• AZHEN M. HASAN Dept. of Plant Protection, College of Agricultural Engineering Science, University of Duhok, Kurdistan Region-Iraq
  • QASIM A. MARZANI Dept. of Plant Protection, College of Agricultural Engineering Science, University of Duhok, Kurdistan Region-Iraq
  • DLEEN N. ABDULRAHMAN Dept. of Plant Protection, College of Agricultural Engineering Science, University of Duhok, Kurdistan Region-Iraq
Keywords: Management, Postharvest Diseases, Apple, Pear, Plant Extract


Economic losses, due to postharvest pathogens in markets and storages, are magnificent. Alternaria alternata and Penicillium expansum are considered the most important postharvest pathogens of apple and pear fruits. This work was aimed to investigate the principal pathogens on apple and pear fruits, the pathogenicity of the main pathogens, and assess of in vitro and in vivo efficacy of peel extracts of pomegranate, orange, and rutabaga against the main studied pathogens. The results of isolation designated A. alternata and P. expansum as major postharvest pathogens. The artificial inoculations of both pathogens resulted in the prominence of typical symptoms and the reisolation of the fungi proved Koch’s postulates. The results of in vitro assay revealed the highest inhibitory effect of rutabaga peel extract followed by orange peel extract while the pomegranate peel extract showed the least efficacy against both fungi. Another key fact that noticed is that both rutabaga and orange peel extract were most efficient against A. alternata than P. expansum. The results of in vivo assays have approved that pomegranate peel extract was the most effective plant extract against both pathogens of apple and pear fruits


Download data is not yet available.


Abdel-Rahim, I. (2016). Control of Alternaria rot disease of pear fruits using essential oil of Viola odorata. Journal of Phytopathology and Pest Management, 3, 71-84.
Abo‐Elyousr, K. A., Abdel‐Hafez, S. I., & Abdel‐Rahim, I. R. (2014). Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology, 162(9), 567-574.
Aldwinckle, H., & Jones, A. L. (1990). Compendium of apple and pear diseases: APS press.
Alexandre, E. M., Silva, S., Santos, S. A., Silvestre, A. J., Duarte, M. F., Saraiva, J. A., & Pintado, M. (2019). Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food research international, 115, 167-176.
Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chemistry, 99(1), 191-203.
Basson, E., Meitz-Hopkins, J. C., & Lennox, C. L. (2019). Morphological and molecular identification of fungi associated with South African apple core rot. European Journal of Plant Pathology, 153(3), 849-868.
Caccioni, D., Blanco, M., & Folchi, A. (1994). Prevenzione delle infezioni postraccolta da Penicillium expansum Link. su pere (cv Conference) con vapori di acetaldeide (Vol. 3, pp. 55-62).
Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2011). Phenolic compounds in Brassica vegetables. Molecules, 16(1), 251-280.
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564-582.
Dahham, S. S., Ali, M. N., Tabassum, H., & Khan, M. (2010). Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). Am. Eurasian J. Agric. Environ. Sci, 9(3), 273-281.
Droby, S. (2005). Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. Paper presented at the I International Symposium on Natural Preservatives in Food Systems 709.
Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical reviews in food science and nutrition, 59(9), 1498-1513.
Feliziani, E., Santini, M., Landi, L., & Romanazzi, G. (2013). Pre-and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biology and Technology, 78, 133-138.
Galanakis, C. M. (2020). Recovery techniques, stability, and applications of glucosinolates Glucosinolates: Properties, Recovery, and Applications (pp. 251-280): Elsevier.
Gatto, M. A., Sergio, L., Ippolito, A., & Di Venere, D. (2016). Phenolic extracts from wild edible plants to control postharvest diseases of sweet cherry fruit. Postharvest Biology and Technology, 120, 180-187.
Gorinstein, S., Martı́n-Belloso, O., Park, Y.-S., Haruenkit, R., Lojek, A., Ĉı́ž, M., . . . Trakhtenberg, S. (2001). Comparison of some biochemical characteristics of different citrus fruits. Food chemistry, 74(3), 309-315.
Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., & Jiang, Y. (2003). Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition research, 23(12), 1719-1726.
Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: FAO Rome.
Hegazy, A., & Ibrahium, M. (2012). Antioxidant activities of orange peel extracts. World applied sciences journal, 18(5), 684-688.
Hernández, A., Ruiz-Moyano, S., Galván, A. I., Merchán, A. V., Nevado, F. P., Aranda, E., . . . Martín, A. (2020). Anti-fungal activity of phenolic sweet orange peel extract for controlling fungi responsible for post-harvest fruit decay. Fungal Biology.
Hocking, A. (2014). SPOILAGE PROBLEMS| Problems Caused by Fungi.
Janisiewicz, W. (1996). Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology, 86(5), 473-479.
Jurick, W., Kou, L., Gaskins, V., & Luo, Y. (2014). First report of Alternaria alternata causing postharvest decay on apple fruit during cold storage in Pennsylvania. Plant disease, 98(5), 690-690.
Koka, J. A., Bhat, M. Y., & Wani, A. H. (2020). Allelopathic effect of leaf extracts of Punica granatum and Spiraea prunifolia against post-harvest rot of tomato and brinjal. Journal of Drug Delivery and Therapeutics, 10(2-s), 1-6.
Li, Y., Bi, Y., & An, L. (2007). Occurrence and latent infection of alternaria rot of pingguoli pear (Pyrus bretschneideri Rehd. cv. Pingguoli) fruits in Gansu, China. Journal of Phytopathology, 155(1), 56-60.
Mari, M., Bertolini, P., & Pratella, G. (2003). Non‐conventional methods for the control of post‐harvest pear diseases. Journal of Applied Microbiology, 94(5), 761-766.
Marzani, Q. A. (2011). Fungicide resistance and efficacy for control of Pyrenophora teres and Mycosphaerella graminicola on barley and wheat. PhD thesis,. University of Nottingham, Nottingham, UK.
Marzani, Q. A., Mohammad, A. O., & Hamda, O. A. (2021). Ecofriendly approaches for the management of rose powdery mildew (Podosphaera pannosa var. rosae). Zanco Journal of Pure and Applied Sciences, 33(4), 100-110.
MARZANI, Q. A. O. (2003). Epiphytotic and control of Ascochyta blight of chickpea caused by Ascochyta rabiei (Pass.) Labr. in Erbil Province. (MSc), Salahaddin university-Erbil.
Mathur, A., Verma, S. K., Purohit, R., Gupta, V., Dua, V., Prasad, G., . . . Singh, S. (2011). Evaluation of in vitro antimicrobial and antioxidant activities of peel and pulp of some citrus fruits. Journal of Biotechnology and Biotherapeutics, 1(2), 1-17.
Morrissey, J. P., & Osbourn, A. E. (1999). Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiology and Molecular Biology Reviews, 63(3), 708-724.
Nandhavathy, G., Dharini, V., Babu, P. A., Nambiar, R. B., Selvam, S. P., Sadiku, E. R., & Kumar, M. M. (2020). Determination of antifungal activities of essential oils incorporated-pomegranate peel fibers reinforced-polyvinyl alcohol biocomposite film against mango postharvest pathogens. Materials Today: Proceedings.
Nicosia, M. G. L. D., Pangallo, S., Raphael, G., Romeo, F. V., Strano, M. C., Rapisarda, P., . . . Schena, L. (2016). Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharvest Biology and Technology, 114, 54-61.
Novotný, D., Lukáš, J., Brožová, J., & Ružicková, P. (2019). Comparison of the occurrence of fungi causing postharvest diseases in apples grown in organic and integrated production systems in orchards in the Czech Republic. Czech Mycol, 71, 99-121.
Okawa, K. (2015). Market and trade impacts of food loss and waste reduction. OECD Food, Agriculture and Fisheries Papers, No. 75, OECD Publishing, Paris.
Paulitz, T. C., & Bélanger, R. R. (2001). Biological control in greenhouse systems. Annual review of phytopathology, 39(1), 103-133.
Pedras, M. S. C., & Abdoli, A. (2017). Biotransformation of rutabaga phytoalexins by the fungus Alternaria brassicicola: unveiling the first hybrid metabolite derived from a phytoalexin and a fungal polyketide. Bioorganic & Medicinal Chemistry, 25(2), 557-567.
Pierson, C., Ceponis, M., & McColloch, L. (1971). Market Diseases of Apples Pears, and Quinces. In Agricultural Handbook 376. Washington, DC, USA: US Department of Agriculture.
Seifbarghi, S., Borhan, M. H., Wei, Y., Coutu, C., Robinson, S. J., & Hegedus, D. D. (2017). Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC genomics, 18(1), 266.
Sexton, A. C., Minic, Z., Cozijnsen, A. J., Pedras, M. S. C., & Howlett, B. J. (2009). Cloning, purification and characterisation of brassinin glucosyltransferase, a phytoalexin-detoxifying enzyme from the plant pathogen Sclerotinia sclerotiorum. Fungal Genetics and Biology, 46(2), 201-209.
Snowdon, A. L. (1990). A colour atlas of post-harvest diseases and disorders of fruits and vegetables. Volume 1: General introduction and fruits: Wolfe Scientific Ltd.
Stefanucci, A., Zengin, G., Llorent-Martinez, E. J., Dimmito, M. P., Della Valle, A., Pieretti, S., . . . Mollica, A. (2020). Chemical characterization, antioxidant properties and enzyme inhibition of Rutabaga root’s pulp and peel (Brassica napus L.). Arabian Journal of Chemistry.
Sugar, D., & Powers, K. (1986). Interactions among fungi causing postharvest decay of pear. Plant disease, 70(12), 1132-1134.
Sugar, D., & Spotts, R. A. (1999). Control of postharvest decay in pear by four laboratory-grown yeasts and two registered biocontrol products. Plant disease, 83(2), 155-158.
Sutton, T. B., Aldwinckle, H. S., Agnello, A. M., & Walgenbach, J. F. (2014). Compendium of apple and pear diseases and pests: Am Phytopath Society.
Tomás‐Barberán, F. A., & Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853-876.
Tripathi, P., & Dubey, N. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32(3), 235-245.
Tripathi, P., Dubey, N., Banerji, R., & Chansouria, J. (2004). Evaluation of some essential oils as botanical fungitoxicants in management of post-harvest rotting of citrus fruits. World Journal of Microbiology and Biotechnology, 20(3), 317-321.
Vico, I., Duduk, N., Vasić, M., & Nikolić, M. (2014). Identification of Penicillium expansum causing postharvest blue mold decay of apple fruit. Pesticidi i fitomedicina, 29(4), 257-266.
Watanabe, T. (2010). Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species: CRC press.
Yourman, L., & Jeffers, S. (1999). Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant disease, 83(6), 569-575.
Zhu, S. (2006). Non-chemical approaches to decay control in postharvest fruit. Advances in postharvest technologies for horticultural crops. Research Signpost, Trivandrum, India, 297-313.
How to Cite
Agriculture and Veterinary Science