IN VITRO PHYHOTOXICITY OF SILVER NANOPARTICLES IN COMMON FORAGE PLANT MEDICAGO SATIVA

  • HALA MUDHAFAR HAMID Ministry of Education, Kurdistan Region-Iraq
  • BELAN MOHAMMED KHALIL Scientific Research Center, College of Science, University of Duhok, Kurdistan Region-Iraq
  • ATHEEL NAJIB YOUSEF Dept. of Biology, College of Science, University of Duhok, Kurdistan Region-Iraq
Keywords: Silver nanoparticle, Medicago sativa, Phytotoxicity, Callus Induction

Abstract

Silver nanoparticles (AgNPs) are widely used in commercial products, and there are growing concerns about their impact onthe environment. the leakage of AgNPs in to water ecosystem could have consequential on plants through irrigation agricultural fields. Therefore, understanding some adverse effects of nanoparticles in forage crop plants is a matter of importancebecause nanoparticles are often released into soil environments. In current study, Medicago sativa, a common forage plant is used to investigate phytotoxic effect of AgNP on such plant. Preliminary results showed that higher concentrations (5, 10. 20 mg/L) of AgNP has stimulatory effect,compared to lower concentrations (0.2, 0.4, 0.8 mg/L),on several growth parameters. Among all, 10 mg/L of AgNPs shown to have most stimulatory effect on root weight, length and lateral root number. Shoot parameters appeared to be not affected by either high and low dosage of AgNP. Low concentration of AgNP combined with plant growth regulators (PGR) highly induced callus induction in either leaf or stem explants compared to control, while higher concentrations of AgNP showed induced regeneration capability in both leaf and stem explants with no or least callus induction. AgNO3 is used as a source of silver ion having two dimensions to compare with the three-dimensional AgNP. Therefore, the details regarding effect of AgNO3 is discussed in result section of this article

Downloads

Download data is not yet available.

References

Ahamed, M., M. S. AlSalhi and M. K. J. Siddiqui (2010). "Silver nanoparticle applications and human health." Clinica Chimica Acta 411(23–24): 1841-1848.
Ali, A., S. Mohammad, M. A. Khan, N. I. Raja, M. Arif, A. Kamil and Z.-u.-R. Mashwani (2019). "Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata." Artificial Cells, Nanomedicine, and Biotechnology 47(1): 715-724.
Ali, H., M. A. Khan, N. Ullah and R. S. Khan (2018). "Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajuga bracteosa." Journal of Photochemistry and Photobiology B: Biology 183: 242-250.
Almutairi, Z. M. and A. Alharbi (2015). "Effect of silver nanoparticles on seed germination of crop plants." International Journal of Nuclear and Quantum Engineering 9(6): 594-598.
Barrena, R., E. Casals, J. Colón, X. Font, A. Sánchez and V. Puntes (2009). "Evaluation of the ecotoxicity of model nanoparticles." Chemosphere 75(7): 850-857.
Bregitzer, P., D. Somers and H. Rines (1989). "Development and characterization of friable, embryogenic oat callus." Crop science 29(3): 798-803.
Choi, O. and Z. Hu (2008). "Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria." Environmental Science & Technology 42(12): 4583-4588.
Cox, A., P. Venkatachalam, S. Sahi and N. Sharma (2016). "Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research." Plant Physiology and Biochemistry 107: 147-163.
Dimkpa, C. O., J. E. McLean, N. Martineau, D. W. Britt, R. Haverkamp and A. J. Anderson (2013). "Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix." Environmental science & technology 47(2): 1082-1090.
Gambardella, C., E. Costa, V. Piazza, A. Fabbrocini, E. Magi, M. Faimali and F. Garaventa (2015). "Effect of silver nanoparticles on marine organisms belonging to different trophic levels." Marine Environmental Research.
Geisler-Lee, J., W. Qiang, Y. Ying, Z. Wen, M. Geisler, L. Kungang, H. Ying, C. Yongsheng, A. Kolmakov and M. Xingmao (2013). "Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana." Nanotoxicology 7(3): 323-337.
Geisler-Lee, J., Q. Wang, Y. Yao, W. Zhang, M. Geisler, K. Li, Y. Huang, Y. Chen, A. Kolmakov and X. Ma (2013). "Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana." Nanotoxicology 7(3): 323-337.
He, D., G. Tanner and K. Scott (1986). "Somatic embryogenesis and morphogenesis in callus derived from the epiblast of immature embryos of wheat (Triticum aestivum)." Plant Science 45(2): 119-124.
Kaveh, R., Y.-S. Li, S. Ranjbar, R. Tehrani, C. L. Brueck and B. Van Aken (2013). "Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions." Environmental science & technology 47(18): 10637-10644.
Kissen, R. and A. M. Bones (2009). "Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana." Journal of Biological Chemistry 284(18): 12057-12070.
Lee, W.-M., J. I. Kwak and Y.-J. An (2012). "Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity." Chemosphere 86(5): 491-499.
Ma, X., J. Geiser-Lee, Y. Deng and A. Kolmakov (2010). "Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation." Science of the total environment 408(16): 3053-3061.
Maity, A., N. Natarajan, D. Vijay, R. Srinivasan, M. Pastor and D. R. Malaviya (2018). "Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum)." Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 88(2): 595-607.
Mikami, T. and T. Kinoshita (1988). "Genotypic effects on the callus formation from different explants of rice, Oryza sativa L." Plant cell, tissue and organ culture 12(3): 311-314.
Mirzajani, F., H. Askari, S. Hamzelou, M. Farzaneh and A. Ghassempour (2013). "Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria." Ecotoxicology and environmental safety 88: 48-54.
Mithen, R. F. (2001). "Glucosinolates and their degradation products."
Murray, C. B., C. Kagan and M. Bawendi (2000). "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies." Annual Review of Materials Science 30(1): 545-610.
Mustafa, H. S., A. G. Oraibi, K. M. Ibrahim and N. K. Ibrahim (2017). "Influence of silver and copper nanoparticles on physiological characteristics of Phaseolus vulgaris L. in vitro and in vivo." Int J Curr Microbiol Appl Sci 6: 834-843.
Nair, P. M. G. and I. M. Chung (2015). "Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.)." Acta physiologiae plantarum 37(1): 1-11.
Navarro, E., F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg and R. Behra (2008). "Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii." Environmental Science & Technology 42(23): 8959-8964.
Pandey, C., E. Khan, A. Mishra, M. Sardar and M. Gupta (2014). "Silver nanoparticles and its effect on seed germination and physiology in Brassica juncea L.(Indian mustard) plant." Advanced Science Letters 20(7-8): 1673-1676.
Parveen, A. and S. Rao (2015). "Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum." Journal of Cluster Science 26(3): 693-701.
Prabhu, S. and E. Poulose (2012). "Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects." International Nano Letters 2(1): 1-10.
Salama, H. M. (2012). "Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.)." Int Res J Biotechnol 3(10): 190-197.
Salata, O. V. (2004). "Applications of nanoparticles in biology and medicine." Journal of Nanobiotechnology 2: 3-3.
Singh, D. and A. Kumar (2015). "Effects of Nano Silver Oxide and Silver Ions on Growth of Vigna radiata." Bulletin of Environmental Contamination and Toxicology: 1-6.
Syu, Y.-y., J.-H. Hung, J.-C. Chen and H.-w. Chuang (2014). "Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression." Plant physiology and biochemistry 83: 57-64.
Vannini, C., G. Domingo, E. Onelli, B. Prinsi, M. Marsoni, L. Espen and M. Bracale (2013). "Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate." PloS one 8(7): e68752.
Wang, J., Y. Koo, A. Alexander, Y. Yang, S. Westerhof, Q. Zhang, J. L. Schnoor, V. L. Colvin, J. Braam and P. J. Alvarez (2013). "Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations." Environmental science & technology 47(10): 5442-5449.
IBM Corp. Released 2019. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp
Duncan, D.B. (1955) Multiple Range and Multiple F-Test. Biometrics, 11, 1-5.
Published
2022-05-30
How to Cite
HAMID, H. M., KHALIL, B. M., & YOUSEF, A. N. (2022). IN VITRO PHYHOTOXICITY OF SILVER NANOPARTICLES IN COMMON FORAGE PLANT MEDICAGO SATIVA. Journal of Duhok University, 25(1), 88-102. https://doi.org/10.26682/sjuod.2022.25.1.12
Section
Pure and Engineering Sciences