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ABSTRACT

The presence of multicollinearity and outliers are classical problems of data within the linear
regression framework. We are going to present a proposal of a new method which can be a potential
candidate for robust ridge regression as well as a robust detection of multicollinearity. This proposal
arises as a logical combination of principles used in the ridge regression and the Bisquare weighted
function. The technique of the Least Median of Squares (LMS) is used for the sake of overcoming the
resulting regression problems. This paper investigates the non-resistance of Ordinary Least Square (OLS)
to multicollinearity and outliers and proposes the utilization of robust regression for instance, Least
Median Squares LMS to detect non-normality of residuals, the use of robust methods yields more reliable
trend estimations and outlier detection. LMS is introduced as a robust regression technique and through
medical application its effect on regression is discussed. The numerical example and simulation study
shows that the outcome of the Weighted Ridge Least Median Squares (WRLMS) is better than other
estimators in terms of its efficiency. This has been done by utilizing both Standard Error (SE) and the
Root Mean Squared Error criterion for the numerical example and simulation study, respectively as far
as a lot of combinations of error distribution and degree of multicollinearity are concerned.

KEYWORDS: Multicollinearity; Outliers; Ridge Regression; Robust LMS Estimation and Weighted

Ridge Least Median Squares.

1. INTRODUCTION

Multicollinearity and outliers are two
important problems considered in
regression analysis. The coefficients® OLS
estimators usually have particular ideal
properties if explanatory variables are not
intercorrelated, and the unsetteling influences of
the regression equation are independent,
indistinguishably allocated typical random
variables.

The existence of intercorrelationship may be
conducive to wrong information regarding the
coefficients of regression. On the other hand, in
the presence of nonnormal disturbance
distributions the OLS estimator may produce
extremely poor estimates.

Consequently, to address these problems
independently, various remedial techniques have
been suggested. One of these techniques is the
ridge regression technique which is used to
tackle multicollinearity, as well as the robust
estimation techniques which are not as barely

influenced by nonnormal disturbances. Be that
as it may, in spite of the fact that we by and large
think of these two problems independently, but
in practical circumstances, they happen at the
same time.

Montgomery and Peck (1982) have suggested
that it is likely that either robust or ridge
estimation methods alone are appropriate for
managing the combined problem. Therefore, in
order to handle these two problems at the same
time, some robust ridge regression estimators
have been introduced; estimators that are much
less influenced by multicollinearity and outliers.

Askin and Montgomery (1980), on the other
hand, have suggested that the ridge and the
Least Absolute Deviation (LAD) robust
regression technigues be joined together. In the
current paper, as a starting point, there is a need
to create a more robust technique to deal with
these two problems. The suggestion being made
is that the ridge regression and the weighted
function be combined with the high breakdown
point estimator, which is the LMS-estimator.
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This modified method is called in this study, the
weighted robust ridge regression on the basis of
the LMS-estimation WRLMS.

It is anticipated that this modified method
would be less susceptible to the multicollinearity
and outliers presence. Thus, this paper aims to
test some estimators which resist the problems of
multicollinearity and outliers when these
problems are of a combined nature. So the
question that may be put is whether it is possible
to combine the ridge estimators and some robust
estimation techniques in order to come out with
a robust ridge regression estimator. The outline
of the present paper is as follows: section (2)
explains the ridge estimator; section (3) clarifies
the seek for the robust estimation techniques;
sections (4) and (5) explain the alternative
combined estimators of ridge and weighted
robust regression; section (6) is an application of
the suggested method and available methods;
section (7) presents the results and discussion of
a Monte Carlo simulation study to examine the
performance of such estimators; and lastly,
section (8) gives the conclusions.

2. THE ESTIMATORS OF RIDGE
REGRESSION

See this model of linear regression:
y =X f+e¢,
1)

here y is an (nx1) vector of observations
relevant to the dependent variable, X is an (n x
p) matrix of observations pertinent to the
explanatory variables, # is a (px1) vector of
regression coefficients that need estimation, and
& is (nx1) vector of disturbances distribution. It
is possible to write the LS estimator of £ as:

B =(X'X )XY @)

The advantage of the present method is that it
gives a variance which is unbiased and minimum
amidst all unbiased linear estimators on the
condition that the errors are independent as well
as normally distributed in an identical manner.
But when multicollinearity is present, the
singularities which exist in(X "X )matrix can

make this ill-conditioned X matrix liable to the
production of bad estimates.

Ridge regression use LS estimator because of
it is slightly biased. The idea is that a biased
estimator with a small standard error is often
preferable over an unbiased estimator with a

large standard error. Ridge regression uses the
correlation transformation along with a biasing
constant to obtain the ridge estimators for the
transformed model (see Kutner et al., 2004). The
biasing constant is most commonly chosen based
on the Variance Inflation Factor (VIF). The
VIF’s will also decrease and eventually stabilize
as the biasing constant increases. So, the “best”
biasing constant is the one whose value
stabilizes the VIF’s. The degree of
multicollinearity is often specified by VIF

Hoerl and Kennard (1970a) designed a
method for ridge regression for the purpose of
estimating a proper parameter where it is
possible to add a constant Kk i to the X'X. In the
prsent case, the following gives the ridge
estimator of the parameter £ :
Brig = (XX +kI)TXY 3)

here 0 <k <1 is the is the biasing constant, |
is the pxp identity matrix and p is the number of
parameters. In accordance with the researcher’s
judgment, the constant k which relies on a trace
would be established on sunjective bases (Hoerl
and Kennard, 1970b) and (Gibbons, 1981) as
mentioned in (Montgomery and Peck, 1992).
Various methods for the determination of k
value have been mentioned in the literature.
Consider, for example the following by Hoerl
and Kennard (1970):

2
K = ot LS @)
BLSBLS
y-xBLs | y-xBLS
whereS? = ( 2(p j (5)

where the ridge regression procedure of g is

utilized instead of the LS estimator in the
computation of the k and S? values so as to
minimize the influence of nonnormality on the
value, then ﬁRid shows bias; however, it is more

steady and exact in comparison to the LS
estimator and when k —>oo,ﬁRid — 0. Hoerl and

Kennard (1970) have stated that a value k >0
always exists in such away that MSE (B, )

becomes less than MSE (4, ).

3. THE ESTIMATORS OF ROBUST
REGRESSION

It has been proven that Robust regression
estimators are more effective and solid than LS
estimator in two cases in particular: when
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disturbances are nonnormal and  when
disturbance distributions that possess heavy or
fatter tails in comparison to the normal
distribution are thus susptible to the production
of outliers. In view of the fact that outliers
enormously influence the estimated coefficients,
standard errors, and test statistics, then there is a
possibility that the regular statistical procedur be
most ineffective because the precision of the
estimator has been influenced. There exists lot
of various classifications of robust regression.
The LMS estimator is one of the important
members of regression.

It is possible to define the LMS estimator

P.us as the solution

minimization problem:
med (y, —x; f)? (6)

Here the sum of the absolute values of the
residuals is minimized instead of minimizing the
sum of squared residuals as in LS estimation. In
this way, the impact of outliers on the LMS
estimates becomes less than the one on LS
estimates. It is possible to use the procedure of
Bisquare weighted function for the sake of
computing the weighted LMS estimates as
follows:

To calculate the weights, consider a situation
with n observations of y; a response variable and
p explanatory variables.

Yi = BXy * Xy + BiXy t +ﬁpxpi +g (7)
We adopt the following procedure for all
competing estimators being considered in the

study.

Step 1: Choose initial estimates of 5, we use
robust estimator as the starting value.

Step 2: Compute the residuals & =y, —x /3
and also the corresponding weights based on the
weight function from the previous iteration.
Usually the residuals are scaled by applying
some suitable scale estimate u. In practice the
variance o is unknown. A very good choice for
scale estimate due to a high degree of robustness
is the Median Absolute Deviation (MAD) and is
given by

AD = —_ median {|l&, — median {& }|} (8)
0.6745
Step 3: Calculate new estimates of the

regression coefficients by performing weighted

function, that scaled residual is y = —%i
MAD

to the following

many

weight functions have been proposed for

dampening the influence of outlying cases or
down weight the influence of outliers.

v " ©

0 uf>¢
As before, W ; denotes the Bisquare weighted

function, and U denotes the scaled residual to be
defined shortly. The Bisquare estimators’ c
value is known as a tuning constant. If ¢ exhibits
smaller values, more resistance to outliers is
brought about, but this happens at the cost of
lower efficiency when there is a regular
distribution of errors.

The tuning constant is commonly chosen in
order to provide high efficiency which is
reasonable under normal conditions; especially,
¢ = 4.685 if the Bisquare is to produce 95%
efficiency when the errors are normal, and still
offer protection against outliers (Fox and
Weisberg (2011); (Neter, 2004) and
(Alaminger, 2013).

4. ROBUST RIDGE REGRESSION
ESTIMATORS

This is a combination of ridge and robust
regression to handle the multicollinearity and
outliers problems at the same time. In this way,
the effects of both problems will be dampen in a
classical linear regression model. The formula
for the comoutation of Robust Ridge Estimator
runs as follows:

ﬁRobustridge = (X ,X + k Robust I )71 X ,Y (10)

Where Ky is called the robust parameter.

It is obtained from robust regression methods
instead of using OLS. This will be computed as

given in equation (4) and (5), only that k, and

2 H 2
S;s are replaced with Kgopqand  Sgopue

respectively.

5. WEIGHTED ROBUST RIDGE
REGRESSION ESTIMATORS

In the current section, some combinations of
ridge and robust regression estimation are
presented. These were discussed in sections (2)
and (3), respectively with weight function. In
this regard, it is possible to compute the robust
ridge estimator, known as weighted robust ridge
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estimator,&’,V
formula:

Buropusige = (X WX +kyel ) X WY (1)
where the value of Kg, 1S identified as

2
_ pS\NRobust

kWRobust -y
BRobust BRobust

(Y - XﬁWRobust ) (Y_ Xﬁ\NRobust )
n-p
the weighted W can be determined from

equation (9). Moreover, there is another
weighted ridge estimator which was formerly
utilized by another researcher; it is called

weighted ridge estimator B, The following

by utilizing the following

robustridge !

, and where

(12)

2 —
S\NRobust -

formula computes this estimator:

BwRID =(X'WX+kI)_1 X'WY (13)

here the values of k and s”are identified as
(4) and (5), respectively. The same values of
weighted in equation (9) used to estimate
(Zahari et al.,, 2012) and compared with this
proposed estimator LMS.
The estimator of weighted robust ridge estimator
will be designated by the WRLMS estimator and
it is possible to write it as

Buriws = (X WX +kyiusl ) X WY (14)
where the value of K, s is ascertained on the
basis of data by using:

2
_ I:)SWLMS
WLMS — 4 3

, (15)
Buims Buiws

and

Y ~XBoue ) (v —XB
(= XBus ) (7 X ) .
n-p
AANRLMS represents the estimator of RLMS
which can be defined as equation (14) solution.

It is important to note that the value of K, ys

2
SWLMS

represents the estimator of kHK shown by
equation (4) with the presence of two changes.

This process was firstly applied instead of the
LS estimate. Afterwards, the estimator applied in
equation (5) is modified by other estimates,

namely, S s Which were also applied instead

of the LS estimate. The aim behind these
changes is to minimize the impact of extreme
points on the value selected for the biasing
parameter. In the end, it is possible to exploit the
ridge regression estimator in order to decide on
k biasing parameter.

6. APPLICATIONS

6.1 Numerical Example

Body fat data, containing 252 observations
taken from Penrose et al. (1985), are exploited to
assess the estimators’ performance. The data
involved fourteen explanatory variables. The
response variable is y= PCTBF (percentage of
body fat), which were regressed to the x1=
Density, x2= Age, x3= Weight, x4= Height, x5=
Neck, x6= Chest, x7=Abdomen, x8= Hip, x9=
Thigh, x10= Knee, x11= Ankle, x12= Biceps,
x13= Forearm and x14= Wrist.

Table 1 presents the VvIF of the parameters,
this condition can be wused to detect
multicollinearity using the following formula,

VIF = , where RZis the determinant of the

2

matrix X'X. Similarly, it is possible to determine
the outliers in the data through the computation
of the residuals connected with LMS regression,

s =1.4826(1+ j med (7) , where med is
n-p
the median of the squared residuals, p is the

number of predictors. The points
(yi,xil,...,xip)are designated as regression

outliers if the equivalent standardized residual is
large.

Rousseeuw and Van Zomeren (1990)
designated the i vector as regression outlier if

Ir|/s >25 suggests that the value is outlier.

The most frequently used measures for the
detection of outliers are ordinary or simple
residuals (observed - predicted values).

kafi.pati@uod.ac



Table (1): Variance Inflation Factor VIF for the body fat data set

Var. X1 X2 X3 X4 X5 X6 X7
VIF 3.8183 2.2747 34.0317 1.6778 4.3965 9.4722 18.1199
Var. X8 X9 X10 X11 X12 X13 X14
VIF 14.9610 7.8877 4.6123 1.9200 3.6516 2.2370 3.5215

The results of the analysis in Table 1 indicate
that when the real data belonged to the body fat
application note from which the VIF for some
variables value has exceeded the value of 10
since the computation of VIF is highly
dependent on the calculation of R*. So it is clear
that multicollinearity problem exists between
variables.

Thus, the VIF can help to identify which
explanatory variables are involved in the
multicollinearity, as the maximum value is
34.0317 in X3 variable in Table 1. Additionally,

the data comprised 13 outliers which influenced
the data and produced poor results. On the other
hand, Table 2 indicates that the proposed
methods when applied statistical criteria
standard errors for this data indicate that, the
standard error of WRLMS less than existing
methods (OLS, RIDGE, RLMS and WRID).
Table 2 below su

mmarizes estimates of the parameter as well
as the standard error for the methods in question,
i.e, the proposed and existing ones.
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Table (2): Estimation of the parameters and standard error SE of ,6’, [)’] , With respect to the proposed and
existing methods WRLMS estimators used weighted Tukey function for the body fat data set.

Coef. Estimate OLS RIDGE RLMS WRID WRLMS
ﬁl parameter -411.2000 -0.9296 -0.9301 -1.0027 -1.0038
S.E. 8.2580 0.0203 0.0197 0.0057 0.0026

ﬁz parameter 0.0126 0.0194 0.0193 0.0006 0.0000
S.E. 0.0158 0.0157 0.0143 0.0041 0.0019

ﬁs parameter 0.0101 0.0321 0.0323 0.0077 0.0011
S.E. 0.0578 0.0575 0.0528 0.0165 0.0073

ﬁ4 parameter -0.0080 -0.0036 -0.0035 -0.0052 -0.0045
S.E. 0.0284 0.0135 0.0131 0.0038 0.0020

ﬁs parameter -0.0285 -0.0088 -0.0088 0.0021 0.0015
S.E. 0.0694 0.0219 0.0212 0.0060 0.0026

ﬁﬁ parameter 0.0268 0.0269 0.0269 0.0002 0.0042
S.E. 0.0307 0.0316 0.0294 0.0090 0.0039

87 parameter 0.0186 0.0312 0.0305 -0.0025 0.0021
S.E. 0.0433 0.0431 0.0395 0.0117 0.0053

ﬁg parameter 0.0192 0.0155 0.0156 0.0099 0.0114
S.E. 0.0434 0.0392 0.0381 0.0120 0.0049

ﬁg parameter -0.0168 -0.0094 -0.0095 -0.0138 -0.0121
S.E. 0.0430 0.0292 0.0283 0.0081 0.0035

ﬁlo parameter -0.0046 -0.0012 -0.0012 0.0017 -0.0004
S.E. 0.0716 0.0224 0.0217 0.0064 0.0027

Bll parameter -0.0857 -0.0169 -0.0170 0.0004 0.0015
S.E. 0.0658 0.0146 0.0141 0.0037 0.0020

Blz parameter -0.0551 -0.0192 -0.0192 -0.0004 -0.0017
S.E. 0.0509 0.0200 0.0194 0.0052 0.0024

BlS parameter 0.0339 0.0087 0.0087 -0.0009 0.0004
S.E. 0.0595 0.0157 0.0152 0.0040 0.0020

B14 parameter 0.0073 -0.0002 -0.0001 -0.0015 -0.0018
S.E. 0.1617 0.0197 0.0191 0.0054 0.0024

14

The results of numerical example in Table 2
shown as the standard error SE for the WRID
less than OLS, RIDGE and RLMS. Likewise,
the SE for the RLMS less than OLS, RIDGE the
reason of this is due to the presence of
autocorrelation and outliers in the data. It is
obvious that the OLS affected if there is a single
observation of outlier and presence of
multicollinearity in the data and also another
estimators affected in the presence of these
problems. On the other, noticed that SE for the
WRLMS less than WRID for all the parameters.
6.2 Simulation Study

A Monte Carlo simulation study was
designed for the sake of comparing the
performance of some alternative combined
estimators in question to confirm the results that
acquired in numerical example. The simulation
is developed in such a way as to permit
multicollinearity and outliers at the same time.

Multicollinearity various degrees are stated. In
the same way, the distributions which are not
normal are utilized to produce outliers.

The five estimators involved in the study are:
(1) Ordinary least squares (OLS).

(2) Ridge regression (RIDGE).

(3) Weighted ridge regression (WRID).

(4) Ridge least median squares (RLMS).
(5) Weighted robust ridge LMS (WRLMS).

The OLS, RIDGE, WRID, RLMS and
WRLMS estimators were defined above. If one
assumes that the following linear regression
model is available:

Vi =By + BXin + BoXin + BXig T ¥

i=1,2,..,n 17)
The parameter values fg,, B, f,and 5, are

put equal to one (Dempster, 1977). Then, the

where
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explanatory  variables
generated as:

xil,xizandxi3 are

2 .
Xjj =(1-p )Zij + PZjj where i=1,2,...,

n j=1,2,3 (18)

where zij are independent standard normal
random numbers generated by the R-normal. p
constitutes the correlation between the two
explanatory variables. Its values were selected
as: 0.0, 0.5 and 0.99. For a given sample size n,
the explanatory variables values were generated
earlier. In this study, the sample sizes
investigated are: 25, 50, and 100 and the
fundamental  factor is the disturbance
distribution. The following three disturbance
distributions are used:

1. Standard normal distribution.

2. Cauchy distribution along with median zero
and scale parameter one.

3. Student-t distribution along with three
degrees of freedom.

Generally speaking, all the acquired random
numbers are generated by exploiting the R
programming. Disturbances are generated in all
cases in isolation from the explanatory variables.
The simulations that were executed used
programs written in R.

Three different distributional forms for the

& disturbances are considered, to statement an

inquiry of model performance in a broad range
of circumstances. The distributional forms are:

The results used are based on 500 Mote Carlo
trials. Consider these statistics:

1. The mean squared error is
150, 2 heref,
MSE :miél(ﬁrﬁj) , therefore,

2. The RMSE is given by [MSE (B j)]l’ 2
where j=0, 1,2, 3

7. RESULTS AND DISCUSSION

The comparison of the three robust ridge
estimators WRID, RLMS, and WRLMS are
considered with two non-robust which are ridge
regression and OLS estimate.

The results from the Table 3 and Table 9 we
see that the value of the RMSE for the OLS
estimator is less than all the estimators when no
multicollinearity and no outliers in the data and
the disturbances are normal and S-student.
Otherwise the RMSE for OLS is greater than
estimators used when the disturbance is cauchy
distribution.

Whilst Tables 4-11 presents the value of the
RMSE for the proposed method WRLMS is less
than all estimators for different sample size and
different degree of multicollinearity and outliers
estimates except Table 3 and Table 9 the value
of the RMSE of the RLMS greater than OLS
when the no outliers and no multicollinearity for
the sample size 25, 50 and 100 when the error
are  normal and  S-student  disturbance
distribution and However, the value of the
RMSE of the RLMS less than all estimator when
the no outliers and no multicollinearity for the
sample size 25, 50 and 100 when the disturbance
is cauchy and S-student distribution.
Occasionally, the value of the RMSE of the
RLMS less than WRID when the o =0.5 and

20% of outliers, also when p=0.99 10% and

20% for all disturbance distribution.

As a conclusion and taking into consideration
the different estimators’ properties, it should be
noted that the results obtained from comparing
the WRLMS estimator with the WRID, RLMS,
RIDGE and LS estimators are not totally
unanticipated. Accordingly, the most
fundamental result acquired from these
comparisons is that the WRLMS estimator is
better than the RLMS estimator. This is evident
over a wide range of estimators’ values for the
disturbance distributions in question as the ridge
regression, and in some cases, it is even likely to
work well.
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Table (3): RMSE values for the parameters 3,, 4,and f, of the Bisquare weighted function led to the
generation of Normal disturbance distribution, with different sample sizes and 0.0 of p and 0% of
outliers.

Collinearity =~ Sample

and Outliers  size Par.  OLS RIDGE RLMS WRID

ﬂl 0.2268 0.5175 0.5065 0.5386

25
,Bz 0.2211 0.5147 0.5128 0.5330
ﬂa 0.2288 0.5246 0.5172 0.5430
ﬂl 0.1469 0.5067 0.5035 0.5056
£ =0.0 50 p, 01438 05138 05080 05103
outliers=0% ~
ﬂ3 0.1526 0.5076 0.5025 0.5156
ﬂl 0.0996 0.5047 0.5033 0.5056
100 ,32 0.1092 0.5037 0.5008 0.5043

ﬂ3 0.1028 0.5022 0.4996 0.5087

Table (4): RMSE values for the parameters ,[371, [3’2 and ﬁ3 of the Bisquare weighted function led to the

generation of Normal disturbance distribution, with different sample sizes and 0.5 of p and 5%, 10%,
and 20% of outliers.

Collinearity and

. Sample size Par. OoLS RIDGE RLMS WRID WRLMS
Outliers
By 7.6662 1.0146 09802  0.9589 0.9567
25 b, 7.4358 1.0134 09777  0.9589 0.9585
B 7.7912 1.0091 09736  0.9585 0.9571
B 4.9159 0.9816 09697 09575 0.9567
P =05 50 B, 4.9135 0.9834 0.9682 0.9576 0.9570
outliers=5% A
B 5.0025 0.9705 09678 09573 0.9566
By 3.6112 0.9822 09697  0.9615 0.9598
100 B, 3.7634 0.9698 09656  0.9617 0.9613
B 3.7729 0.9796 09711  0.9617 0.9613
p, 103840  1.0206 09835 09712 0.9689
25 b, 10.3675  1.0060 09810 09705 0.9699
B, 103284 1.0302 09812 09745 0.9683
By 7.5537 1.0007 09797 09728 0.9715
50 A
P =05 B, 7.8356 0.9997 09848  0.9746 0.9719
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outliers=10% ﬁa 7.1996 0.9905 09816  0.9751 0.9716

ﬁl 5.2223 0.9923 09828 09754 0.9710

100 ,32 5.1746 0.9867 09804  0.9803 09715

ﬁa 5.1154 0.9838 09771 09723 0.9716

ﬁl 14.6464 10322 09882  1.0240 0.9790

25 /?2 15.6775  1.0046 09883  0.9925 0.9791

ﬁa 151694  1.0259 09888  1.0218 0.9803

ﬁl 10.2780  1.0091 09874  1.0036 0.9782

P =05 50 ,Bz 10.2605 10029 09884  0.9878 0.9798
outliers=20% A

B 9.8772 1.0007 09883  0.9951 0.9775

ﬂl 6.7804 1.0015 09885  0.9923 0.9784

100 ,32 6.9266 0.9856 09831  0.9856 0.9787

ﬁa 6.8933 0.9921 09873  0.9829 0.9794

Table (5): RMSE values for the parameters ,[3’1 , [3’2 and /3’3 of the Bisquare weighted function led to the

generation of Normal disturbance distribution, with different sample sizes and 0.99 of o and 5%,
10%, and 20% of outliers.

Collinearity and

Outliers Sample size Par. oLS RIDGE RLMS WRID WRLMS
ﬁl 36.2995  16.9471 22958 20718 1.7265

25 ,Bz 36.5225  17.0882 21072 22286 1.8383

ﬁa 37.0392  17.2163 21122  2.1627 1.7050

ﬁAl 231791 114812 29258 16163 1.2125

£=0.99 5o ,Bz 23.3869 114224 30880 16619 12753
outliers=5% ﬂ} 243679 119025 29641 16373 1.2263
ﬁl 17.2393  7.7543  3.0266  2.0837 1.0251

100 ,32 17.7965  7.9083  2.8387  2.1194 1.0894

ﬁa 18.3800 81809  3.0398  2.1017 1.0976

ﬁAl 485662  16.3733 19724 35504 1.4511

- [32 502358  16.9561 21970  3.1679 1.4637

ﬂ} 49.0428  16.2526  1.8728  3.4291 15974

ﬁl 36.7919 115193 17268  3.2345 11874

P =0.99 50 ,Bz 37.2747 119873 19073  3.2399 1.2362

kafi.pati@uod.ac



Journal of University of Duhok, Vol. 23, No.2 (Pure and Eng. Sciences), Pp 9-24, 2020

outliers=10% ﬁa 34.9526  11.0492 17914  3.1326 11414

f, 254088 8195 20064 40558 1.0216

100 B, 2ar682 80134 18048 41744 1.0639

f, oagsse 80576 19224 39335 1.0793

B, 7ime2 159200 21173 14.2355 1.1232

2 B, 7aa000 169513 24359  15.0788 1.1066

f, 735528 165358 19955  14.8189 1.1634

B, aessar 118731 1ses2 92223 1.2001

P =099 50 ,Bz 49.4907 12,0011 16354  9.4697 1.2517
outliers=20% A

B, 474601 115370 14223 9.3366 1.1937

B, sssss 81310 15714 7.0758 1.1120

100 B, 23816 79085 13603  7.2893 1.1092

ﬁ3 33.6884 81503 14098  7.5249 1.1335

Table (6): RMSE values for the parameters ,[3’1 , [3’2 and /3’3 of the Bisquare weighted function led to the
generation of Cauchy disturbance distribution, with different sample sizes and 0.0 of p and 0% of

outliers.
Collinearity and .

outliers Sample size Par. OoLS RIDGE RLMS WRID
ﬁAl 76.0338  0.8760 0.8655  0.8743
25 ,32 19.5653  0.8665 0.8565  0.8571
ﬁa 32.1690  0.8780 0.8557  0.8660
ﬁl 73.5600  0.9028 0.8936  0.8982
P =00 50 ,82 82.0571  0.9064 0.8783  0.8882
outliers=0% ﬁa 65.0662  0.9015  0.8839  0.8908

ﬂl 25.0922 0.9179 0.9096 0.9098
100 ,82 30.7459 0.9147 0.9114 0.9115

ﬂ3 21.8587 0.9133 0.9038 0.9095
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Table (7): RMSE values for the parameters ,, 4,and /3, of the Bisquare weighted function led to
the generation of Cauchy disturbance distribution, with different sample sizes and 0.5 of p and 5%,
10%, and 20% of outliers.

Collinearity and

) Samplesize  Par.  OLS RIDGE ~ RLMS  WRID  WRLMS
Outliers
B, 134442 10247 09809 09820  0.9641
»s P, 557264 10064 09819 09683  0.9627
B, 654795 10157 09814 09745  0.9650
B, 351494 10028 09775 09773  0.9649
p=05 50 [, 204408 09852 09768  0.9649 0.9646
outliers=5% A
B, 993026 09805 09752 09702  0.9646
[, 540001 09821 09766 09724  0.9693
100 [, 330903 09845 09827 09721  0.9696
B, 202753 09792 09733 09698 09682
B, 355010 10404 09867 09854 09730
25 B, 557800 10159 09916 09788 09718
B, 656834 10159 09884 09814 09757
B, 355010 10404 09867 09825  0.9752
B, 557800 10159 09916 09778  0.9762
p =0.5 50 .
outliers=10% B, 656834 10159 09884 09819 09739
B, 344850 09990 09827 09788 09753
100 P, 208670 09931 09895 09821  0.9767
B, 996775 09910 09892 09764  0.9760
B, 133415 10416 09912 10322  0.9821
25 A
P, 533649 10105 09968 09985  0.9783
B, 662287 10413 09944 10310  0.9865
B, 350802 10214 09883 10085  0.9813
50 B, 202306 09932 09893 09871 09816
P =05 3
B, 101989 09946 09934 09885 09797
outliers=20% "
B, 343565 09891 09877 09859  0.9803
100 A
B, 219355 09952 09843 09888  0.9814
B, 286493 09944 09862 09834 09813
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Table (8): RMSE values for the parameters 3,, 4,and f, of the Bisquare weighted function led to the
generation of Cauchy disturbance distribution, with different sample sizes and 0.99 of p and 5%,
10%, and 20% of outliers.

Collinearity and Sample size Par. oLS RIDGE RLMS WRID WRLMS
Outliers
B 539.3470 17.6219 3.2915 7.3765 2.2822
1
25
P =0.99 IB 309.8400 16.9365 3.2369 7.9873 2.3988
2
outliers=5% ~
0 ﬂ 399.8710 17.0689 3.4521 8.3870 2.3454
3
B 260.6930 11.9031 2.8967 6.2531 1.4235
1
50 —
IB 187.8640 11.8749 2.9503 6.3613 1.4540
2
ﬂ'\ 161.4990 11.4368 2.8232 5.4830 1.4779
3
B 24.0010 7.8427 2.7373 3.6954 1.1295
100 =
IB 204.9350 8.2270 2.5330 3.6380 1.1398
2
ﬂ‘ 128.7050  8.0030 2.5646 3.3723 1.1173
3
B 540.5340 17.8739 2.6284 6.8147 2.2857
1
25
Y% =0.99 IB 308.7860 16.2799 2.9147 6.7048 2.2827
2
outliers=10% ~
0 ﬂ 400.6470 17.2466 2.9667 7.1761 2.3026
3
B 258.1350 11.0295 1.8995 5.8956 1.3689
50 =
IB 183.7840 10.9748 2.0777 5.9038 1.4312
2
ﬂ’\ 164.9560 10.7422 21277 5.4044 1.3615
3
B 247.5590 7.9864 1.9910 3.5608 1.1237
100 =
IB 206.2420 8.0351 1.8062 3.3314 1.1536
2
ﬂ’\ 130.5290 8.2137 1.8650 2.9793 1.1148
3
25 B 538.2300 16.9860 2.7484 15.5190 1.4903
1
,é 297.1080 16.6398 2.5092 15.0558 1.5353
£=0.99 2
. 402.7270 17.2583 2.8482 15.7592 1.3967
outliers=20% ﬂg
50 ﬂ’\ 259.0720 11.2609 1.8286 9.3057 1.3471
1
,é 182.0790 10.8335 1.8424 8.6640 1.4859
2
ﬂ’\ 168.5210 11.0509 1.7711 9.0069 1.4449
3
100 B 178.6700 8.2138 1.4967 5.9508 1.2290
1
IB 118.6620 7.8324 1.5636 6.1447 1.2817
2
ﬂ’\ 131.7760 8.0231 1.7366 6.2444 1.2483
3
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Table (9): RMSE values for the parameters /,, 4,and f,of the Bisquare weighted function led to the
generation of Student-t disturbance distribution, with different sample sizes and 0.0 of o and 0% of

outliers.
Collinearity and .
, Samplesize ~ Par.  OLS  RIDGE  RLMS  WRID
Outliers
P, 03842 06165 05924 06138
f, 03897 06121 05841 06126
25
B, 03705 06088 06001 06149
P, 02623 05951 05850 05972
P00 50 [, 02569 06026 0591  0.5969
outliers=0% A

ﬂ3 0.2436 0.5982 0.5854 0.5992
ﬂl 0.1686 0.5932 0.5816 0.5902
100 ,82 0.1691 0.5905 0.5851 0.5889

B, 01712 05895 05830  0.5938

Table (10): RMSE values for the parameters ,[3’1 , [3’2 and /3’3 of the Bisquare weighted function led to
the generation of Student-t disturbance distribution, with different sample sizes and 0.5 of p and 5%,
10%, and 20% of outliers.

Collinearity and

Outliers Sample size Par. OoLS RIDGE RLMS WRID WRLMS
ﬂAl 77562 10188 09775  0.9597 0.9581
- ,32 75081 10173 09753  0.9596 0.9561
ﬂ; 7.7566  1.0013 09765  0.9596 0.9591
ﬂAl 50686 09957 09720  0.9580 0.9573
p=05 50 ,5’2 50127 09857 09740  0.9575 0.9560
outliers=5% ﬁa 50385 09714 09677  0.9581 0.9565
ﬁAl 38059 09740 09714  0.9626 0.9610
100 ,5’2 37875 09739 09709  0.9624 0.9614
ﬁa 38512 09726 09706  0.9625 0.9611
ﬂAl 105781 10227  0.9887  0.9782 0.9707
- ,32 10.3531 10358  0.9828 09731 0.9694
Bg 10.3936 10134 009862  0.9702 0.9686
ﬂAl 77285 10119 09847  0.9754 0.9715
,32 74220 09996 09854  0.9768 0.9708
P05 50 .
outliers=10% B, 8038 09867 09786 09730 0.9707
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ﬁl 5.3747 0.9895 0.9806 0.9742 0.9718
100 ,32 5.2116 0.9783 0.9771 0.9735 0.9713
ﬂ3 5.3658 0.9845 0.9810 0.9759 0.9714
ﬂl 15.9433 1.0249 0.9897 1.0162 0.9830
25 ﬂz 15.6591 1.0577 0.9918 1.0386 0.9789
ﬂ3 15.4914 1.0123 0.9872 1.0055 0.9759
ﬂl 10.7110 1.0032 0.9893 0.9922 0.9792
0 =05 n
. 50 ,32 9.9938 1.0175 0.9900 0.9998 0.9779
outliers=20%
ﬂa 10.3199 0.9935 0.9842 0.9896 0.9794
ﬂl 7.0414 0.9909 0.9882 0.9867 0.9790
100 ,32 7.3687 0.9906 0.9846 0.9824 0.9773
ﬂ3 7.1057 0.9960 0.9857 0.9952 0.9795

Table (11): RMSE values for the parameters 4, 4,and /3, of the Bisquare weighted function led to

the generation of Student-t disturbance distribution, with different sample sizes and 0.99 of p and 5%,
10%, and 20% of outliers.

Collinearity and

Outliers Sample size Par. OoLS RIDGE RLMS WRID WRLMS
B, 361524 17.0805 36399 21425 1.9098
25 P, 361496 168572 31818 20859 1.7869
B, 378469  17.3168  3.8969  2.0963 1.9101
B, 240005 11.9968  3.0933  1.8662 1.3742
P =099 5 P, 241853 117035 34139 17744 1.3193
outliers=5% A
B, 242879 117290  3.0674 17857 1.3833
B, 189644 82189 31698 19303 1.0921
100 P, 184052 81423 29061  1.9060 11121
B, 182177 82767 32336 20042 1.0969
B, 511991 169592 22003  4.8924 1.9464
25 P, 506350 16.7245 19134 45262 1.7856
B, 502193  16.8400 21204 45201 1.8535
B, 379301 118750 19374  3.2397 1.2629
50 P, 363352 116201 20478  3.3999 11791
0 =0.99 .
Hierem1000 B, 386808 122641 20806  3.4389 1.3015
outliers= 0
B, 252224 84940 20950 35808 1.0824
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100 B, 251005

B, 262743

f. 776328

25 B, 743532

B, 172

f.  s28208

P =099 50 ,32 48.6979

outliers=20% A

B, s0.0828

B, sa0404

100 B, .20

B, sscars

8. CONCLUSIONS

In regression analysis, two problems are more
frequently faced, namely, multicollinearity and
outliers. Apparently separate, both problems
occur at the same time in actual practice. In
order to address them, a numerical example and
Monte Carlo simulation were developed for the
sake of comparing some combining weighted
ridge and robust regression  estimators’
performance.

The results of the comparisons in guestion
showed that the OLS surpassed all estimators for
different sample size, when there was neither
multicollinearity nor outliers in the data and the
disturbances are normal and S-student. But,
when disturbances were Cauchy, the estimator
OLS showed less efficiency than the all other
estimators.

Be that as it may, the resultant loss is large as
far as efficiency is concerned. Data were
generated in order to test and permit
generalizations to practical circumstances. For
that matter, one particular form of the weighted
ridge estimator WRID was compared to the
WRLMS estimator.

8.1902 1.9087 3.5896 1.0696
8.5006 2.1842 3.5527 1.0936
17.3533 2.2137 15.3698 1.3229
16.7828 2.1874 14.8895 1.2371
17.2904 2.0472 15.3778 1.2914
12.5645 1.7418 9.4074 1.2621
11.7374 1.6013 8.7445 1.2819
11.9296 1.6593 9.2481 1.2784
8.4791 15152 7.0952 1.1584
8.5728 1.3684 7.0510 1.1075
8.4390 1.6890 7.0143 1.1766

Many other possible weighting forms are
likely to be utilized to construct the WRLMS
estimator. Hampel (1972) suggested some of
them and Askin and Montgomery (1980)
discussed their function. However, in this study
the Bisquare weighted function was used, giving
the result that WRLMS is better than all other
estimators where multicollinearity and outliers
are present.
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