
Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

431

EMPIRICAL PERFORMANCE EVALUATION OF KNUTH MORRIS PRATT

AND BOYER MOORE STRING MATCHING ALGORITHMS

SARHAN S. DAWOOD and SAMAN A. BARAKAT

*Dept. of Computer Science, College of Science, University of Duhok. Kurdistan Region-Iraq

(Received: September 22, 2019; Accepted for Publication: May 19, 2020)

ABSTRACT
Many algorithms have been proposed for string matching in order to find a specific pattern in a given

text. These algorithms have been used in many applications such as software editors, genetics, Internet

search engines, natural language processing, etc. The aim of this paper is to evaluate the performance of

two popular algorithms: Boyer Moore (BM) and Knuth Morris Pratt (KMP) in terms of execution time.

The algorithms have been programmed using Java and Java Microbenchmark Harness to evaluate their

execution time using a number of experimental test scenarios. Results show that the BM algorithm

outperformed the KMP algorithm in all test scenarios.

KEYWORDS: Boyer Moore, Knuth Morris Pratt, String Matching, Performance Evaluation

1. INTRODUCTION

he subject of exact text matching

(searching in texts) is one of the
important topics in the field of modern text

analysis or text searching. The main objective is

to find all occurrences of a pattern (P) with size

(M) in a text (T) of size (N), where (M<N) and

P, T ∈ Σ, where Σ is a set of finite elements

(symbols) taken from alphabet of a give

language (called alphabet). Many solutions to
this problem have been proposed, most of which

are conveniently applicable only in very specific

cases (Catania, 2018)(Charras & Lecroq, 2004).

Nowadays, string matching algorithms which are
widely used in most text editors, genetics,

internet search engines, natural language

processing, etc. Since the exact text matching
algorithms are used instead of binary and linear

algorithms, many algorithms where proposed,

some of them use new techniques in searching
and other refinement for pre-proposed

algorithms. Most of these algorithms, perform

the search in one of two ways: either from right

to left, or from left to right, keeping in mind that
a little number of algorithms may use some other

specific order in searching or in any order

(Charras & Lecroq, 2004). In this paper we will
evaluate the performance of two widely used

algorithms, Boyer Moore (BM) algorithm and

Knuth Morris Pratt (KMP) algorithm in terms of
time required to execute each algorithm, using

number of experimental test scenarios. Java

Microbenchmark Harness (JMH) (Oracle, 2019)

has been used to measure the performance of

both algorithms. JMH is a Java toolkit that
provides a very solid foundation for writing and

running benchmarks. It is flexible, easy to use,

and takes care of the JVM warm-up and code-
optimization paths which lead to produce

accurate results.

The paper is organized as follows: Section 2

presents the related work. The BM algorithm is
highlighted in section 3 and the KMP Algorithm

is provided in section 4. The test methodology is

presented in section 5 and results and
discussions are shown in section 6 and 7.

Finally, section 8 is devoted to conclude the

paper.

2. RELATED WORK

Since the first string matching algorithm was

proposed, they become a target for interested

researchers in this important area. Some of these
researchers proposed new algorithms, while

others suggested certain modifications on the

work of existent algorithms. Some of these
works will be reviewed to highlight these

attempts in evaluating the algorithms referred to

in this paper.

 (De V. Smit, 1982) examines and compares
time complexities of three strings matching

algorithms, straightforward, KMP and BM. The
comparison is made based on experimental data

using their actual average behaviour. It is shown

that the BM algorithm is much better in most

cases, and on average the KMP algorithm is not
remarkably better performance than the

straightforward algorithm.

T

Me
Text Box
DOI: https://doi.org/10.26682/sjuod.2020.23.1.14

Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

431

 (Sunday, 1990) illustrates a substring search

algorithm that has better performance than the

BM algorithm and it is not based on scanning the
pattern in any specific order. He used three

various pattern scan Techniques: a Quick

Search, a Maximal Shift, and Optimal Mismatch
algorithm. He showed that, for short pattern

strings this algorithm has about 20% or greater

increase in search speed for normal English text.

No complexity results are proven.

 (Ersin, Carus, & Mesut, 2007) tested eight

different texts of the same size from eight

different natural languages through six different
matching algorithms and recorded search times.

The aim is to show that the variation in

performance of these algorithms does not only
depend on the number of symbols in alphabets,

but also depends on the constitutional changes of

these natural languages. Their work shows also

that the performance of some languages is not
efficient in long and medium length strings

while they are better in short length strings or

vice versa.

 (Wahlström, 2013) evaluates five string

searching algorithms; Brute Force, BM, KMP,

Karp-Rabin and the Horspool algorithm, through
presenting how they work, when they work and

when each one of them will be the best choice

for a particular problem. He shows also that the
choice of algorithm depends on: The length of

the pattern, type of the alphabet, length of the

searched text, and pattern length.

 (Chandraseta, 2017) analyzed the difference
between BM algorithm and its derived variants

and presented an optimization toward the BMHS
algorithm. He found that the improvements

algorithms are pretty good optimizations that

also have their own worst case that performs

worse than BM. The best optimization is
achieved by combining BM good suffix rule

with some other improvement algorithms

(BMHS0, BMHS).

 (Tsarev et al., 2016) presents a composed

algorithm, which has been created based on of

KMP and BM string matching algorithms. They
show that combining these two algorithms,

allows earning larger shift in case of pattern and

string characters' mismatch.
Although previous works revolves around the

same field of research of this paper. However,

this paper differs from previous works in two

ways: (i) using different text and (ii) using
different pattern sizes or text language. For

example, Authors in (De V. Smit, 1982)

evaluated and compared the average

performance of three algorithms

(straightforward, KMP and BM) using a fixed
and small length African language text (500

characters) with short patterns no longer than

(14) characters. While authors in (Sunday, 1990)
describes an improved substring search

algorithm that has better performance than the

other algorithm including BM and KMP
algorithms, by using various pattern scan (quick,

maximal shift, and optimal mismatch)

algorithms on just three various patterns.

Therefore, the new addition of this paper is to
compare empirically between BM and KMP

algorithms with regard to their execution time.

3. BOYER MOORE (BM) ALGORITHM

The Boyer Moore (BM) exact string

matching algorithm was proposed by (Boyer &

Moore, 1977). It is considered as one of the most
efficient algorithms for strings searching

applications such as text editors when searching

and replacing, search engines, plagiarism

detection (Rahim, Zulkarnain, & Jaya, 2017).
The algorithm starts examining characters in the

pattern from right to left, if the character being

inspected in the pattern does not match the
corresponding character in the text, the BM

algorithm uses two predetermined tables prior

processing to determine how the pattern must be

skipped forward (Choudhary, Rasool, & Khare,
2012). These tables are constructed by using the

“bad character shift rule” and “good suffix

shift rule” (Gurung, Chakraborty, & Sharma,
2016) (Wahlström, 2013) (AbdulRazzaq,

Rashid, Hasan, & Abu-Hashem, 2013). The time

complexity for pre-processing of a text with
length n and pattern with length m is O(m + size

of alphabet). The best case performance time

complexity is O(n/m), and worst case time

complexity is O(nm).

3.1. Bad character shift rule

The bad character shift rule operates as

follows:
For each character (X) in the alphabet, let

L(X) represents the location of the right-most

occurrence of character (X) in the pattern
P, where L(X) is assigned to (0) if (X) is not

found in the pattern. If the first mismatch is

found at index (i) in the pattern and the

corresponding text character T(j) mismatches the
pattern character P(i), then shift the pattern right

by Max(1, i - L(T(j)).

Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

431

Example:

Let Text (T) = ACTGACTAACTCA and Pattern (P) = ACTCA

j 1 2 3 4 5 6 7 8 9 10 11 12 13

T A C T G A C T A A C T C A

P A C T C A

i 1 2 3 4 5

The L(X) table for the alphabet (right-most position of character X in the pattern)

X A C G T

L(X) 5 4 0 3

 L(A) = 5, L(C) = 4, L(G) = 0, and L(T) = 3

Starting from the right of the pattern (P), i=j=5 and T(j)=A matched with P(i)=A, then we skip the text and the

pattern 1 position to the left.

When i = J = 4 and T(4) = G Mismatched With P(4) , then shift the pattern right by max(1, 4 - L(G)) which is =

max(1,4 -0)=4

j 1 2 3 4 5 6 7 8 9

T A C T G A C T A A C T C A

P A C T C A

i 1 2 3 4 5

And so on until all characters of the patter matches the corresponding characters of the text.

3.2. Good suffix shift rule

The good suffix shift rule is guided by
finding the longest suffix characters X (X>0) of

the pattern (P) that matches the corresponding

characters of the text (T), which is denoted by

suff(X) and is represented by the suffix of size
(X) of the pattern. If suff(X) is not occurred in

the pattern then it is shifted by the suffix size.

However, if there is a prefix of size (l<X) within

the pattern that matches the suffix of the same

size, then the pattern is shifted by the distance
between the prefix and the suffix. On the other

hand, if suff(X) occurred in the pattern and not

proceeded by the same character that resulted the

mismatch then the pattern is shifted by a
distance equal to suff(X) and its rightmost

occurrence (Gurung et al., 2016).

Example

Text (T) = BIZFIZIBIZFIZBIZ

Pattern (P) = FIZBIZ

Good suffix shift table for (P) = FIZBIZ:

IZBIZ ZBIZ BIZ IZ Z

6 6 6 3 6 1

Find the longest suffix that matches
 if that suffix appears to the left in P preceded by a different char, shift to align

 if not, then shift the entire length of the word

Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

431

B I Z F I Z I B I Z F I Z B I Z

F I Z B I Z IZ suffix matches, IZ appears to the left,

 so shift by 3 to align (good-Suffix-Table (IZ) = 3)

B I Z F I Z I B I Z F I Z B I Z

 F I Z B I Z no suffix match, so shift 1 spot (good-Suffix-Table () = 1)

B I Z F I Z I B I Z F I Z B I Z

 F I Z B I Z BIZ suffix matches, doesn't appear again

 so full shift (good-Suffix-Table (BIZ) = 6)

B I Z F I Z I B I Z F I Z B I Z

 F I Z B I Z Found

Last function:
Input: Text (T) with size (n) characters and Pattern (P) with size (m) characters
Output: Index of the first substring of (T) matching (P)

The Last(X) function takes a letter (X) from the alphabet and determines how much the pattern is to
be shifted if a letter equal to (X) is found in the text that does not match the pattern.

last(X) =

index of the last occurrence of (X) in pattern (P) if (X) is in (P)

-1 otherwise

Boyer Moore (BM) Algorithm

1: Compute function last()

2: i ← m - 1

3: j ← m - 1

4: repeat

5: if (P[j] = T[i])

6: if (j = 0)

7: return i "A match"

8: else

9: i ← i - 1

10: j ← j - 1

11: else

12: i ← i + m - min(j, 1 + last(T[i])

13: j ← m - 1

14: until(i > n - 1)

15: return "No Match"

4. KNUTH MORRIS PRATT (KMP)

ALGORITHM

The Knuth Morris Pratt (KMP) algorithm

was introduced by (Knuth, Morris, Jr., & Pratt,
1977). It was the first linear-time algorithm

developed for the exact pattern matching

problem. It compares the pattern characters one

by one with text from left-to-right (Rahim et al.,
2017). This algorithm is based on the idea that:

Every character in Pattern (P) is compared with

characters in Text (T), if all characters in (P) are
matching with characters in (T) then the search

is successful, if any mismatch found then, shift

the (P) according to the longest proper prefix
that is also suffix (henceforth LPS) table which

is prepared before the comparison process

started between the pattern and text (Tsarev et
al., 2016). The time complexity for pre-

processing of the pattern with length m can be

done in O(m), and the worst case time

complexity for searching phase is O(n + m).

The LPS table is in fact a one-dimensional

array, with a number of elements equal to the
number of characters in the pattern, each element

Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

431

specifies “How many positions the pattern has to

shift” when we find a mismatch. The first

element of LPS table is always 0 (i.e. LPS (0)

=0), the other elements will be calculated as
follows, taking into account the repetition of

these steps until the LPS table is filled.

LPS Table (Prefix Table)
Input: Pattern with size (m) characters

Output: Failure function LPS for P (i to j)

1: Define a one dimensional array with the size

equal to the length of the pattern. (LPS[m])

2: Define variables i & j. Set i = 0, j = 1 and

LPS[0] = 0.

3: Compare the characters at P[i] and P[j].

4: If they match then set LPS[j] = i+1 and

increment i & j values by one. And Go to

Step 3.

5: If they are mismatched then: Check the
value of 'i'. If it is 0 then set LPS[j] = 0 and

increment 'j' value by 1, if it is not '0' then

set i = LPS[i-1]. Go to Step 3.

6: Repeat above steps until all the values of

LPS[] are filled

Note that the failure function F is used to

create the LPS table for P, maps j to the length

of the longest prefix of P that is a suffix of P[1 .

. j], encodes repeated substrings inside the
pattern itself.

Example :

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Text(T) X Y Z A X Y Z W X Y A X Y Z W X Y Z W X Y W

 0 1 2 3 4 5 6

Pattern (P) X Y Z W X Y W A

n = size of Text = 22

m = size of Pattern =7

First, create the LPS table for the previous pattern according LPS algorithm:

0 1 2 3 4 5 6

 0 0 0 0 1 2 0

Second, start implementing the KMP algorithm

Start comparing P[0] with T[0] starting from left to right

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 (T) X Y Z A X Y Z W X Y A X Y Z W X Y Z W X Y W

 0 1 2 3 4 5 6

(P) X Y Z W X Y W A

Up to P[2] the characters matched. At P[3] mismatch occurred , LPS[2] value is considered, since the

value is 0 we need to compare the first character in P with next character in T

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 (T) X Y Z A X Y Z W X Y A X Y Z W X Y Z W X Y W

 0 1 2 3 4 5 6

(P) X Y Z W X Y W

At P[6] mismatch occurs , so we will consider LPS[5] value, since the value is „2‟ we need to compare
P[2] character with mismatched character in T.

Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

431

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 (T) X Y Z A X Y Z W X Y A X Y Z W X Y Z W X Y W

 0 1 2 3 4 5 6

(P) X Y Z W X Y W

At P[2], a mismatch occurs, so LPS[1] value is considered. Since its value is 0, the first character P[0]
in P is compared with the next character in T.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 (T) X Y Z A X Y Z W X Y A X Y Z W X Y Z W X Y W

 0 1 2 3 4 5 6

(P) X Y Z W X Y W

At P[6] mismatch occurs, so we consider LPS[5] value. Since its value is “2”, we need to compare the

P[2] character in P with mismatched character in T

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(T)
X Y Z A X Y Z W X Y A X Y Z W X Y Z W X Y W

 0 1 2 3 4 5 6

(P) Matched (the Pattern found) X Y Z W X Y W

Here all P characters matched with a substring in T starting from index value 15

Knuth Morris Pratt (KMP) Algorithm:

1: f ← the element in LPS table of pattern P

2: i ← 0

3: j ← 0

4: While (i < length[T])

5: if (P[j] = T[i])

6: if (j = m-1)

7: return i - m + 1 "A match"

8: i ← i + 1

9: j ← j + 1

10: else if (j > 0)

11: j ← f(j -1)

12: else

13: i ← i + 1

14: return "No match"

5. METHODOLOGY

This paper uses similar methodology to

(Sarhan & Gawdan, 2017) research paper. The

methodology consists of (1) the test scenarios,
(2) the test conditions, (3) the test metrics, and

(4) the test setup. The performance of the BM

and KMP algorithms has been compared
empirically in terms of execution time by using

this methodology.

5.1. Test Scenarios

The performance of the BM and KMP

algorithms is compared empirically according to

test scenarios. This test uses six text sizes (1 KB,
10 KB, 100 KB, 1 MB, 100 MB and 200 MB).

For the text sizes (1 KB to 1 MB), three pattern

sizes have been used (10, 20, and 30 characters)
and for the text sizes (100 MB and 200 MB)

three different pattern sizes have been used (30,

50 and 75 characters). It should be noted that the

Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

411

test scenarios stated earlier have been selected to

cover all aspects of each algorithm‟s

performance.

5.2. Test Conditions

This study has considered the following

conditions:

 Each algorithm has been tested with the same

test scenario mentioned earlier.

 The test program is executed on the same

computer.

 All applications have been closed except test

program.

 During the test process, the computer is

disconnected from the Internet.

 The time required to find the pattern within the

text has been considered.

 Every test scenario has been recorded using the

following JMH properties:

 Forks: 5 (It means five times the program will

do warm up and measurement process).

 Warm-up: 5 iterations, 10 second each (It

means that the program will do five warm up

iterations each iterate will take 10 seconds).

 Measurement: 5 iterations, 10 second each (It

means that the program will do five

measurement iterations each iterate will take 10

seconds).

 Threads: 1 thread (The program will use only

one thread).

 Benchmark mode: Average time (the time

required to execute all measurements will be

averaged at the end of the benchmark).

 Time unit: milliseconds

5.3. Test Metrics

The time required to run the algorithms have

been stated as a measurement to evaluate and
compare empirically the performance of both

algorithms. Therefore, the algorithm with less

execution time is considered as the best

algorithm with regard to performance.

5.4. Test Setup

The specifications of software and hardware
that has been considered in this study are shown

in Tables 2.

Table (2): Software and Hardware Specifications

Software Version

Java Development Kit (JDK) 1.8.0_211

Eclipse IDE 2019-03 (4.11.0)

Java Micro Benchmark Harness (JMH) 1.21

Operating System (Microsoft Windows) 10 Pro (64-bit)

Hardware Detail

Computer System Model Dell OptiPlex- 9010

CPU Type Intel Core i7-3770

CPU Speed 3.4 GHz

CPU Cores 8

RAM 8 GB

6. Experimental Results

Figures 1-6 and Table 3 summarizes the

results obtained from implementing the BM and

KMP algorithms. Figures (1 – 6) represent the
execution time of both algorithms for each text

size in the test scenarios. Each figure presents

the execution time in milliseconds as y-axis and

pattern size (number of characters) as x-axis.

Table 3 shows the execution time in

milliseconds of both algorithms on the given
texts and patterns samples.

Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

414

Fig. (1):The execution time of BM and KMP algorithms (Text

size 1KB)

Fig.(1): The execution time of BM and KMP algorithms (Text

size 10 KB)

Fig. (2): The execution time of BM and KMP algorithms (Text

size 100 KB)

Fig. (3):The execution time of BM and KMP algorithms (Text

size 1MB)

Fig. (4):The execution time of BM and KMP algorithms (Text

size 100 MB)

Fig. (6): The execution time of BM and KMP algorithms (Text

size 200 MB)

Table (3): Experimental results of BM and KMP algorithms

Text Size Pattern Size

(Characters)

BM Search Time

(MS)

KMP Search Time

(MS)

1 KB 10 0.0010 0.0034

20 0.0011 0.0034

30 0.0011 0.0035

10 KB 10 0.0241 0.0601

20 0.0235 0.0616

30 0.0236 0.0657

0

0.001

0.002

0.003

0.004

10 20 30

Ti
m

e
in

 m
ill

is
ec

o
n

d
s

Pattern size

BM

KMP

0

0.02

0.04

0.06

0.08

10 20 30

Ti
m

e
 in

 m
ill

is
e

co
n

d
s

Pattern size

BM

KMP

0

0.2

0.4

0.6

0.8

10 20 30

Ti
m

e
in

 m
ill

is
ec

o
n

d
s

Pattern size

BM

KMP

0

2

4

6

8

10 20 30

Ti
m

e
in

 m
ill

is
e

co
n

d
s

Pattern size

BM

KMP

0

50

100

150

200

250

30 50 75

Ti
m

e
in

 m
ill

is
ec

o
n

d
s

Pattern size

BM

KMP

0

100

200

300

400

500

30 50 75

Ti
m

e
 in

 m
ill

is
ec

o
n

d
s

Pattern size

BM

KMP

Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

411

100 KB 10 0.2679 0.6286

20 0.2314 0.6723

30 0.2289 0.6418

1 MB 10 2.2403 6.7932

20 2.2601 6.8723

30 2.2616 6.8811

100 MB 30 42.7821 219.5554

50 37.3412 170.0776

75 32.7880 146.5829

200 MB 30 88.5497 448.3035

50 78.1193 349.7801

75 70.5093 282.3131

7. DISCUSSION

From Table 3 (bold represents better results),

it is shown that BM algorithm outperform KMP

algorithm in all test scenarios. Figure 1–4 shows

that BM algorithm has executed approximately
in 0.001, 0.02, 0.2 and 2 milliseconds for text

sizes 1 KB, 10 KB, 100 KB and 1 MB

respectively for all patterns. Also, Figure 1–4
shows that KMP has executed approximately in

0.003, 0.06, 0.6 and 6 milliseconds for text sizes

1 KB, 10 KB, 100 KB and 1 MB respectively for
all patterns. It can be noted that these four test

scenarios have not been affected by the pattern

size very much. Also, it can be seen that BM

algorithm three times faster than KMP algorithm
for these test scenarios. However, these results

have been changed when the text and pattern

sizes have been increased.
Figure (5) presents the execution of BM and

KMP algorithms over text size (100 MB). The

BM algorithm has executed approximately in
(42, 37 and 32) milliseconds for pattern sizes

(30, 50 and 75 characters) respectively. While,

The KMP algorithm has executed approximately

in (219, 170 and 146) milliseconds for pattern
sizes (30, 50 and 75 characters) respectively.

Also, the figure (6) presents the execution of BM

and KMP algorithms over text size (200 MB).
The BM algorithm has executed approximately

in (88, 78 and 70) milliseconds for pattern sizes

(30, 50 and 75 characters) respectively. While,

The KMP algorithm has executed approximately
in (448, 349 and 282) milliseconds for pattern

sizes (30, 50 and 75 characters) respectively. It

can be seen that the execution time of both
algorithms have been decreased when the pattern

size increased. Especially KMP algorithm, in

which the BM algorithm executed around (5)
times faster than KMP algorithm when the

pattern size was (30) characters; While, this

value is reduced when the pattern size became

(75) for both test scenarios.

8. CONCLUSION

This research introduced an empirical study
on the performance of BM and KMP algorithms

in terms of time required to execute the

algorithm. Different text and pattern sizes have
been used to achieve this goal. These algorithms

are programmed in Java and the experiment has

been done using Java Microbenchmark Harness
(JMH) tool. The overall performance evaluation

showed that the BM algorithm outperformed the

KMP algorithm in all test scenarios. The test

scenarios (1 – 4) showed that BM algorithm is
around (3) times faster than KMP algorithm and

the pattern size did not effect on the performance

of both algorithms very much. However, in the
test scenarios (5 - 6) when the text and pattern

sizes have increased the execution times of both

algorithms have decreased. In the future, more
work can be done as: (a) evaluating the

algorithms with different languages such as

Arabic or Kurdish language (b) measuring the

effect of using different text and pattern sizes on
the performance of each algorithm.

REFERENCES
 AbdulRazzaq, A. A., Rashid, N. A. A., Hasan, A.

A., & Abu-Hashem, M. A. (2013). The exact

string matching algorithms efficiency review.

Global Journal on Technology, 4(2), 576–589.

 Boyer, R. S., & Moore, J. S. (1977). A fast string

searching algorithm. Communications of the

ACM, 20(10), 762–772.

https://doi.org/10.1145/359842.359859

 Catania, L. (2018). A fast string matching

algorithm with moderately long patterns and

small alphabets.

https://doi.org/10.13140/RG.2.2.13345.51040

Journal of University of Duhok, Vol. 32, No.1 (Pure and Eng. Sciences), Pp 134-143, 3232

saman.barakat@uod.ac

413

 Chandraseta, R. (2017). Optimization of Boyer-

Moore-Horspool-Sunday Algorithm. Retrieved

from

https://www.semanticscholar.org/paper/Optimi

zation-of-Boyer-Moore-Horspool-Sunday-

Chandraseta/d740cce2b915860a3ac6b237ea81

8655f9f2a5fd

 Charras, C., & Lecroq, T. (2004). Handbook of

Exact String Matching Algorithms.

 Choudhary, R., Rasool, A., & Khare, N. (2012).

Variation of Boyer-Moore String Matching

Algorithm: A Comparative Analysis.

International Journal of Computer Science

and Information Security, 10(2), 95–101.

 De V. Smit, G. (1982). A comparison of three

string matching algorithms. Software: Practice

and Experience, 12(1), 57–66.

https://doi.org/10.1002/spe.4380120106

 Ersin, A. K., Carus, A., & Mesut, A. (2007). The

Efficiency Of String Matching Algorithms On

Natural Languages.

 Gurung, D., Chakraborty, U. K., & Sharma, P.

(2016). Intelligent Predictive String Search

Algorithm. Procedia Computer Science, 79,

161–169.

https://doi.org/10.1016/j.procs.2016.03.116

 Knuth, D. E., Morris, Jr., J. H., & Pratt, V. R.

(1977). Fast Pattern Matching in Strings.

SIAM Journal on Computing, 6(2), 323–350.

https://doi.org/10.1137/0206024

 Oracle. (2019). Code Tools: jmh. Retrieved June 1,

2019, from

https://openjdk.java.net/projects/code-

tools/jmh/

 Rahim, R., Zulkarnain, I., & Jaya, H. (2017). A

review: search visualization with Knuth

Morris Pratt algorithm. {IOP} Conference

Series: Materials Science and Engineering,

237, 12026. https://doi.org/10.1088/1757-

899x/237/1/012026

 Sarhan, Q. I., & Gawdan, I. S. (2017). Java

Message Service Based Performance

Comparison of Apache ActiveMQ and Apache

Apollo Brokers. Science Journal of University

of Zakho, 5(4), 307–312.

https://doi.org/10.25271/2017.5.4.376

 Sunday, D. M. (1990). A Very Fast Substring

Search Algorithm. Commun. ACM, 33(8),

132–142. https://doi.org/10.1145/79173.79184

 Tsarev, R., Chernigovskiy, A., A Tsareva, E., V

Brezitskaya, V., Yu Nikiforov, A., & A

Smirnov, N. (2016). Combined string

searching algorithm based on knuth-morris-

pratt and boyer-moore algorithms. IOP

Conference Series: Materials Science and

Engineering, 122, 12034.

https://doi.org/10.1088/1757-

899X/122/1/012034

 Wahlström, S. (2013). Evaluation of String

Searching Algorithms. Retrieved from

https://www.semanticscholar.org/paper/Evalua

tion-of-String-Searching-Algorithms-

Wahlström/8afc6c601aa4ae2e0878c943735e7

5935e995b58

