ASSESSMENT OF DIFFERENT MANAGEMENT SCENARIOS TO CONTROL SEAWATER INTRUSION IN UNCONFINED COASTAL AQUIFERS

  • MOHAMMED S. HUSSAIN University of Duhok, Civil Engineering Department, Duhok, Kurdistan Region-Iraq
  • AKBAR A. JAVADI Dept. of Engineering, University of Exeter, Exeter, UK
  • MOHSEN M. SHERIF Dept. of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, UAE
Keywords: Seawater intrusion, Hydraulic barriers, Multi-objective optimization, Unsaturated zone

Abstract

The present study examines the capability of different hydraulic barriers to control seawater intrusion in coastal aquifer systems. Different management scenarios including abstraction of intruded saline water near the coast, artificial recharge of the aquifer with the good quality water, and combination of abstraction and recharge are simulated in unconfined aquifers and optimally analyzed using a simulation-optimization (S/O) approach. In each scenario of control, the trade-off between two objective functions: minimization of costs of management processes and minimization of total amounts of salinity in the aquifer, was obtained using the developed S/O framework. The recharge is implemented using a surface basin and therefore unsaturated flow theory is utilized in the simulation. Comparison of the developed management models suggests that the pumping of brackish water near the coast and its use for human and industrial consumption after desalination is an efficient method to control saltwater intrusion in deep aquifers. However, for aquifers with shallow hydrogeological settings, a new combined methodology is found to be the most cost-effective method in controlling saltwater intrusion. In this combined approach, the recharge by pond water is coupled with continuous pumping of intruded saline water near the coast followed by its desalination and use.

Downloads

Download data is not yet available.

References

 Abazza, H. (2012). Economic Considerations for Supplying Water Through Desalination In South Mediterranean Countries. Sustainable Water Integrated Management-Support Mechanism (SWIM- SM).
 Asano, T., and Bahri, A. (2010). Global challenges to wastewater reclamation and reuse. Selections from the 2010 World Water Week in Stockholm, Edited by Jan Lundqvist: 64-72.
 Ataie-Ashtiani, B., and Ketabchi, H. (2011). Elitist Continuous Ant Colony Optimization Algorithm for Optimal Management of Coastal Aquifers. Water Resources Management, 25(1), 165-190. doi: http://dx.doi.org/10.1007/s11269-010-9693-x
 Bear, J. (1999). Conceptual and Mathematical Modeling. In J. Bear, A. D. Cheng, S. Sorek, D. Ouazar and I. Herrera (Eds.), Seawater Intrusion in Coastal Aquifers — Concepts, Methods and Practices (Vol. 14, pp. 127-161): Springer Netherlands.
 Bear, J., and Cheng, H. D. A. (2010). Seawater Intrusion Modeling Groundwater Flow and Contaminant Transport (Vol. 23, pp. 593-636): Springer Netherlands.
 Bhattacharjya, R., and Datta, B. (2009). ANN-GA-Based Model for Multiple Objective Management of Coastal Aquifers. Journal of Water Resources Planning and Management, 135(5), 314-322. doi: http://doi.org/10.1061/(ASCE)0733-9496(2009)135:5(314)
 Bray, B., and Yeh, W. (2008). Improving Seawater Barrier Operation with Simulation Optimization in Southern California. Journal of Water Resources Planning and Management, 134(2), 171-180. doi: http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:2(171)
 Bruington, A. E. (1972). Saltwater intrusion into aquifers1. JAWRA Journal of the American Water Resources Association, 8(1), 150-160. doi: http://dx.doi.org/10.1111/j.1752-1688.1972.tb05104.x
 Chen, J. J., Zhou, Y., Su, Z. Y., Lin, G. R., Fu, F., Miller, P., and McCarty, D. (2003). Tertiary treatment of wastewater for reuse in China. Paper presented at the Proceedings of the Water Environment Federation,Technical Exhibition and Conference (WEFTEC), Alexandria-Virginia.
 Das, A., and Datta, B. (1999). Development of Multiobjective Management Models for Coastal Aquifers. Journal of Water Resources Planning and Management, 125(2), 76-87. doi: http://dx.doi.org/10.1061/(ASCE)0733-9496(1999)125:2(76)
 Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput, 6(2), 182-197. doi: http://dx.doi.org/10.1109/4235.996017
 Dhar, A., and Datta, B. (2009). Saltwater Intrusion Management of Coastal Aquifers. I: Linked Simulation-Optimization. Journal of Hydrologic Engineering, 14(12), 1263-1272. doi: http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000097
 Emch, P., and Yeh, W. (1998). Management Model for Conjunctive Use of Coastal Surface Water and Ground Water. Journal of Water Resources Planning and Management, 124(3), 129-139. doi: 10.1061/(ASCE)0733-9496(1998)124:3(129)
 Essaid, H. I. (1990). A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: Model development and application. Water Resources Research, 26(7), 1431-1454. doi: 10.1029/WR026i007p01431
 Finney, B., Samsuhadi, and Willis, R. (1992). Quasi‐Three‐Dimensional Optimization Model of Jakarta Basin. Journal of Water Resources Planning and Management, 118(1), 18-31. doi: 10.1061/(ASCE)0733-9496(1992)118:1(18)
 Gen, M., and Cheng, R. (2000). Genetic algorithms and engineering optimization (Vol. 7). New York: John Wiley & Sons.
 Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., and Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317-2348. doi: http://dx.doi.org/10.1016/j.watres.2009.03.010
 Howard, K. W. F. (1987). Beneficial Aspects of Sea-Water Intrusion. Ground Water, 25(4), 398-406. doi: http://dx.doi.org/10.1111/j.1745-6584.1987.tb02144.x
 Hussain, M. S., Ahangar-asr, A., Chen, Y., and Javadi, A. A. (2015a). A New Evolutionary Approach to Geotechnical and Geo-Environmental Modelling. In A. H. Gandomi, A. H. Alavi and C. Ryan (Eds.), Handbook of Genetic Programming Applications (pp. 483-499): Springer International Publishing.
 Hussain, M. S., and Javadi, A. A. (2016). Assessing impacts of sea level rise on seawater intrusion in a coastal aquifer with sloped shoreline boundary. Journal of Hydro-environment Research, 11, 29-41. doi: http://doi.org/10.1016/j.jher.2016.01.003
 Hussain, M. S., Javadi, A. A., Ahangar-Asr, A., and Farmani, R. (2015b). A surrogate model for simulation–optimization of aquifer systems subjected to seawater intrusion. Journal of Hydrology, 523(0), 542-554. doi: http://dx.doi.org/10.1016/j.jhydrol.2015.01.079
 Hussain, M. S., Javadi, A. A., and Sherif, M. M. (2015c). Three dimensional simulation of seawater intrusion in a regional coastal aquifer in UAE. Procedia Engineering, 119, 1153-1160. doi: http://dx.doi.org/10.1016/j.proeng.2015.08.965
 Hussain, M. S., Javadi, A. A., Sherif, M. M., and Naseri-Karim-Vand, R. (2016). Control of saltwater intrusion by aquifer storage and recovery. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics, 169(3), 148-155. doi: 10.1680/jencm.15.00021
 Isaka, M. (2012). Water desalination using renewable energy: International Energy Agency (IEA) and The International Renewable Energy Agency (IRENA).
 Javadi, A., Hussain, M., Sherif, M., and Farmani, R. (2015). Multi-objective Optimization of Different Management Scenarios to Control Seawater Intrusion in Coastal Aquifers. Water Resources Management, 29(6), 1843-1857. doi: 10.1007/s11269-015-0914-1
 Javadi, A. A., Abd-Elhamid, H. F., and Farmani, R. (2012). A simulation-optimization model to control seawater intrusion in coastal aquifers using abstraction/recharge wells. International Journal for Numerical and Analytical Methods in Geomechanics, 36(16), 1757-1779. doi: http://dx.doi.org/10.1002/nag.1068
 Kourakos, G., and Mantoglou, A. (2011). Simulation and Multi-Objective Management of Coastal Aquifers in Semi-Arid Regions. Water Resources Management, 25(4), 1063-1074. doi: http://dx.doi.org/10.1007/s11269-010-9677-x
 Kourakos, G., and Mantoglou, A. (2013). Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management. Journal of Hydrology, 479(0), 13-23. doi: http://dx.doi.org/10.1016/j.jhydrol.2012.10.050
 Li, Q., Harris, B., Aydogan, C., Ang, M., and Tade, M. (2006). Feasibility of Recharging Reclaimed Wastewater to the Coastal Aquifers of Perth, Western Australia. Process Safety and Environmental Protection, 84(4), 237-246. doi: http://dx.doi.org/10.1205/psep.05202
 Luyun, R., Momii, K., and Nakagawa, K. (2011). Effects of Recharge Wells and Flow Barriers on Seawater Intrusion. Ground Water, 49(2), 239-249. doi: http://dx.doi.org/10.1111/j.1745-6584.2010.00719.x
 Mantoglou, A., and Papantoniou, M. (2008). Optimal design of pumping networks in coastal aquifers using sharp interface models. Journal of Hydrology, 361(1–2), 52-63. doi: http://dx.doi.org/10.1016/j.jhydrol.2008.07.022
 Mantoglou, A., Papantoniou, M., and Giannoulopoulos, P. (2004). Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms. Journal of Hydrology, 297(1–4), 209-228. doi: http://dx.doi.org/10.1016/j.jhydrol.2004.04.011
 Mercer, J. W., Larson, S. P., and Faust, C. R. (1980). Simulation of Salt-Water Interface Motion. Ground Water, 18(4), 374-385. doi: 10.1111/j.1745-6584.1980.tb03412.x
 Papadopoulou, M., Nikolos, I., and Karatzas, G. (2010). Computational benefits using artificial intelligent methodologies for the solution of an environmental design problem: saltwater intrusion. Water Science & Technology—WST, 62(7), 1479-1490. doi: 10.2166/wst.2010.442
 Qahman, K., Larabi, A., Ouazar, D., Naji, A., and Cheng, A. D. (2005). Optimal and sustainable extraction of groundwater in coastal aquifers. Stochastic Environmental Research and Risk Assessment, 19(2), 99-110. doi: http://dx.doi.org/10.1007/s00477-004-0218-0
 Shamir, U., and Dagan, G. (1971). Motion of the Seawater Interface in Coastal Aquifers: A Numerical Solution. Water Resources Research, 7(3), 644-657. doi: 10.1029/WR007i003p00644
 Simmons, C. T., Bauer-Gottwein, P. ,Graf, T. , Kinzelbach, W.,Kooi,H. ,Li, L., Post, V.,Prommer,H. ,Therrien, R. ,Voss,C. I. ,Ward, J. ,Werner,A. . (2010). Variable density groundwater flow: from modelling to applications. In S. A. M. Howard S. Wheater and X. Li (Eds.), Groundwater Modelling in Arid and Semi-Arid Areas (pp. 87-118): Cambridge University Press.
 Singh, A. (2015). Managing the environmental problem of seawater intrusion in coastal aquifers through simulation–optimization modeling. Ecological Indicators, 48(0), 498-504. doi: http://dx.doi.org/10.1016/j.ecolind.2014.09.011
 Singh, R. P. (2013). Water Desalination" The Role of RO and MSF. IOSR Journal of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT), 6(2), 61-65. doi: http://dx.doi.org/10.9790/2402-0626165
 Sorek, S., and Pinder, G. F. (1999). Survey of Computer Codes and Case Histories. In J. Bear, A. D. Cheng, S. Sorek, D. Ouazar and I. Herrera (Eds.), Seawater Intrusion in Coastal Aquifers — Concepts, Methods and Practices (Vol. 14, pp. 399-461): Springer Netherlands.
 Sreekanth, J., and Datta, B. (2010). Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. Journal of Hydrology, 393(3–4), 245-256. doi: http://dx.doi.org/10.1016/j.jhydrol.2010.08.023
 Sreekanth, J., and Datta, B. (2011). Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization. Water Resources Research, 47(4), W04516. doi: http://dx.doi.org/10.1029/2010WR009683
 Todd, D. K. (1974). Salt-Water Intrusion and Its Control. Journal (American Water Works Association), 66(3), 180-187. http://www.jstor.org/stable/41266996
 van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898. doi: http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
 Voss , C. I., and Provost, A. M. (2010). SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport (pp. 300): U.S. Geol. Surv. (USGS),Water Resour. Invest.
 Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., and Barry, D. A. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51(0), 3-26. doi: http://dx.doi.org/10.1016/j.advwatres.2012.03.004
Published
2017-07-28
How to Cite
HUSSAIN, M. S., JAVADI, A. A., & SHERIF, M. M. (2017). ASSESSMENT OF DIFFERENT MANAGEMENT SCENARIOS TO CONTROL SEAWATER INTRUSION IN UNCONFINED COASTAL AQUIFERS. Journal of Duhok University, 20(1), 259-275. https://doi.org/10.26682/sjuod.2017.20.1.24