. Thus, the performance of 

the comparisons between the adaptive results 

obtained from both schemes (i.e., HWFV and 

MWDG2) becomes reasonable. The adaptive 

solution converges with a maximum of 25 cells 

and this number of cells is used to run the non-

adaptive computation. This is performed to 

compare its results with the adaptive solution 

results. The convergences of the solutions are 

achieved at around T = 530 s which is less 

compared with the HWFV scheme and this is due 

to the advantage of the DG2 over FV schemes.  

Figure 9 presents the results for both the adaptive 

and uniform conditions, together with the 

analytical solution.  The numerical solutions of 

both schemes have a good agreement with the 

analytical solution and they generally overlap 

throughout the domain with some difference in 

terms of the distribution of cells in the domain, see 

Figure 9.a. At the hydraulic jump and subcritical 

regions the adaptive scheme has refined more cells 

in contrast with the supercritical region, in which 

the adaptive scheme retains coarse level. This 

implies that the MWDG2 scheme responses to the 

flow conditions in an optimal way compared to 

DG2 scheme. It is clear that the adaptive MWDG2 

scheme has transferred successfully the feature of 

the standard DG2 of preserving the constant 

discharge. In addition, the adaptive scheme also 

offers more cells where the hydraulic jump occurs 

which leads to capturing it better when compared 

to the uniform numerical solution results. 

Furthermore, at the smooth region, particularly in 

the supercritical flow region, the MWDG2 scheme 

allows for coarser cells which result in a reduction 

of computational cost when compared to the 

uniform computation.   
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a. water surface elevation b. Flow rate c. Level 

Fig.( 9):- The results of MWDG2 scheme for Steady hydraulic jump in a prismatic rectangular channel 

 

6.1.3 Comparisons between HWFV and 

MWDG2 Schemes 

In comparing of the two schemes, the MWDG2 

scheme is generally better in capturing the steady 

discharge solution throughout the domain. The 

both schemes have an advantage over the uniform 

scheme (i.e., FV and DG2) in terms of responding 

to the flow condition feature, which they refine 

more cells where the hydraulic jump occurs. 

Irrespective of the baseline mesh size, the HWFV 

and the MWDG2 schemes require around 38 % 

and 42 % respectively, less in computational 

efforts, than the simulation on the associated fine 

uniform mesh. These percentages are reasonable 

because their degrees of freedom are set to be 

same at t =0 s. However, these percentages change 

with time. In Figure 10, which shows the 

evolution of the number of active cells and their 

variance with N2? At around t = 80 s, too many 

cells are being activated by the MWDG2 scheme 

which is around 75 % of the equivalent uniform 

scheme. While in the HWFV scheme, the adaptive 

solution requires a maximum of 51 % of the 

counterpart uniform mesh. The magnitude of N/Nn 

for both adaptive schemes is relatively the same 

when 200 s ≤ t ≤ 300 s and it becomes almost 

constant with t ≥ 400 s. 

It is clear that efficient adaptive processes are 

obtained with the selected baseline meshes in both 

adaptive schemes and also the active cell profiles 

of both schemes have almost the same response to 

the flow conditions regardless how many cells are 

being activated during the simulation. 

Furthermore, the possibility of coarsening baseline 

mesh for both adaptive schemes is feasible, since 

both adaptive schemes are not activating all 

accessible cells during the simulation. 

 

 
 

Fig.( 10.):- The active cells evolution of the adaptive schemes for the steady hydraulic jump with friction 

bed in the rectangular channel. 
 

6.2. Quiescent flow over an irregular bed 

The quiescent flow (well-balancing) property 

was introduced first by Bermudez and Vazquez 

[22] and has been broadly used by numerical 

scheme developers (see, among others, [6, 10] and 

[14]). Therefore a test case which takes into 

consideration a differentiable and non-

differentiable topography, defined by the equation 

18 and shown in Figure 11a, is introduced to 
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achieve the well-balancing property for both the adaptive schemes. 

 

(18) 

In addition, the adaptive schemes are devoted 

to resolve complicated flows over topography 

through considering three different cases: (i) 

wet/dry fronts case (i.e. at both sides of the 

piecewise constant elevation); (ii) critical wet case 

(i.e. h = 0 m at the peak of a bump) and (iii) fully 

wet (i.e. the computational domain is wet apart 

from regions (i) and (ii)). The computational 

domains at the coarse level for the HWFV and 

MWDG2 schemes are comprised of 50 cells and 

25 cells, receptively. The computational models 

are run up to 1000 s with n = 3. An upstream 

boundary condition is imposed by zeroing flow 

rate whereas a downstream boundary condition is 

set to 0.2 m. These imposed conditions are also 

used to initialize the simulation. Figures 11 and 12 

show the numerical results of the adaptive scheme 

respectively, considering the full solution of the 

FV and DG. The resolution level throughout the 

domain in both adaptive schemes is almost the 

same in the wet/dry fronts case, see Figures 11.c  

and  12.c. Whereas at the triangular hump, the 

HWFV scheme retains the resolution level at 2, 

but the resolution level is varied between n = 2 

and n = 3 in the MWDG2 scheme. This is 

expected to be caused by the extra slope 

coefficient values that are more sensitive and are 

therefore activated by the adaptive scheme, see 

Figure 12.b. The adaptive schemes succeed in 

capturing; the critical wet region at the peak of the 

bump, but the MWDG2 scheme refines more cells 

to the highest resolution level. This is attributed to 

the involvement of the slope details coefficients in 

the adaptive solutions. The full adaptive solutions 

of the free surface elevation preserve the 

motionless steady state throughout the simulations 

(see Figures 11.a and 12.a) and, the zero flow rate 

in both adaptive computations is accurately 

replicated within the range of machine precision 

(1 × 10 
-16

) (see Figures 11.b and 12.b). 

 

 

 
  

a. water surface elevation b. flow rate c. level 
Fig.( 11.):- Quiescent flow with wet/dry fronts for HWFV scheme 
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a. water surface elevation b. flow rate c. level 

Fig.( 12.):- Quiescent flow with wet/dry fronts for MWDG2 scheme 

 

7. CONCLUSIONS 

 
In this work, by combining wavelet-based 

scaling functions with the design of both standard 

shallow water flow modelling schemes (i.e. FV 

and DG), two new adaptive schemes (i.e. HWFV 

and  MWDG2) have been obtained. In these new 

schemes, the spatial resolution adaptivity is 

achieved from the local solution itself and it is 

based on a single user-prescribed parameter The 

adaptive schemes was able to retain all properties 

from the reference uniform counterpart schemes 

such as the mass conservation, shock capturing, 

well-balancing, moving wet/dry fronts and slope 

limiter properties . This means if any property is 

valid or improved for the reference uniform 

schemes; it will be transferable into the adaptive 

counterpart's schemes. Response of the accuracy 

to the adaptivity process via fixing the degrees of 

freedom (DOF) in both adaptive schemes (when t 

= 0 s) was shown a good performance in terms of 

providing almost the same computational efforts 

when the adaptive solutions converged. 

Altogether, the results demonstrated that the 

multiwavelets adaptive technique has successfully 

merged into the FV and DG2 frameworks. The 

results are also encouraging and suggesting that 

the adaptive schemes can provide a rigorous, 

robust and efficient solution to the multi-scale 

problems arise in shallow water modelling. 
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