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ABSTRACT  

The prediction of settlement in a traditional design approach usually uses a deterministic value of 
modulus of elasticity (E), which is estimated as an average value by testing the soil at selected locations. 
However, these deterministic properties of soil may not represent the actual properties of soil and site 
condition. Due to numerous sources of uncertainty, the properties of soil mass are spatially varying and 
anisotropic in the natural field condition. In this study, a random finite element method (RFEM) is used to 
evaluate the reliability of settlement of the strip footing on spatially random soil. Modulus of elasticity is 
the only considered random parameter. For this purpose, 2000 spatially random realizations of E-field are 
generated using Monte Carlo Simulation. Each of these realizations of heterogeneous soil profile is passed 
to FEM to analyze the settlement of footing. The final settlement results measured in all these realizations 
are then statistically evaluated and compared. The results of analysis show that the mean and standard 
deviation of the footing settlement are increased with increasing spatial correlation length. The large value 
of isotropic correlation length led to an increase in the mean settlement value by more than 25% as 
compared with the deterministic settlement calculations. Also, it is concluded that the rate of increase of 
settlements for anisotropic correlation length is lower than the one under isotropic condition. 
 
KEYWORDS: Foundation settlement; Spatially random soil; Probabilistic analysis; Random Finite 
element method  
 
 
 

1. INTRODUCTION 
 

he settlement prediction and bearing 
capacity of shallow foundations are 

usually estimated by using conventional 
approaches considering the soil as a 
homogenous porous medium. However, in 
actual, the soil properties are spatial variables 
due to some reasons like deposition process, 
glacial actions, mineralogical composition, and 
stress history. This random nature of the input 
data plays a significant role in the reliability of 
the predicted settlements of the foundations. 
Therefore, to address this problem probabilistic 
analysis has been introduced to understand the 
sensitivity of the result to the variability of the 
input soil parameters. This approach was 
developed after the mid-twentieth by Wu & 
Kraft (1967) and Resendiz & Herrera (1969). In 
their studies, the soil was modeled as a random 
field by ignoring the correlation length between 
random values. Beacher & Ingra (1981) 
developed and used the stochastic FEM to 
predict the total and differential settlements of a 
large flexible footing. Two types of spatial 
autocorrelation (single exponential and squared 

exponential) used in their study to link Young’s 
modulus (as random variables) of soil among 
elements. The study area about probabilistic 
analysis of settlement of shallow foundations has 
widely progressed since 1990. A stochastic 
integral formulation technique was utilized by 
Zeitoun and Baker (1992) to estimate the 
settlement of shallow foundations. Paice et al. 
(1994) evaluated the effect of the random soil 
stiffness on the settlement prediction of the 
shallow footing by using a random finite element 
model.  

During the last two decades, this area of 
study has been focused by several groups of 
researchers as an important field of study. They 
have tended to innovate and develop the new 
methods or techniques of using soil as a spatially 
random and heterogeneous-medium model to 
conduct its different settlement, bearing 
capacity, and seepage analyses. The prediction 
of total settlement under the spread single 
footing and differential settlement under a pair 
of isolated footings are probabilistically 
investigated by Fenton & Griffiths (2002); 
Chenari et al. (2019). The stiffness random field 
was combined with a two dimensional FEM 
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through Monte Carlo simulations. In their study, 
the sensitivity analysis and the effect of mean, 
variance, and spatial correlation distance of input 
data on the settlement prediction are 
investigated. Al-Bittar & Soubra (2014) 
investigated the vertical and horizontal 
displacement of strip footing which subjected to 
a gravity and inclined loads resting on spatially 
random soil (with considering isotropic and 
anisotropic random field). The soil mass was 
simulated by Kenarsari & Chenari (2015)  as an 
anisotropic random field. The generated random 
fields were linked to the FLAC2D finite-
difference model to study the settlement of 
shallow foundations under this induced soil 
spatial variability. Recently, the Monte Carlo 
stochastic finite element program for two-
dimensional reliability of foundation settlement 
has been conducted by Huang et al. (2018).  

In this study, the settlement of the strip 
footing resting on a spatially random soil is 
probabilistically predicted and analyzed. The 
influence of the randomly generated stiffness 
(Young’s modulus, E) fields on the settlement 
prediction is statistically investigated for both 
isotropic and anisotropic random soils. The 
Random Finite Element Method (RFEM) is used 
to model the soil-footing problem. In addition, 
the accuracy of the settlement prediction and the 

influence of the spatial fluctuation lengths on the 
results are studied.  
 

2. RANDOM FIELD MODELING 
 

The assumed soil-foundation system in this 
study is under a plane strain condition as shown 
in Fig. (1.) The footing is a rigid strip footing of 
width ( 𝑤𝑤𝑓𝑓) of 1.0m with an applied line load of 
100 kN/m. The sufficient soil profile depth is 
considered of 𝐻𝐻 = 2.0 𝑚𝑚 and the vertical 
boundaries of the model are assumed to be fixed 
in a horizontal direction (the lateral boundaries). 
The soil layer is underlain by a rigid stratum at 
the bottom boundary of the model. The two main 
parameters of interest in the elastic settlement 
calculations are Young’s modulus 𝐸𝐸 and 
Poisson’s ratio 𝑣𝑣. Within the concepts of the 
RFEM, Young’s modulus of soil is distributed as 
a lognormal random variable with mean 𝜇𝜇𝑙𝑙𝑙𝑙 𝐸𝐸, 
standard deviation 𝜎𝜎𝑙𝑙𝑙𝑙 𝐸𝐸, isotropic 
𝜃𝜃𝑙𝑙𝑙𝑙 𝐸𝐸 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), and anisotropic 
𝜃𝜃𝑙𝑙𝑙𝑙 𝐸𝐸 (an𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) correlation length. Due to the 
small relative spatial variability of the Poisson’s 
ratio (Fenton & Griffiths 2002; Jimenez & Sitar 
2009; Paice et al. 1994), it is held fixed 
throughout the study at 𝑣𝑣 = 0.3.

  

 
Fig. (1): Geometry of the problem. 

 
The most important numerical characteristics 

for the random field are mean 𝜇𝜇, variance 𝜎𝜎2, 
and correlation length θ.  The considered mean of 
stiffness (𝜇𝜇𝐸𝐸) throughout this study is 4 MPa. The random 
E-field is outlined with the coefficient of variation COVE in 
the range of 0.1 to 0.5. The correlation distance (scale of 
fluctuation), describes the spatial variability of soil 

parameters in the random fields; and it is a distance within 
which points are significantly related to each other 
(Vanmarcke, 2010). A small scale of fluctuation indicates 
that the soil property fluctuates about the mean value. 
Whereas, a large scale of fluctuation specifies that the 
soil property is significantly related to a large 
spatial range. Thus, it is vital to select an 
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accurate and suitable correlation distance 
because it plays a main role in describing the 
spatial variability of soil properties.  

To select a reasonable spatial correlation 
length, it needs a large amount of data from the 
site (real-field data) and this cannot be gathered 
easily especially when the sample size is small. 

To this end, the autocorrelation function is 
utilized to describe the spatial correlation of the 
soil properties. There are several common two-
dimensional autocorrelation functions including 
single exponential, squared exponential, cosine 
exponential, and second-order Markov as their 
functions are illustrated in Table (1).

  
 

Table (1): Common 2-D autocorrelation function types. 
Type 2D Autocorrelation Function 

Single exponential 
[ , ] exp 2( )yx

x y
x y

ττ
ρ τ τ

δ δ

 
 = − +
  

 

Squared exponential 22
[ , ] exp

2 2
yx

x y
x y

ττ
ρ τ τ π

δ δ

  
  = − +        

Cosine exponential 
[ , ] exp ( ) cos cosy yx x

x y
x y x y

τ ττ τ
ρ τ τ

δ δ δ δ

    
  = − +           

 

Second order 
Markov 

44
[ , ] exp 4( ) 1 1y yx x

x y
x y x y

τ ττ τ
ρ τ τ

δ δ δ δ

    
  = − + + +        

 

 
In the present study, the second-order 

Markovian spatial correlation function is used to 
get the correlation coefficient between log-
elastic modulus values: 

44
[ , ] exp 4( ) 1 1y yx x

x y
x y x y

τ ττ τ
ρ τ τ

θ θ θ θ

    
= − + + +           

 (1) 

where τx and τy are the distances between two 
locations in the horizontal and vertical 

directions, respectively; θx and θy are the 
horizontal and vertical spatial correlation 
distances, respectively. Two cases of correlation 
distance include isotropic Θ varied from 0.05 to 
20 and anisotropic correlation ratio ε varied from 
0.5 to 200 are assumed in the proposed model. 
Table 2 summarizes the input parameters used 
during the RFEM simulation.

  
 

Table 2. Input varying parameters. 
Varying input parameters Values 

COVE 0.1, 0.2, 0.3, 0.4, and 0.5 
Isotropic scale of fluctuation, (𝜃𝜃ln(𝐸𝐸𝑥𝑥) = 𝜃𝜃ln(𝐸𝐸𝑦𝑦)),  (m) 0.05, 0.1, 0.5, 1, 5, 10, and 20 
Anisotropic scale of fluctuation ratio, ε= θ ln(Ex) /θ ln(Ey) where θ ln(Ey) is constant = 0.1 m 0.5, 1, 5, 10, 15, 50, 100, and 200 

 
The Monte Carlo technique is used to 

simulate the realizations of the random field 
(elastic modulus field) and then they passed to 
the FEM to analyze the elastic settlement (Smith 
et al., 2013). By repeating this process after a 
sufficient number of realizations a set of 
settlement values are determined. These values 
of the elastic settlements are then statistically 
assessed. To produce the realizations of the log 
elastic modulus field 2-D Local Average 
Subdivision technique is used (Fenton & 
Vanmarcke, 1990). By using this method each 
discrete local average given by a realization 
becomes the average property within each 
discrete element. So, the elastic modulus that 

assigned to the ith element can be expressed as 
Equation (2): 

 
ln ln( ) exp[ ( )]i E E iE x G xµ σ= +   (2) 

 
where 𝐺𝐺(𝑥𝑥𝑖𝑖) is the local average over the 
element centered at 𝑥𝑥𝑖𝑖of a zero mean. 

 
Fig. (2) shows the strip footing rested on the 

spatially random elastic modulus field in one of 
the generated realizations. The light regions have 
the lower values of elastic modulus and the dark 
zones correspond to the higher values of elastic 
modulus. 
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Fig. (2): The finite element mesh with spatial random field of elastic modulus. 

 
3. VERIFICATIONS 

 
In order to be insure about the geometrical 

size of the model, the effects of boundary side 
distance on the overall results are first 
investigated using the developed RFEM.  Then, 
the accuracy of the results obtained by the FEM 
and also choosing an appropriate number of 
realizations are verified.  

 
3.1. Boundary side distance and depth of the 
model  

To select a sufficient boundary size of the 
model, a set of simulation runs of the problem 
are performed by FEM source code developed 
by Smith et al. (2013). The mesh is discretized 
using four nodes quadrilateral elements with 120 
elements in horizontal 40 elements in vertical 
directions (Fig. (3).  The boundary side distance 
(η) should be enough to avoid interference with 
the lateral boundaries, and it is defined as a 
function of the footing width. To determine the 

safe boundary side distance several models with 
different values of η with a constant depth of the 
soil layer are modeled. The models are analyzed 
in case of homogenous properties to find out the 
elastic settlement of the strip footing. The results 
have shown that the settlement reductions are 
approximately constant when η > 2.5 as shown 
in Fig. (4). 

Also, the adequacy of depth of the model is 
investigated by varying the thickness of the layer 
from 1.5 to 5 m and for different values of 
COVE. Generally, the result shows that for small 
values of COVE (<0.5) the effects of increasing 
the depth of the model on the mean settlement 
values are insignificant. Therefore, and in order 
to reduce the computational time complexity of 
the simulations, the depth of the soil layer (H) is 
set to be a 2.0 m. Fig. (5) shows the effect of the 
overall depth of the model on the stochastic 
mean values of settlement for the case with 
spatial correlation distances Θ = θ ln(Ex) = θ ln(Ey)= 
0.1m.

 
 

 
Fig. (3): Finite element model for the soil profile (under deterministic condition). 
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Fig. (4): Side distance effects on the settlement results. 

 

 
Fig. (5): Output mean settlement vs. coefficient of variation of the random field (COVE) for different depths of 

the model. 
 

3.2. Reliability of the FEM analysis 
To evaluate the reliability of the FEM 

calculation result, the traditional approaches 
using elastic theory are adopted for this study 
(Equations 3 and 4). Both of these equations are 
for calculation of settlements at the corner of the 
flexible footing and the calculated settlement 
values should then multiplied by a factor of 0.93 
to estimate the equivalent values for the rigid 
footing (Bowles, (1987). Equation 4 is suggested 
by Poulos & Davis (1974) specifically for the 
strip footing. 

 
2(1 )( ')e f s

vS q w m I
Eο
−

=
  (3) 

.e c
q H

S m I
E

ο

π
=

  (4) 
where 𝑆𝑆𝑒𝑒 is the elastic settlement, 𝑞𝑞𝑜𝑜is the net 

applied pressure to the foundation, 𝑚𝑚 is the 
number of corners contributing to settlement, 𝐼𝐼𝑠𝑠 
is the shape factor depends on the width 𝑤𝑤𝑓𝑓′, 
length 𝐿𝐿 of the footing and soil profile depth 𝐻𝐻. 
𝐼𝐼𝑐𝑐is the influence factor depends on Poisson’s 
ratio and 𝑤𝑤𝑓𝑓′/𝐻𝐻 ratio.  

 In these equations and in order to estimate 
the maximum settlement at the center of footing, 
the values of  𝑤𝑤𝑓𝑓′=0.5m, 𝑚𝑚 =2, 𝐼𝐼𝑠𝑠 =1 are used 
accordingly. The  𝐼𝐼𝑐𝑐 value equal to 0.77 is used 
in Equation  (4), which is obtained from the 
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provided chart by Poulos & Davis (1974). The 
calculated maximum settlement values from 
equation (3) is 21.15 mm and from equation (4) 
is 22.78 mm. The corresponding value 
calculated by the FEM is 22.35 mm. Therefore, 
this shows that the numerical result is in a good 

agreement with the theoretical outcomes. Fig. (6) 
illustrates the final deformed shape of the model 
under this deterministic condition of the finite 
element simulation with a 22.35 mm settlement 
value.

 
 

 
Fig. (6):The final displaced geometry of the model under deterministic condition.  

 

 
3.3. Sufficient number of realizations 

The number of realizations used during 
RFEM is another important task that should be 
carefully chosen. Inappropriate selection of this 
number can effect on the results and also the 
computational time of the process.  To choose an 
adequate number of realizations (𝑁𝑁), the mean 
values of the settlement results are plotted versus 

the number of realizations as shown in Fig. (7). 
In this figure, it shows that the mean settlements 
are nearly to be constant after 1500 realizations. 
Thus, it can be concluded that above 1500 
realizations can be acceptable to use for the 
current study. Thus, 2000 realizations are 
employed in this study to each set of the random 
input parameters.

 
 

 

 
 

Fig. (7): The effects of the number of realizations on the mean settlement.  
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4. RESULTS AND DISCUSSIONS 

 
During the developed RFEM process, the 

influences of the isotropic and anisotropic 
correlation distances on the elastic settlement of 
the rigid strip footing are analyzed. In this 
process, the various values of the coefficient of 
variation COVE are considered. For each of 
these cases the reported results are based on 
2000 different realizations (random fields) of the 
stiffness as follow:  

 
4.1 Influence of isotropic correlation distance 
Fig. 8 and 9 show the influence of the 
isotropic correlation length (correlation 
distance in horizontal θln(Ex) and vertical θ ln(Ey) 
are equal) and COVE on the mean (μsett )and the 
standard deviation (σsett) of the settlement. When 
the value of COVE is equal to 0.1 the value of 
the mean settlement is approaching the 
deterministic settlement value (22.35 mm) for all 
isotropic spatial correlation distances. As the 
COVE increases both the mean and the standard 

deviation of the outputs are increased as well. In 
general, the associated μsett and σsett values by 
large spatial correlation distances are more than 
what obtained by small spatial correlation 
distances. The mean settlement in the extreme 
condition (COVE=0.5) increases about 25.9% as 
compared with deterministic settlement value 
when Θ = θ ln(Ex) = θln(Ey) are equal to 20m. As a 
result, the conventional deterministic settlement 
is underestimated. Whereas for the case with Θ= 
0.05 m, the mean settlement increasing rate is 
12.6%. So, it indicates that the isotropic 
correlation length and coefficient of variance of 
elastic modulus directly influence the foundation 
settlement; consequently, the effect of 
correlation distance should be considered when 
the COVE becomes larger. Fig. (10) shows one 
of the random realizations generated for the 
cases with Θ = 0.05, 0.1, 1, 1.5, and 20m. In 
these figures, the darker zones have larger 
stiffness values.
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Fig. (8):The relationship between the output mean settlement μsett. and coefficient of variation of input (COVE) 
for different isotropic correlation distances. 

 

 

 
 
 

Fig. (9):  Variation of standard deviation of output (σsett) versus coefficient of variation of input (COVE) for 
different isotropic correlation distances. 
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(a) Θ= 0.05m 

 
(b) Θ = 0.1m 

 
(c) Θ =1m 

 
(d) Θ =1.5m 

 
(e) Θ =20m 

 
Fig. (10): Selected realizations of the developed E-fields for different isotropic correlation lengths. 
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4.2  Influence of anisotropic correlation ratio 
In this phase of the study by varying the 

horizontal correlation distance θ ln(Ex) in the range 
between 0.05 m and 20 m while keeping the 
vertical correlation distance θ ln(Ey) fixed at 0.1 m 
in the entire process, the influence of anisotropy 
(θ ln(Ex) ≠ θln(Ey)) on the results of the mean 
settlement are studied. Fig. 11 and 12 depict the 
relationship between the coefficient of variation 
of input (COVE) and mean and standard 
deviation of the settlement of the rigid strip 
footing for the cases with different anisotropic 
correlation ratios (ε= θ ln(Ex) /θ ln(Ey)). As indicated 
in these figures both values of μsett and σsett are 
increased with increasing the coefficient of 
variation for all anisotropic correlation ratios. 
Also, it is noted that these increasing trends of 
the results are similar to the cases with isotropic 
correlation distances (see Figures 8 and 9). The 
rate of increase of these statistical values of the 
output (settlement) in the cases with the isotropic 
correlation distances (especially at COVE =0.5) 

is higher than the other simulated under 
anisotropic conditions. The random field of 
stiffness in several selected realizations for the 
cases with ε = 0. 5, 1.0, 2.5, 10, and 200 are 
presented in Fig. (13). 

Huang et al. (2018) argued that the general 
influence of the vertical correlation distance on 
the settlement results is more significant than the 
horizontal correlation length. They 
recommended considering anisotropic 
correlation distance to the spatial variability of 
the soil properties. In order to highlight this 
impact on the results of the current study, the 
Fig. (14) is illustrated. It represents the results of 
variations of μsett with COVE for both cases of 
heterogeneous isotropic and anisotropic soils 
having the same θ ln(Ex) (but different θ ln(Ey)). The 
figure clearly manifests that the effects of the 
vertical correlation length are insignificant for 
cases with lower values of COVE and both 
isotropic and anisotropic random fields almost 
have similar μsett values.

 

 

 
Fig. (11): The relationship between the mean settlement μsett. and COVE for different anisotropic correlation 

ratios. 

 
Fig. (12).: Variation of standard deviation of the measured settlement (σsett) versus coefficient of variation of 

input (COVE) for different anisotropic correlation ratios. 
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(a) ε=0.5 

 
(b) ε=1 

 
(c) ε=2.5 

 
(d) ε=10 

 
(e) ε=200 

 
Fig. (13): Selected realizations of the developed E-fields for different anisotropic ratios. 
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Fig. (14): The influence of the isotropic (𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 20 𝑚𝑚) and anisotropic (𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 20 𝑚𝑚,𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
0.1 𝑚𝑚)  correlation distances on the mean of the footing settlement. 

 
 

5 CONCLUSIONS 
Based on the results of the probabilistic settlement 
analysis of strip footing under the case of isotropic 
and anisotropic random E-fields the following main 
concluding points are drawn in this study: 
- The results of the footing settlement on the 
heterogeneous soils are generally larger than the 
deterministic homogeneous soils.  
- The values of the mean and standard deviation 
of the footing settlement are increased by 
increasing the coefficient of variation of the 
input uncertainty (random variable). This 
increasing trend in the results of isotropic and 
anisotropic correlation lengths is more 
pronounced for the case with the coefficient of 
variation of 0.5.  
- In the worst scenario for the cases with the 
coefficient of variation of 0.5, the large value of 
isotropic correlation length led to an increase in 
the mean settlement value by more than 25% as 
compared with the deterministic settlement 
calculations.  
- The estimated mean and standard deviation of 
the settlement is increased by increasing the 
anisotropic ratio. Moreover, these rates of 
increase for the isotropic random soils are 

greater than the anisotropic cases (i.e. cases with 
anisotropic correlation lengths). 
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