PATHOGENICITY OF Fusarium solani AND Ilyoncteria macrodidyma ON OLIVE SEEDLINGS ROOTS AND THE EFFICACY OF SOIL MICROBIAL COMMUNITY AGAINST INFECTION

  • SHAHAD NAJIM EL-DDIN Dept. of Plant Protection, College of Agricultural Engineering Sciences, University of Duhok, Kurdistan Region – Iraq
  • RAED ABDULJABBAR HALEEM Dept. of Plant Protection, College of Agricultural Engineering Sciences, University of Duhok, Kurdistan Region – Iraq
Keywords: Fusarium solani , Ilyoncteria macrodidyma, Cylindrocarpon sp, Olive , Trichoderma harzianum, Gliocladium sp, Aspergillus sp, Penicillium sp., Pathogenicity

Abstract

A total of six olive fields were inspected randomly in three locations (Sartank, Sharia and Qasrook) at Duhok province. The highest severity (40%) and incidence (83%) of olive tree wilting and dieback were recorded in Sharia while the lowest severity was in Sartank (35%).  The predominant fungi in this study were Fusarium solani and Ilyoncteria macrodidyma. The occurrence percentage of isolated fungi varied between locations.  F.solani was the most frequent (53.3 %) on Qasrok, while I. macrodidyma was recorded at low frequencies (16.6%). F. solani was isolated by 29.4% and 27.2% in Sharia and Sartank respectively. Disease severity of F. solani in aerial part of olive seedlings during May, July, and September was 22.66%, 40.33% and 67% respectively significant differences, while  was 24.67%, 31%, and 45.33by I. macrodidyma % respectively. Pathogenicity after five months showed high root infection by F. solani (100%) incidence and (68.20) severities. The reduction in wet and dry weight of the green part was 25.75% and 36.64% and in roots system was 59.29% and 50.99% respectively. I macrodidyma showed (100 %) disease incidence and (46.70%) severity in root system. The reduction in wet and dry weight of the green part was 18.23%, 18.80%, while in olive root was 34.66%, 29.32% respectively.

Trichoderma harzianum rapidly stopped F. solani mycelia growth, and showed (64%) inhibition, while Gliocladium sp inhibited the radial growth of F. solani to (31%) and Aspergillus niger, (22%) inhibition respectively. High in vitro inhibition of I. macrodidyma was observed by T. harzianum (77%). The results of dual culture method revealed that T. harzianum completely overgrew the pathogen I. macrodidyma and was placed in class1 according to Bells scale; whereas Penicillium sp. parasitized the tested pathogen up to two-thirds of the medium and were placed in class 2. The antagonism against F. solani showed the overgrew of T. harzianum up to two thirds of the medium and were placed in class 2, while the pathogen colonized at least two-thirds of the medium and overgrew the Gliocladium sp and Aspergillus niger colonies and were placed in class 4. Penicillium sp. colonized one-half of the medium and was placed in class 3

Downloads

Download data is not yet available.

References

Al-Karboli, M. H. and Kuthair, W. M. (2016). Isolation and pathogenicity of the fungus, Fusarium solani a causal of dry root rot on sour orange in Baghdad province, Iraq. Int J Agric Technol, 12, 927-938.
Altomare, C.; Norvell, W.A.; Bjbrkman, T. and Harman, G.E. (1999). Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl. Environ. Microbiol. 65, 2926–2933.
Amira, M. B.; Lopez, D.; Mohamed, A. T.; Khouaja, A.; Chaar, H.; Fumanal, B. and Venisse, J. S. (2017). Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biological Control, 110, 70-78.
Arshad, J. (2008). Research on shisham (Dalbergia sissoo Roxb.) decline in Pakistan – a review, Pakistan Journal of Phytopathology. 20(1):134-142.
Barnett, H.L. and Hunter, B.B. (1986). Illustrated genera of imperfect fungi. Macmillian Publ. Co., New York.
Barrera, V.A.; Barreto, D.; Perez, B.; Roca, M.; Naito, S. and Kobayashi K, (2003). Rhizoctonia root rot of olive trees in Argentina. International Congress Plant Pathology (ICPP). page, 86.
Barreto, D.; Babbito, S.; Gally, M. and Perez, B.A. (2002). First report of Nectria haematococca causing wilt of olive plant in Argentina. Plant Dis. 86: 326.
Bell, D. K.; Wells, H. D. and Markham, C. R. (1982). In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology 72 379-382.
Ben Amira, M.; Mom, R.; Lopez, D.; Chaar, H.; Khouaja, A.; Pujade-Renaud, V. and Venisse, J. S. (2018). MIP diversity from Trichoderma: Structural considerations and transcriptional modulation during mycoparasitic association with Fusarium solani olive trees. PloS one, 13(3), e0193760.
Benitez, T.; Rincon, A.M.; Limon, M.C. and Codon, A.C. (2004).Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7, 249–260.
Ben Salem, I.; Boughalleb, N.; Souli, M.; Selmi, S. and Romdhani, M. E. (2011). Fungitoxicity of some fungicides against to pathogens responsible of olive trees decline in the Chebika's area in Tunisia. Research in Plant Biology, 1(2), 30-39.
Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro, K. and Wolfender, J.L. (2014). Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol. Adv. 32, 1180-1204. Doi: 10.1016/j. biotechadv.2014.03.001
Booth, C. (1966) . The Common wealth Mycological Institite . The genus Cylindrocarpon. Mycol Papers 104:34–37
Butt, T. M.; Jackson, C. and Magan, N. (2001). Fungi as Biocontrol agents, progress, problems and potential. CABI Publishing. UK. 390.
Chliyeh, M. ;Rhimini, Y. ; Selmaoui, K. ;Ouazzani Touhami, A. ; Filali-Maltouf, A. ; El Modafar, C.; Moukhli, A. ; Oukabli, A. ; Benkirane, R. and Douira, A.(2014). Survey of the fungal species associated to olive-tree (Olea europaea L.) in Morocco. International Journal of Recent Biotechnology.2(2):15-32.
Chliyeh, M.; Msairi, S.; Touhami, A. O.; Benkirane, R. & Douira, A. (2017). Detection of Fusarium solani as a pathogen causing root rot and wilt diseases of young olive trees in Morocco. Annual Research & Review in Biology, 1-7.
Daami-Remadi, M. (2006). Etude des fusarioses de la pomme de terre [Study of fusariosis of the potato]. Thèse, Institut Supérieur 424 Agronomique de Chott-Mariem, Tunisie.
Elkhayat, E.S. and Goda, A.M. (2017). Antifungal and cytotoxic constituents from the endophytic fungus Penicillium sp. Bull Fac Pharm Cairo Univ 55, 85–89.
El-Morsi, M. E. A.; Hassan, M. A. E.; Abo-Rehab, M. E. A. & Radwan, F. M. (2009). Incidence of root-rot and wilt disease complex of olive trees in New Valley Governorate in Egypt and its control. Assiut J. Agric. Sci, 40(1), 105-123.
Eshetu, B.; Amare, A. and Seid, A. (2015). Evaluation of local isolates of Trichoderma spp. against black root rot (Fusarium solani) on faba bean. Journal of Plant Pathology and Microbiology, 6(6).
Fahri, Y. and Murat, D. ( 2007). Control of Fusarium wilt of tomato by combination of Fluorescent Pseudomonas, nonpathogen Fusarium and Trichoderma hazianum T22 in greenhouse conditions. Plant Pathol J. 6: 159-163.
Farh, M. E. A.; Kim, Y. J.; Kim, Y. J. & Yang, D. C. (2018).Cylindrocarpon destructans/Ilyonectria radicicola-species complex: Causative agent of ginseng root-rot disease and rusty symptoms. Journal of ginseng research, 42(1), 9-15.
Gachomo, E.W. and Kotchoni, S.O.( 2008). The use of Trichoderma harzianum and T. viride as potential biocontrol agents against peanut microflora and their effectiveness in reducing aflatoxin contamination of infected kernels. Biotechnol. 7: 439- 447.
Getha, K.; Vikineswary, S.; Wong, W.H.; Seki, T.; Ward, A. and Goodfellow, M. ( 2005). Evaluation of Streptomyces sp. for suppression of Fusarium wilt and rhizosphere colonization in pot grown banana plantlets. J. of Microbiol and Biotechnol. 32 (1): 24-32.
Gharbi, Y.; Alkher, H.; Triki, M.A.; Barkallah, M.; Bouazizi, E.; Trabelsi, R.; Fendri, I.; Gdoura, R. and Daayf, F. (2015). Comparative expression of genes controlling cell wall-degrading enzymes in Verticillium dahliae isolates from olive, potato and sunflower. Physiol Mol Plant Pathol 91:56–65
Ghoneim, S.S.H.; Abdel-Massih,M.I. and Mahmoud, F.F.A. (1996). Interac-tion between root-knot nematode and root rot on Olive trees. Annals Agric. Sci., Ain Shams Univ. 41: 445-461.
Gupta, V.K. and Mishra, A.K. (2009). Efficacy of bioagents against Fusarium wilt of Guava. Journal of Mycology and Plant Pathology. 39(1):101-106.
Huang, H. C. (1978). Gliocladium catenulatum: hyperparasite of Sclerotinia sclerotiorum and Fusarium species. Can. J. Plant Pathol. 56, 2243±2246.
Isaac, M. R.; Leyva-Mir, S. G.; Sahagun-Castellanos, J.; Camara-Correia, K.; Tovar-Pedraza, J. M. and Rodriguez-Perez, J. E. (2018). Occurrence, identification, and pathogenicity of Fusarium spp. associated with tomato wilt in Mexico. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 484-493.
Jayaraj, J.; Parthasarathi, T. and Radhakrishnan, N.V. (2007). Characterization of a Pseudomonas fluorescens strain from tomato rhizosphere and its use for integrated management of tomato damping-off. BioControl. 52: 683-702.
Jha, P.K. and Jalali, B.L.(2006). Biocontrol of pea root rot incited by Fusarium solani f. sp. pisi with rhizosphere mycoflora. Indian Phytopathology. 59(1):41-43.
Köhl, J.; Kolnaar, R. and Ravensberg,W.J. ( 2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 10, 845.
Kucuk, C. and Kivanc, M. (2008). Mycoparasitism in the biological control of gibberella zeae and Aspergillus ustus by Trichoderma harzianum strains. Journal of Agricultural Technology 4 49-55.
Kunta, M.; Salas, B.; Gonzales, M. and da Graça, J. V. (2015). First report of citrus dry root rot caused by Fusarium solani on sour orange rootstock in Texas. J Citrus Pathol: iocv_journalcitruspathology_27974.
Larena, I.; Pascaual, S.; Melgarejo, P. and De Cal, A. (2003). Biocontrol of Fusarium and Verticillium wilt of tomato by Penicillium oxalicum under greenhouse and field conditions. J. Phytopathol., 151, 507–512.
Lawrence, D. et al. (2019). "Taxonomy and multi-locus phylogeny of Cylindrocarpon-like species associated with diseased roots of grapevine and other fruit and nut crops in California." Fungal Systematics and Evolution 4: 59.
Martelli, G.P.; Salerno, M.; Savino, V. and Prota, U. (2002). An appraisal of diseases and pathogens of olive. Acta Hort. 586:701-708.
Morton, D.T. and Stroube, N. H. (1955). Antagonistic and stimulatory effects of microorganisms upon Sclerotium rolfsii. Phytopathology, 45: 419-420.
Rama, BR. , M. and Krishna, K. V.(2000). Efficacy of Trichoderma spp. In the management of collar rot of groundnut caused by Aspergillus niger Van Teighem. Indian Journal Plant Protection 28 197-199.
Sanchez-Hernández, M.E.; Ruiz-Davila, A.; Pérez de Algaba, A.; Blanco-Lopez, M.A. and Trapero-Casas, A. (1998). Occurrence and aetiology of death of young olive trees in southern Spain. Eur. J. Plant. Pathol., 104, 347-357.
Sánchez-Hernández, M.E.; M. Munoz-Garcia, C.M.; Brasier, and Trapero-Casas A. (2001). Identity and pathogenicity of two Phytophthora taxa associated with a new root disease of olive trees. Plant Dis. 85: 411-416.
Syama C. ; Jayaraj J.; and Zamir K. (2008). Colonization of cucumber plants by the biocontrol fungus Clonostachys rosea f. catenulata . Biological Control Journl. 46: 267-278.
Teviotdale, B.E. (1994). Diseases of olive pp. 107–109. In: Olive Production Manual (Ferguson, L.; G.S. Sibbett and G.C. Martin, eds.). Publication 3353, University of California, CA, USA.
Tivoli, B.; Deltour, A.; Molet, D.; Bedin, P. and Jouan, B. (1986). Mise en évidence de souches de Fusarium roseum var. sambucinum résistantes authiabendazole, isolées à partir de tubercules de pomme de terre [Demonstration of Fusarium roseum var. sambucinum strains resistant to thiabendazole, isolated from potato tubers]. Agronomie 6:219-224.
Trabelsi, R.; Sellami, H.; Gharbi, Y.; Krid, S.; Cheffi, M.; Kammoun, S. and Triki, M. A. (2017). Morphological and molecular characterization of Fusarium spp. associated with olive trees dieback in Tunisia. 3 Biotech, 7(1), 28.
Triki, M.A; Rhouma, A; Khabou, W; Boulila, M and Ioos, R. (2009). Recrudescence du de´pe´rissement de l’olivier cause´ par les champignons telluriques en Tunisie. In: Proceeding of Olive bioteq.
Triki, M. A.; Gharbi, Y.; Krid, S.; Cheffi, M.; Rahma, T.; Hammami, I. and Gdoura, R. (2014). First report of Neonectria radicicola associated with root rot disease of olive in Tunisia. J Plant Pathol, 96(4), 113.
Turhan, G. (1990). Further hyperparasites of Rhizoctonia solani KuÈ hn as promising candidates for biological control. J. Plant Dis. Prot. 97, 208±215.
Úrbez-Torres, J. R.; Peduto, F. and Gubler, W. D. (2012). First report of Ilyonectria macrodidyma causing root rot of olive trees (Olea europaea) in California. Plant Disease, 96(9), 1378-1378.
Van Eeden, M. and Korsten, L. (2013). Factors determining use of biological disease control measures by the avocado industry in South Africa. Crop Prot. 51, 7-13. Doi: 10.1016/j. cropro.2013.03.011
van Jaarsveld, W. J.; Halleen, F.; Bester, M. C.; Pierron, R. J.; Stempien, E. and Mostert, L. (2021). Investigation of Trichoderma species colonization of nursery grapevines for improved management of black foot disease. Pest Management Science, 77(1), 397-405.
Vincent, J.M. (1947). Distortion of fungal hypha in the presence of some inhibitors. Nature, 159: 850
Vincent, J. M. and Budge, S. P. (1990). Screening for sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycological Research 94 607-612.
Waksman, S.A. (1922). A method of counting the number of fungi in the soil. J. Bacteriol., 7: 339-341.

Win, T.T.; Bo, B.; Malec, P.; and Fu, P.(2021). The effect of a consortium of Penicillium sp. and Bacillus sp. in suppressing banana fungal diseases caused by Fusarium sp. and Alternaria sp. J. Appl. Microbiol., doi:10.1111/jam.15067. ISSN 1364-5072.
Yaseen, T. and D’Onghia, A.M. (2012). Fusarium spp. associated to citrus dry root rot: an emerging is issue for Mediterranean citri culture. Acta Horticulturae 940: 647- 655.
Published
2021-10-19
How to Cite
EL-DDIN, S. N., & HALEEM , R. A. (2021). PATHOGENICITY OF Fusarium solani AND Ilyoncteria macrodidyma ON OLIVE SEEDLINGS ROOTS AND THE EFFICACY OF SOIL MICROBIAL COMMUNITY AGAINST INFECTION. Journal of Duhok University, 24(2), 81-94. https://doi.org/10.26682/ajuod.2021.24.2.9
Section
Agriculture and Veterinary Science