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ABSTRACT 

The presence of multicollinearity and outliers are classical problems of data within the linear 

regression framework. We are going to present a proposal of a new method which can be a potential 

candidate for robust ridge regression as well as a robust detection of multicollinearity. This proposal 

arises as a logical combination of principles used in the ridge regression and the Bisquare weighted 

function. The technique of the Least Median of Squares (LMS) is used for the sake of overcoming the 

resulting regression problems. This paper investigates the non-resistance of Ordinary Least Square (OLS) 

to multicollinearity and outliers and proposes the utilization of  robust regression for instance, Least 

Median Squares LMS to detect non-normality of residuals, the use of robust methods yields more reliable 

trend estimations and outlier detection. LMS is introduced as a robust regression technique and through 

medical application its effect on regression is discussed. The numerical example and simulation study 

shows that the outcome of the Weighted Ridge Least Median Squares (WRLMS) is better than other 

estimators in terms of its efficiency. This has been done by utilizing both Standard Error (SE) and the 

Root Mean Squared Error criterion for the numerical example and simulation study, respectively as far 

as a lot of combinations of error distribution and degree of multicollinearity are concerned. 

 

KEYWORDS: Multicollinearity; Outliers; Ridge Regression; Robust LMS Estimation and Weighted 

Ridge Least Median Squares. 

 

 
 
 

1. INTRODUCTION 

 
ulticollinearity and outliers are two 

important problems considered in 

regression analysis. The coefficients’ OLS 
estimators usually have particular ideal 

properties if explanatory variables are not 

intercorrelated, and the unsetteling influences of 

the regression equation are independent, 
indistinguishably allocated typical random 

variables.  

The existence of intercorrelationship may be 
conducive to wrong information regarding the 

coefficients of regression. On the other hand, in 

the presence of nonnormal disturbance 

distributions the OLS estimator may produce 
extremely poor estimates.   

Consequently, to address these problems 

independently, various remedial techniques have 
been suggested. One of these techniques is the 

ridge regression technique which is used to 

tackle multicollinearity, as well as the robust 
estimation techniques which are not as barely 

influenced by nonnormal disturbances. Be that 

as it may, in spite of the fact that we by and large 
think of these two problems independently, but 

in practical circumstances, they happen at the 

same time. 
Montgomery and Peck (1982) have suggested 

that it is likely that either robust or ridge 

estimation methods alone are appropriate for 

managing the combined problem. Therefore, in 
order to handle these two problems at the same 

time, some robust ridge regression estimators 

have been introduced; estimators that are much 
less influenced by multicollinearity and outliers.  

 Askin and Montgomery (1980), on the other 

hand, have suggested that  the ridge and the 

Least Absolute Deviation (LAD) robust 
regression techniques be joined together. In the 

current paper, as a starting point, there is a need 

to create a more robust technique to deal with 
these two problems. The suggestion being made 

is that the ridge regression and the weighted 

function be combined with the high breakdown 
point estimator, which is the LMS-estimator. 

M 
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This modified method is called in this study, the 

weighted robust ridge regression on the basis of 

the LMS-estimation WRLMS.  

It is anticipated that this modified method 
would be less susceptible to the multicollinearity 

and outliers presence. Thus, this paper aims to 

test some estimators which resist the problems of 
multicollinearity and outliers when these 

problems are of a combined nature. So the 

question that may be put is whether it is possible 
to combine the ridge estimators and some robust 

estimation techniques in order to come out with 

a robust ridge regression estimator. The outline 

of the present paper is as follows:  section (2) 
explains the ridge estimator; section (3) clarifies 

the seek for the robust estimation techniques; 

sections (4) and (5) explain the alternative 
combined estimators of ridge and weighted 

robust regression; section (6) is an application of 

the suggested method and available methods; 
section (7) presents the results and discussion of 

a Monte Carlo simulation study to examine the 

performance of  such estimators; and lastly, 

section (8) gives the conclusions. 

 
2. THE ESTIMATORS OF RIDGE 

REGRESSION 

 
See this model of linear regression:  

,y X          

                           (1) 

here y is an (nx1) vector of observations 

relevant to  the dependent variable, X is an (n x 

p) matrix of observations pertinent to the 

explanatory variables,   is a (px1) vector of 

regression coefficients that need estimation, and 

  is (nx1) vector of disturbances distribution. It 

is possible to write the LS estimator of   as:  

 
1ˆ

LS X X X Y


 
                        

 (2) 

The advantage of the present method is that it 
gives a variance which is unbiased and minimum 

amidst all unbiased linear estimators on the 

condition that the errors are independent as well 
as normally distributed in an identical manner. 

But when multicollinearity is present, the 

singularities which exist in ( )X X matrix can 

make this ill-conditioned X matrix liable to the 
production of bad estimates.  

 

Ridge regression use LS estimator because of 

it is slightly biased. The idea is that a biased 
estimator with a small standard error is often 

preferable over an unbiased estimator with a 

large standard error. Ridge regression uses the 

correlation transformation along with a biasing 

constant to obtain the ridge estimators for the 

transformed model (see Kutner et al., 2004). The 
biasing constant is most commonly chosen based 

on the Variance Inflation Factor (VIF). The 

VIF’s will also decrease and eventually stabilize 
as the biasing constant increases. So, the “best” 

biasing constant is the one whose value 

stabilizes the VIF’s. The degree of 
multicollinearity is often specified by VIF 

Hoerl and Kennard (1970a) designed a 

method for ridge regression for the purpose of 

estimating a proper parameter where it is 

possible to add a constant k i to the X'X . In the 

prsent case, the following gives the ridge 

estimator of the parameter  :    

  YXkIXXRid


1
̂ ,                                 (3) 

here k0 1   is the is the biasing constant, I

is the pxp identity matrix and p is the number of 

parameters. In accordance with the researcher’s 

judgment, the constant k which relies on a trace 
would be established on sunjective bases (Hoerl 

and Kennard, 1970b) and (Gibbons, 1981) as 

mentioned in (Montgomery and Peck, 1992). 

Various methods for the determination of k

value have been mentioned in the literature. 

Consider, for example the following by Hoerl 

and Kennard (1970):           
2S
LSk

HK 'ˆ ˆ
LS LS

p

β β

                                        (4)   

where 2
LS

'
ˆ ˆ
LS LS

n-p
S

   
   
   
y-xβ y-xβ

          (5) 

where the ridge regression procedure of   is 

utilized instead of the LS estimator in the 
computation of the k and S

2
 values so as to 

minimize the influence of nonnormality on the 

value, then ˆ
Rid

β  shows bias; however, it is more 

steady and exact in comparison to the LS 

estimator and when ˆ, 0.
Rid

k  β
 
Hoerl and 

Kennard (1970) have stated that a value 0k 

always exists in such away that ˆ( )
Rid

MSE β  

becomes less than ˆ( ).LSMSE 
 

 

3. THE ESTIMATORS OF ROBUST 

REGRESSION 

 
It has been proven that Robust regression 

estimators are more effective and solid than LS 

estimator in two cases in particular: when 
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disturbances are nonnormal and when 

disturbance distributions that possess heavy or 

fatter tails in comparison to the normal 

distribution are thus susptible to the production 
of outliers. In view of the fact that outliers 

enormously influence the estimated coefficients, 

standard errors, and test statistics, then there is a 
possibility that the regular statistical procedur be 

most ineffective because the precision of the 

estimator has been influenced. There exists  lot 
of various classifications of robust regression. 

The LMS estimator is one of the important 

members of regression. 

  
It is possible to define the  LMS estimator

ˆ
LMS  as the solution to the following 

minimization problem: 
2( )i imed y x                           (6)

       
Here the sum of the absolute values of the 

residuals is minimized instead of minimizing the 

sum of squared residuals as in LS estimation. In 
this way, the impact of outliers on the LMS 

estimates becomes less than the one on LS 

estimates. It is possible to use the procedure of 

Bisquare weighted function for the sake of 
computing the weighted LMS estimates as 

follows: 

To calculate the weights, consider a situation 
with n observations of yi a response variable and 

p explanatory variables. 

1 1i 2 2i 3 3i p pi = x  + x  + x  +... + x  +    
i i

y ε   (7)  

We adopt the following procedure for all 

competing estimators being considered in the 

study. 

Step 1: Choose initial estimates of  , we use 

robust estimator as the starting value. 

Step 2: Compute the residuals ˆ
î i i

y x    

and also the corresponding weights based on the 

weight function from the previous iteration. 

Usually the residuals are scaled by applying 
some suitable scale estimate u. In practice the 

variance 2  is unknown. A very good choice for 

scale estimate due to a high degree of robustness 

is the Median Absolute Deviation (MAD) and is 

given by 

  
1

MAD median median
0.6745

i i
  

         
 (8) 

Step 3: Calculate new estimates of the 

regression coefficients by performing weighted 

function, that scaled residual is iu
MAD


  many 

weight functions have been proposed for 

dampening the influence of outlying cases or 

down weight the influence of outliers. 

 

2
2

1

0

B

u cu

u c

u c

w






  
      



                    (9)

           

 

As before, Bw denotes the Bisquare weighted 

function, and u  denotes the scaled residual to be 

defined shortly. The Bisquare estimators’  c  

value is known as a tuning constant. If c exhibits 
smaller values, more resistance to outliers is 

brought about, but this happens at the cost of 

lower efficiency when there is a regular 

distribution of errors. 
The tuning constant is commonly chosen in 

order to provide high efficiency which is 

reasonable under normal conditions; especially, 
c = 4.685 if the Bisquare is to produce 95% 

efficiency when the errors are normal, and still 

offer protection against outliers (Fox and 

Weisberg  (2011); (Neter, 2004) and 
(Alaminger, 2013). 

 

4. ROBUST RIDGE REGRESSION 

ESTIMATORS 

 

This is a combination of ridge and robust 
regression to handle the multicollinearity and 

outliers problems at the same time. In this way, 

the effects of both problems will be dampen in a 

classical linear regression model. The formula 
for the comoutation of Robust Ridge Estimator 

runs as follows:  

 
1ˆ

Robustridge RobustX X k I X Y


  β        (10) 

Where Robustk  is called the robust parameter. 

It is obtained from robust regression methods 

instead of using OLS. This will be computed as 

given in equation (4) and (5), only that k
HK

and 

2

LSS  are replaced with Robustk and 
2

RobustS

respectively.  

 

5. WEIGHTED ROBUST RIDGE 

REGRESSION ESTIMATORS 
 

In the current section, some combinations of 

ridge and robust regression estimation are 
presented. These were discussed in sections (2) 

and (3), respectively with weight function. In 

this regard, it is possible to compute the robust 
ridge estimator, known as weighted robust ridge 
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estimator ˆ
Wrobustridge  , by utilizing the following 

formula: 

 
1ˆ

Wrobustridge WRX WX k I X W Y


  β       (11)  

where the value of WRobustk  is identified as 

2

ˆ ˆ
WRobust

WRobust

Robust Robust

ps
k 

β β
,  and where     

   
2

ˆ ˆ
WRobust WRobust

WRobusts
n p






Y - Xβ Y -Xβ
    (12) 

 the weighted Bw can be determined from 

equation (9). Moreover, there is another 

weighted ridge estimator which was formerly 
utilized by another researcher; it is called 

weighted ridge estimator 
WRID

β̂   The following 

formula computes this estimator: 

 WRID
ˆ k

-1
β = X'WX I X'WY                    (13) 

here the values of k and 2s are identified as 

(4) and (5), respectively. The same values of 

weighted in  equation (9) used to estimate 
(Zahari et al., 2012) and compared with this 

proposed estimator LMS. 

The estimator of weighted robust ridge estimator 
will be designated by the WRLMS estimator and 

it is possible to write it as 

 
1ˆ

WRLMS WLMSX WX k I X WY


  β        (14) 

where the value of WLMSk is ascertained on the 

basis of data by using: 
2

ˆ ˆ
WLMS

WLMS

WLMS WLMS

PS
k 

β β
      (15)  

and  

   
2

ˆ ˆ
WLMS WLMS

WLMS

Y X Y X
S

n p


 




β β
       (16)

 

ˆ
WRLMS  represents the estimator of RLMS 

which can be defined as equation (14) solution. 

It is important to note that the value of WLMSk

represents the estimator of k
HK  shown by 

equation (4) with the presence of two changes.  

This process was firstly applied instead of the 

LS estimate. Afterwards, the estimator applied in 

equation (5) is modified by other estimates, 

namely, 
2

WLMSs which were also applied instead 

of the LS estimate. The aim behind these 

changes is to minimize the impact of extreme 
points on the value selected for the biasing 

parameter. In the end, it is possible to exploit the 

ridge regression estimator in order to decide on 

k biasing parameter.     

 

6. APPLICATIONS 

 

6.1 Numerical Example 

Body fat data, containing 252 observations 

taken from Penrose et al. (1985), are exploited to 
assess the estimators’ performance. The data 

involved fourteen explanatory variables. The 

response variable is y= PCTBF (percentage of 
body fat), which were regressed to the x1= 

Density, x2= Age, x3= Weight, x4= Height, x5= 

Neck, x6= Chest, x7=Abdomen, x8= Hip, x9= 

Thigh, x10= Knee, x11= Ankle, x12= Biceps, 
x13= Forearm and x14= Wrist.  

Table 1 presents the VIF  of the parameters, 

this condition can be used to detect 

multicollinearity using the following formula, 
1

VIF  
21-R

 , where 2
R is the determinant of the 

matrix X'X . Similarly, it is possible to determine 

the outliers in the data through the computation 
of  the residuals connected with LMS regression, 

 25
1.4826 1

i
s med

n p
 



 
 
 

, where med is 

the median of the squared residuals, p is the 

number of predictors. The points 

 1, ,...,i i ipy x x are designated as regression 

outliers if the equivalent standardized residual is 
large.  

Rousseeuw and Van Zomeren (1990) 

designated the i
th 

vector as regression outlier if

2.5/
i

r s   suggests that the value is outlier. 

The most frequently used measures for the 

detection of outliers are ordinary or simple 
residuals (observed - predicted values).
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Table (1): Variance Inflation Factor VIF for the body fat data set 

 

Var. X1 X2 X3 X4 X5 X6 X7 

VIF 3.8183 2.2747 34.0317 1.6778 4.3965 9.4722 18.1199 

Var. X8 X9 X10 X11 X12 X13 X14 

VIF 14.9610 7.8877 4.6123 1.9200 3.6516 2.2370 3.5215 

 

 
 

The results of the analysis in Table 1 indicate 

that when the real data belonged to the body fat 

application note from which the VIF for some 

variables value has exceeded the value of 10 

since the computation of VIF is highly 

dependent on the calculation of 2
R . So it is clear 

that multicollinearity problem exists between 

variables.    

Thus, the VIF can help to identify which 

explanatory variables are involved in the 

multicollinearity, as the maximum value is 

34.0317 in X3 variable in Table 1. Additionally,  

the data comprised 13 outliers which influenced 

the data and produced poor results. On the other 

hand, Table 2 indicates that the proposed 

methods when applied statistical criteria 

standard errors for this data indicate that, the 

standard error of WRLMS less than existing 

methods (OLS, RIDGE, RLMS and WRID).  

Table 2 below su 

mmarizes estimates of the parameter as well 

as the standard error for the methods in question, 

i.e., the proposed and existing ones.
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The results of numerical example in Table 2 

shown as the standard error SE for the WRID 

less than OLS, RIDGE and RLMS. Likewise, 
the SE for the RLMS less than OLS, RIDGE the 

reason of this is due to the presence of 

autocorrelation and outliers in the data. It is 

obvious that the OLS affected if there is a single 
observation of outlier and presence of 

multicollinearity in the data and also another 

estimators affected in the presence of these 
problems. On the other, noticed that SE for the 

WRLMS less than WRID for all the parameters. 

6.2 Simulation Study 
A Monte Carlo simulation study was 

designed for the sake of comparing the 

performance of some alternative combined 

estimators in question to confirm the results that 
acquired in numerical example. The simulation 

is developed in such a way as to permit 

multicollinearity and outliers at the same time. 

Multicollinearity various degrees are stated. In 

the same way, the distributions which are not 

normal are utilized to produce outliers. 
The five estimators involved in the study are: 

(1) Ordinary least squares (OLS). 

(2) Ridge regression (RIDGE). 

(3) Weighted ridge regression (WRID). 
(4) Ridge least median squares (RLMS). 

(5) Weighted robust ridge LMS (WRLMS). 

The OLS, RIDGE, WRID, RLMS and 
WRLMS estimators were defined above. If one 

assumes that the following linear regression 

model is available:  

0 1 1 2 2 3 3i i i
x x x       

i i
y ε    where   

i= 1, 2, …, n                                (17) 

The parameter values 0 1 2 3
, , and     are 

put equal to one (Dempster, 1977). Then, the 

Coef. Estimate OLS RIDGE RLMS WRID WRLMS 

ˆ
1β  

parameter 

S.E. 

-411.2000 

8.2580 

-0.9296 

0.0203 

-0.9301 

0.0197 

-1.0027 

0.0057 

-1.0038 

0.0026 

ˆ
2β  

parameter 

S.E. 

0.0126 

0.0158 

0.0194 

0.0157 

0.0193 

0.0143 

0.0006 

0.0041 

0.0000 

0.0019 

ˆ
3β  

parameter 

S.E. 

0.0101 

0.0578 

0.0321 

0.0575 

0.0323 

0.0528 

0.0077 

0.0165 

0.0011 

0.0073 

ˆ
4β  

parameter 

S.E. 

-0.0080 

0.0284 

-0.0036 

0.0135 

-0.0035 

0.0131 

-0.0052 

0.0038 

-0.0045 

0.0020 

ˆ
5β  

parameter 

S.E. 

-0.0285 

0.0694 

-0.0088 

0.0219 

-0.0088 

0.0212 

0.0021 

0.0060 

0.0015 

0.0026 

ˆ
6β  

parameter 

S.E. 

0.0268 

0.0307 

0.0269 

0.0316 

0.0269 

0.0294 

0.0002 

0.0090 

0.0042 

0.0039 

ˆ
7β  

parameter 

S.E. 

0.0186 

0.0433 

0.0312 

0.0431 

0.0305 

0.0395 

-0.0025 

0.0117 

0.0021 

0.0053 

ˆ
8β  

parameter 

S.E. 

0.0192 

0.0434 

0.0155 

0.0392 

0.0156 

0.0381 

0.0099 

0.0120 

0.0114 

0.0049 

ˆ
9β  

parameter 

S.E. 

-0.0168 

0.0430 

-0.0094 

0.0292 

-0.0095 

0.0283 

-0.0138 

0.0081 

-0.0121 

0.0035 

ˆ
10β

 

parameter 

S.E. 

-0.0046 

0.0716 

-0.0012 

0.0224 

-0.0012 

0.0217 

0.0017 

0.0064 

-0.0004 

0.0027 

11β
 

parameter 

S.E. 

-0.0857 

0.0658 

-0.0169 

0.0146 

-0.0170 

0.0141 

0.0004 

0.0037 

0.0015 

0.0020 

12β
 

parameter 

S.E. 

-0.0551 

0.0509 

-0.0192 

0.0200 

-0.0192 

0.0194 

-0.0004 

0.0052 

-0.0017 

0.0024 

13β
 

parameter 

S.E. 

0.0339 

0.0595 

0.0087 

0.0157 

0.0087 

0.0152 

-0.0009 

0.0040 

0.0004 

0.0020 

14β
 

parameter 

S.E. 

0.0073 

0.1617 

-0.0002 

0.0197 

-0.0001 

0.0191 

-0.0015 

0.0054 

-0.0018 

0.0024 

Table (2): Estimation of the parameters and standard error SE of ...  with respect to the proposed and 

existing methods WRLMS estimators used weighted Tukey function for the body fat data  set. 
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explanatory variables 
1 2 3

, and 
i i i

x x x  are 

generated as: 
2

(1 )   
ij ij ij

x z z    where             i=1, 2,…, 

n,   j =1, 2, 3                       (18) 

where z
ij

are independent standard normal 

random numbers generated by the R-normal. 

constitutes the correlation between the two 
explanatory variables. Its values were selected 

as: 0.0, 0.5 and 0.99. For a given sample size n, 

the explanatory variables values were generated 
earlier. In this study, the sample sizes 

investigated are: 25, 50, and 100 and the 

fundamental factor is the disturbance 

distribution. The following three disturbance 
distributions are used: 

1.  Standard normal distribution. 

2. Cauchy distribution along with median zero 
and scale parameter one. 

3.  Student-t distribution along with three 

degrees of freedom. 
Generally speaking, all the acquired random 

numbers are generated by exploiting the R 

programming. Disturbances are generated in all 

cases in isolation from the explanatory variables. 
The simulations that were executed used 

programs written in R. 

Three different distributional forms for the 

i
 disturbances are considered, to statement an 

inquiry of model performance in a broad range 
of circumstances. The distributional forms are: 

The results used are based on 500 Mote Carlo 

trials. Consider these statistics: 

1. The mean squared error is 

 
500 21 ˆ

500 1
MSE

i
 


β -βj j , therefore,  

2. The RMSE is given by 1/2ˆ[ ( )]MSE β
j       

  where j= 0, 1, 2, 3 
 

 

 
 

 

7. RESULTS AND DISCUSSION 

 

The comparison of the three robust ridge 

estimators WRID, RLMS, and WRLMS are 
considered with two non-robust which are ridge 

regression and OLS estimate.  

The results from the Table 3 and Table 9 we 
see that the value of the RMSE for the OLS 

estimator is less than all the estimators when no 

multicollinearity and no outliers in the data and 
the disturbances are normal and S-student. 

Otherwise the RMSE for OLS is greater than 

estimators used when the disturbance is cauchy 

distribution.  
Whilst Tables 4-11 presents the value of the 

RMSE for the proposed method WRLMS is less 

than all estimators for different sample size and 
different degree of multicollinearity and outliers 

estimates except Table 3 and Table 9 the value 

of the RMSE of the RLMS greater than OLS 
when the no outliers and no multicollinearity for 

the sample size 25, 50 and 100 when the error 

are normal and S-student disturbance 

distribution  and However, the value of the 
RMSE of the RLMS less than all estimator when 

the no outliers and no multicollinearity for the 

sample size 25, 50 and 100 when the disturbance 
is cauchy and S-student distribution. 

Occasionally, the value of the RMSE of the 

RLMS less than WRID when the  =0.5 and 

20% of outliers, also when  =0.99 10% and 

20% for all disturbance distribution. 

As a conclusion and taking into consideration 
the different estimators’ properties, it should be 

noted that the results obtained from comparing 

the WRLMS estimator with the WRID, RLMS, 

RIDGE and LS estimators are not totally 
unanticipated. Accordingly, the most 

fundamental result acquired from these 

comparisons is that the WRLMS estimator is 
better than the RLMS estimator. This is evident 

over a wide range of estimators’ values for the 

disturbance distributions in question as the ridge 

regression, and in some cases, it is even likely to 
work well. 
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Table )3(: RMSE values for the parameters
1

̂ , 
2

̂ and 
3

̂  of the Bisquare weighted function led to the 

generation of Normal disturbance distribution, with different sample sizes and 0.0 of  and 0% of 

outliers.

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Table )4): RMSE values for the parameters
1

̂ , 
2

̂ and 
3

̂  of the Bisquare weighted function led to the 

generation of Normal disturbance distribution, with different sample sizes and 0.5 of  and 5%, 10%, 

and 20% of outliers. 

Collinearity 
and Outliers 

Sample 
size 

Par. OLS RIDGE    RLMS    WRID 

 

 =0.0 

outliers=0% 

25 
 

 

1̂  0.2268 0.5175 0.5065 0.5386 

2̂  0.2211 0.5147 0.5128 0.5330 

3̂  0.2288 0.5246 0.5172 0.5430 

50 

1̂  0.1469 0.5067 0.5035 0.5056 

2̂  0.1438 0.5138 0.5080 0.5103 

3̂  0.1526 0.5076 0.5025 0.5156 

100 

1̂  0.0996 0.5047 0.5033 0.5056 

2̂  0.1092 0.5037 0.5008 0.5043 

3̂  0.1028 0.5022 0.4996 0.5087 

Collinearity and 

Outliers 
Sample size Par. OLS RIDGE RLMS WRID WRLMS 

 

 =0.5 

outliers=5% 

 

25 

 

1̂  7.6662 1.0146 0.9802 0.9589 0.9567 

2̂  7.4358 1.0134 0.9777 0.9589 0.9585 

3̂  7.7912 1.0091 0.9736 0.9585 0.9571 

 

50 

1̂  4.9159 0.9816 0.9697 0.9575 0.9567 

2̂  4.9135 0.9834 0.9682 0.9576 0.9570 

3̂  5.0025 0.9705 0.9678 0.9573 0.9566 

 

100 

1̂  3.6112 0.9822 0.9697 0.9615 0.9598 

2̂  3.7634 0.9698 0.9656 0.9617 0.9613 

3̂  3.7729 0.9796 0.9711 0.9617 0.9613 

 

 

 

 

 

 

 

 =0.5 

 

25 

 

1̂  10.3840 1.0206 0.9835 0.9712 0.9689 

2̂  10.3675 1.0060 0.9810 0.9705 0.9699 

3̂  10.3284 1.0302 0.9812 0.9745 0.9683 

 

50 

 

1̂  7.5537 1.0007 0.9797 0.9728 0.9715 

2̂  7.8356 0.9997 0.9848 0.9746 0.9719 
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Table (5): RMSE values for the parameters
1

̂ , 
2

̂ and 
3

̂  of the Bisquare weighted function led to the 

generation of Normal disturbance distribution, with different sample sizes and 0.99 of  and 5%, 

10%, and 20% of outliers. 
 

Collinearity and 

Outliers 
Sample size Par. OLS RIDGE RLMS WRID WRLMS 

 

 

 =0.99 

outliers=5% 

 

25 

 

1̂  36.2995 16.9471 2.2958 2.0718 1.7265 

2̂  36.5225 17.0882 2.1072 2.2286 1.8383 

3̂  37.0392 17.2163 2.1122 2.1627 1.7050 

 

50 

1̂  23.1791 11.4812 2.9258 1.6163 1.2125 

2̂  23.3869 11.4224 3.0880 1.6619 1.2753 

3̂  24.3679 11.9025 2.9641 1.6373 1.2263 

 

100 

1̂  17.2393 7.7543 3.0266 2.0837 1.0251 

2̂  17.7965 7.9083 2.8387 2.1194 1.0894 

3̂  18.3800 8.1809 3.0398 2.1017 1.0976 

 

 

 

 

 

 

 

 =0.99 

 

25 

1̂  48.5662 16.3733 1.9724 3.5504 1.4511 

2̂  50.2358 16.9561 2.1970 3.1679 1.4637 

3̂  49.0428 16.2526 1.8728 3.4291 1.5974 

 

50 

1̂  36.7919 11.5193 1.7268 3.2345 1.1874 

2̂  37.2747 11.9873 1.9073 3.2399 1.2362 

outliers=10% 
3̂  7.1996 0.9905 0.9816 0.9751 0.9716 

 

100 

1̂  5.2223 0.9923 0.9828 0.9754 0.9710 

2̂  5.1746 0.9867 0.9804 0.9803 0.9715 

3̂  5.1154 0.9838 0.9771 0.9723 0.9716 

 

 =0.5 

outliers=20% 

25 

1̂  14.6464 1.0322 0.9882 1.0240 0.9790 

2̂  15.6775 1.0046 0.9883 0.9925 0.9791 

3̂  15.1694 1.0259 0.9888 1.0218 0.9803 

50 

1̂  10.2780 1.0091 0.9874 1.0036 0.9782 

2̂  10.2605 1.0029 0.9884 0.9878 0.9798 

3̂  9.8772 1.0007 0.9883 0.9951 0.9775 

100 

1̂  6.7804 1.0015 0.9885 0.9923 0.9784 

2̂  6.9266 0.9856 0.9831 0.9856 0.9787 

3̂  6.8933 0.9921 0.9873 0.9829 0.9794 
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outliers=10% 

 

 

3̂  34.9526 11.0492 1.7914 3.1326 1.1414 

100 

1̂  25.4084 8.1956 2.0064 4.0558 1.0216 

2̂  24.7682 8.0134 1.8948 4.1744 1.0639 

3̂  24.8356 8.0676 1.9224 3.9335 1.0793 

 

 

 

 =0.99 

outliers=20% 

 

 

25 

 

1̂  71.7362 15.9207 2.1173 14.2355 1.1232 

2̂  74.4900 16.9513 2.4359 15.0788 1.1066 

3̂  73.5528 16.5358 1.9955 14.8189 1.1634 

50 

1̂  49.3527 11.8731 1.5982 9.2223 1.2091 

2̂  49.4907 12.0011 1.6354 9.4697 1.2517 

3̂  47.4601 11.5370 1.4223 9.3366 1.1937 

100 

1̂  33.5315 8.1319 1.5714 7.9758 1.1120 

2̂  32.3816 7.9985 1.3693 7.2893 1.1092 

3̂  33.6884 8.1593 1.4098 7.5249 1.1335 

 

 

Table (6): RMSE values for the parameters
1

̂ , 
2

̂ and 
3

̂  of the Bisquare weighted function led to the 

generation of Cauchy disturbance distribution, with different sample sizes and 0.0 of  and 0% of 

outliers. 
 

Collinearity and 

outliers 
Sample size Par. OLS RIDGE RLMS WRID 

 

 

 =0.0 

outliers=0% 

 

25 

 

1̂  76.0338 0.8760 0.8655 0.8743 

2̂  19.5653 0.8665 0.8565 0.8571 

3̂  32.1690 0.8780 0.8557 0.8660 

 

50 

 

1̂  73.5600 0.9028 0.8936 0.8982 

2̂  82.0571 0.9064 0.8783 0.8882 

3̂  65.0662 0.9015 0.8839 0.8908 

 

100 

 

1̂  25.0922 0.9179 0.9096 0.9098 

2̂  30.7459 0.9147 0.9114 0.9115 

3̂  21.8587 0.9133 0.9038 0.9095 
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Table (7):  RMSE values for the parameters
1

̂ , 
2

̂ and 
3

̂  of the Bisquare weighted function led to 

the generation of Cauchy disturbance distribution, with different sample sizes and 0.5 of  and 5%, 

10%, and 20% of outliers. 
 

Collinearity and 

Outliers 
Sample size Par. OLS RIDGE RLMS WRID WRLMS 

 

 =0.5 

outliers=5% 

 

25 

1̂  13.4442 1.0247 0.9809 0.9820 0.9641 

2̂  55.7264 1.0064 0.9819 0.9683 0.9627 

3̂  65.4795 1.0157 0.9814 0.9745 0.9650 

 

50 

 

1̂  35.1494 1.0028 0.9775 0.9773 0.9649 

2̂  20.4408 0.9852 0.9768 0.9649 0.9646 

3̂  99.3026 0.9805 0.9752 0.9702 0.9646 

 

100 

1̂  54.0001 0.9821 0.9766 0.9724 0.9693 

2̂  33.0903 0.9845 0.9827 0.9721 0.9696 

3̂  29.2753 0.9792 0.9733 0.9698 0.9682 

 

 

 

 =0.5 

outliers=10% 

 

25 

 

1̂  35.5010 1.0404 0.9867 0.9854 0.9730 

2̂  55.7800 1.0159 0.9916 0.9788 0.9718 

3̂  65.6834 1.0159 0.9884 0.9814 0.9757 

 

50 

1̂  35.5010 1.0404 0.9867 0.9825 0.9752 

2̂  55.7800 1.0159 0.9916 0.9778 0.9762 

3̂  65.6834 1.0159 0.9884 0.9819 0.9739 

 

100 

 

1̂  34.4850 0.9990 0.9827 0.9788 0.9753 

2̂  20.8670 0.9931 0.9895 0.9821 0.9767 

3̂  99.6775 0.9910 0.9892 0.9764 0.9760 

 

 

 

 

 =0.5 

outliers=20% 

25 

 

1̂  13.3415 1.0416 0.9912 1.0322 0.9821 

2̂  53.3649 1.0105 0.9968 0.9985 0.9783 

3̂  66.2287 1.0413 0.9944 1.0310 0.9865 

50 

1̂  35.0602 1.0214 0.9883 1.0085 0.9813 

2̂  20.2306 0.9932 0.9893 0.9871 0.9816 

3̂  10.1989 0.9946 0.9934 0.9885 0.9797 

100 

 

1̂  34.3565 0.9891 0.9877 0.9859 0.9803 

2̂  21.9355 0.9952 0.9843 0.9888 0.9814 

3̂  28.6493 0.9944 0.9862 0.9834 0.9813 
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Table (8): RMSE values for the parameters
1

̂ , 
2

̂ and 
3

̂  of the Bisquare weighted function led to the 

generation of Cauchy  disturbance distribution, with different sample sizes and 0.99 of  and 5%, 

10%, and 20% of outliers. 

Collinearity and 

Outliers 

Sample size Par. OLS RIDGE RLMS WRID WRLMS 

 

 

 =0.99 

outliers=5% 

 

25 
1̂  

539.3470 17.6219 3.2915 7.3765 2.2822 

2̂  
309.8400 16.9365 3.2369 7.9873 2.3988 

3̂  
399.8710 17.0689 3.4521 8.3870 2.3454 

 

50 
1̂  

260.6930 11.9031 2.8967 6.2531 1.4235 

2̂  
187.8640 11.8749 2.9503 6.3613 1.4540 

3̂  
161.4990 11.4368 2.8232 5.4830 1.4779 

 

100 
1̂  

24.0010 7.8427 2.7373 3.6954 1.1295 

2̂  
204.9350 8.2270 2.5330 3.6380 1.1398 

3̂  
128.7050 8.0030 2.5646 3.3723 1.1173 

 

 

 =0.99 

outliers=10% 

 

25 
1̂  

540.5340 17.8739 2.6284 6.8147 2.2857 

2̂  
308.7860 16.2799 2.9147 6.7048 2.2827 

3̂  
400.6470 17.2466 2.9667 7.1761 2.3026 

 

50 
1̂  

258.1350 11.0295 1.8995 5.8956 1.3689 

2̂  
183.7840 10.9748 2.0777 5.9038 1.4312 

3̂  
164.9560 10.7422 2.1277 5.4044 1.3615 

 

100 
1̂  

247.5590 7.9864 1.9910 3.5608 1.1237 

2̂  
206.2420 8.0351 1.8062 3.3314 1.1536 

3̂  
130.5290 8.2137 1.8650 2.9793 1.1148 

 

 

 

 =0.99 

outliers=20% 

25 
1̂  

538.2300 16.9860 2.7484 15.5190 1.4903 

2̂  
297.1080 16.6398 2.5092 15.0558 1.5353 

3̂  
402.7270 17.2583 2.8482 15.7592 1.3967 

50 
1̂  

259.0720 11.2609 1.8286 9.3057 1.3471 

2̂  
182.0790 10.8335 1.8424 8.6640 1.4859 

3̂  
168.5210 11.0509 1.7711 9.0069 1.4449 

100 
1̂  

178.6700 8.2138 1.4967 5.9508 1.2290 

2̂  
118.6620 7.8324 1.5636 6.1447 1.2817 

3̂  
131.7760 8.0231 1.7366 6.2444 1.2483 
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Table (9): RMSE values for the parameters
1

̂ , 
2

̂ and 
3

̂ of the Bisquare weighted function led to the 

generation of Student-t  disturbance distribution, with different sample sizes and 0.0 of   and 0% of 

outliers. 
 

Collinearity and 

Outliers 
Sample size Par. OLS RIDGE RLMS WRID 

 

 =0.0 

outliers=0% 

 

25 

1̂  0.3842 0.6165 0.5924 0.6138 

2̂  0.3897 0.6121 0.5841 0.6126 

3̂  0.3705 0.6088 0.6001 0.6149 

 

50 

 

1̂  0.2623 0.5951 0.5850 0.5972 

2̂  0.2569 0.6026 0.5901 0.5969 

3̂  0.2436 0.5982 0.5854 0.5992 

 

100 

 

1̂  0.1686 0.5932 0.5816 0.5902 

2̂  0.1691 0.5905 0.5851 0.5889 

3̂  0.1712 0.5895 0.5830 0.5938 

 

Table (10): RMSE values for the parameters
1

̂ , 
2

̂ and 
3

̂  of the Bisquare weighted function led to 

the generation of Student-t disturbance distribution, with different sample sizes and 0.5 of  and 5%, 

10%, and 20% of outliers. 

 

Collinearity and 

Outliers 
Sample size Par. OLS RIDGE RLMS WRID WRLMS 

 

 

 =0.5 

outliers=5% 

 

25 

1̂  7.7562 1.0188 0.9775 0.9597 0.9581 

2̂  7.5081 1.0173 0.9753 0.9596 0.9561 

3̂  7.7566 1.0013 0.9765 0.9596 0.9591 

 

50 

1̂  5.0686 0.9957 0.9720 0.9580 0.9573 

2̂  5.0127 0.9857 0.9740 0.9575 0.9560 

3̂  5.0385 0.9714 0.9677 0.9581 0.9565 

 

100 

1̂  3.8059 0.9740 0.9714 0.9626 0.9610 

2̂  3.7875 0.9739 0.9709 0.9624 0.9614 

3̂  3.8512 0.9726 0.9706 0.9625 0.9611 

 

 

 

 

 

 

 

 

 =0.5 

outliers=10% 

 

25 

1̂  10.5781 1.0227 0.9887 0.9782 0.9707 

2̂  10.3531 1.0358 0.9828 0.9731 0.9694 

3̂  10.3936 1.0134 0.9862 0.9702 0.9686 

 

50 

1̂  7.7285 1.0119 0.9847 0.9754 0.9715 

2̂  7.4220 0.9996 0.9854 0.9768 0.9708 

3̂  8.0386 0.9867 0.9786 0.9730 0.9707 
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100 

1̂  5.3747 0.9895 0.9806 0.9742 0.9718 

2̂  5.2116 0.9783 0.9771 0.9735 0.9713 

3̂  5.3658 0.9845 0.9810 0.9759 0.9714 

 =0.5 

outliers=20% 

25 

1̂  15.9433 1.0249 0.9897 1.0162 0.9830 

2̂  15.6591 1.0577 0.9918 1.0386 0.9789 

3̂  15.4914 1.0123 0.9872 1.0055 0.9759 

50 

1̂  10.7110 1.0032 0.9893 0.9922 0.9792 

2̂  9.9938 1.0175 0.9900 0.9998 0.9779 

3̂  10.3199 0.9935 0.9842 0.9896 0.9794 

100 

1̂  7.0414 0.9909 0.9882 0.9867 0.9790 

2̂  7.3687 0.9906 0.9846 0.9824 0.9773 

3̂  7.1057 0.9960 0.9857 0.9952 0.9795 

 

 

Table (11): RMSE values for the parameters
1

̂ , 
2

̂ and 
3

̂  of the Bisquare weighted function led to 

the generation of Student-t disturbance distribution, with different sample sizes and 0.99 of  and 5%, 

10%, and 20% of outliers. 
 

Collinearity and 

Outliers 
Sample size Par. OLS RIDGE RLMS WRID WRLMS 

 

 =0.99 

outliers=5% 

 

25 

1̂  36.1524 17.0805 3.6399 2.1425 1.9098 

2̂  36.1496 16.8572 3.1818 2.0859 1.7869 

3̂  37.8469 17.3168 3.8969 2.0963 1.9191 

 

50 

1̂  24.0905 11.9968 3.0933 1.8662 1.3742 

2̂  24.1853 11.7035 3.4139 1.7744 1.3193 

3̂  24.2879 11.7290 3.0674 1.7857 1.3833 

 

100 

1̂  18.9644 8.2189 3.1698 1.9303 1.0921 

2̂  18.4052 8.1423 2.9061 1.9060 1.1121 

3̂  18.2177 8.2767 3.2336 2.0042 1.0969 

 

 

 

 

 

 

 

 =0.99 

outliers=10% 

 

25 

1̂  51.1991 16.9592 2.2003 4.8924 1.9464 

2̂  50.6350 16.7245 1.9134 4.5262 1.7856 

3̂  50.2193 16.8400 2.1204 4.5201 1.8535 

 

50 

1̂  37.9301 11.8750 1.9374 3.2397 1.2629 

2̂  36.3352 11.6201 2.0478 3.3999 1.1791 

3̂  38.6808 12.2641 2.0806 3.4389 1.3015 

 1̂  25.2224 8.4940 2.0950 3.5808 1.0824 
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100 
2̂  25.1905 8.1902 1.9087 3.5896 1.0696 

3̂  26.2743 8.5006 2.1842 3.5527 1.0936 

 

 =0.99 

outliers=20% 

25 

1̂  77.6328 17.3533 2.2137 15.3698 1.3229 

2̂  74.3532 16.7828 2.1874 14.8895 1.2371 

3̂  75.7421 17.2904 2.0472 15.3778 1.2914 

50 

1̂  52.8298 12.5645 1.7418 9.4074 1.2621 

2̂  48.6979 11.7374 1.6013 8.7445 1.2819 

3̂  50.0828 11.9296 1.6593 9.2481 1.2784 

100 

1̂  34.0494 8.4791 1.5152 7.0952 1.1584 

2̂  35.2928 8.5728 1.3684 7.0510 1.1075 

3̂  34.9378 8.4390 1.6890 7.0143 1.1766 

 
 
 

 

8. CONCLUSIONS 

 

In regression analysis, two problems are more 

frequently faced, namely, multicollinearity and 

outliers. Apparently separate, both problems 

occur at the same time in actual practice. In 

order to address them, a numerical example and 

Monte Carlo simulation were developed for the 

sake of comparing some combining weighted 

ridge and robust regression estimators’ 

performance. 

The results of the comparisons in question 

showed that the OLS surpassed all estimators for 

different sample size, when there was neither 

multicollinearity nor outliers in the data and the 

disturbances are  normal and S-student. But, 

when disturbances were Cauchy, the estimator 

OLS showed less efficiency than the all other 

estimators.  

Be that as it may, the resultant loss is large as 

far as efficiency is concerned. Data were 

generated in order to test and permit 

generalizations to practical circumstances. For 

that matter, one particular form of the weighted 

ridge estimator WRID was compared to the 

WRLMS estimator.  

Many other possible weighting forms are 

likely to be utilized to construct the WRLMS 

estimator. Hampel (1972) suggested some of 

them and Askin and Montgomery (1980) 

discussed their function. However, in this study 

the Bisquare weighted function was used, giving 

the result that WRLMS is better than all other 

estimators where multicollinearity and outliers 

are present. 
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