BIOLOGICAL RELATIONSHIP BETWEEN INSULIN-LIKE GROWTH FACTORS (IGF1 AND IGF2) GENES AND STEROIDOGENESIS IN OVINE OVARIAN ANTRAL FOLLICLES

  • SHILAN J. AHMED Vin hospital and Medical Complex Specialized Lab., Duhok, Kurdistan Region-Iraq
  • BUSHRA T. MOHAMMED Dept. of Pathology and Microbiology, College of Veterinary Medicine, University of Duhok, Kurdistan Region-Iraq
Keywords: IGF, ovine, ovarian follicles, PCR , Bioinformatics

Abstract

Reproductive inefficiency in sheep is a critical source of reduction in small ruminant profitability worldwide. The importance of insulin-like growth factors1 and 2 belonging to the insulin-like growth factors system were identified as pivotal key roles in ovarian follicular development and steroidogenesis in different species. This study aimed to detect the IGF-1 and IGF-2 genes and Oestrogen levels in the ovine small and large antral follicles collected from an abattoir using conventional PCR and ELISA, respectively, as well as to investigate the relationships between IGFs genes and steroidogenesis using bioinformatics approaches. Our results showed that IGF-1, IGF-2, and CYP19A1 were significantly present in the local sheep ovary’s small and large antral follicles. Furthermore, the oestrogen levels were significantly different between these two ovarian follicle types. The string database suggested that IGFs and CYP19 have strong relationships. Functional annotation (GO terms) revealed that IGFs and CYP19 genes were mainly associated with responses to hormone and insulin growth factor bindings.  In addition, KEGG pathways mapped to ovarian steroidogenesis and Ras signaling pathways. Overall, these findings are consistent with the critical functions of IGF-1 and IGF-2 in regulating steroidogenesis, growth, and viability of follicular cells in the sheep ovary. Therefore, evaluation of IGFs genes can be useful for the understanding of reproduction performance in ewes

Downloads

Download data is not yet available.

References

Al-Thuwaini, T. M. (2021). Novel single nucleotide polymorphism in the prolactin gene of Awassi ewes and its role in the reproductive traits. Iraqi Journal of Veterinary Sciences, 35(3), 429–435. https://doi.org/10.33899/ijvs.2020.126973.1423
Cahill, L. P., & Mauléon, P. (1980). Influences of season, cycle and breed on follicular growth rates in sheep. Reproduction, 58(2), 321–328. https://doi.org/10.1530/jrf.0.0580321
Darwish, H. R., El-Shorbagy, H. M., Abou-Eisha, A. M., El-Din, A. E., & Farag, I. M. (2017). New polymorphism in the 5′ flanking region of IGF-1 gene and its association with wool traits in Egyptian Barki sheep. Journal of Genetic Engineering and Biotechnology, 15(2), 437–441. https://doi.org/10.1016/j.jgeb.2017.08.001
Dhahir, N. N., Ismaeel, M. A., & Aldoori, Z. T. (2022). Effect of adding carrots as feed supplementation on reproductive performance in Awassi ewes. Iraqi Journal of Veterinary Sciences, 36(2), 413–417. https://doi.org/10.33899/ijvs.2021.130460.1822
Driancourt, M. A. (1991). Follicular dynamics in sheep and cattle. Theriogenology, 35(1), 55–79. https://doi.org/https://doi.org/10.1016/0093-691X(91)90148-7
Fan, H.-Y., Liu, Z., Mullany, L. K., & Richards, J. S. (2012). Consequences of RAS and MAPK activation in the ovary: The good, the bad and the ugly. Molecular and Cellular Endocrinology, 356(1), 74–79. https://doi.org/https://doi.org/10.1016/j.mce.2011.12.005
Fan, H.-Y., & Richards, J. S. (2010). Minireview: Physiological and Pathological Actions of RAS in the Ovary. Molecular Endocrinology, 24(2), 286–298. https://doi.org/10.1210/me.2009-0251
FAO. Food and Agriculture., O. of the U. N. (2003). Iraq–Country Report; Animal Genetic Resources. http://www.fao.org/3/a1250e/annexes/CountryReports/Iraq.pdf
Garcia-Guerra, A., Wiltbank, M. C., Battista, S. E., Kirkpatrick, B. W., & Sartori, R. (2018). Mechanisms regulating follicle selection in ruminants: lessons learned from multiple ovulation models. Animal Reproduction (AR), 15(Supplement 1), 660–679.
Ghoneim, K. E., Kazzal, N. T., & Abdallah, R. K. (1974). Some wool characteristics of Karadi sheep in northern Iraq. The Journal of Agricultural Science, 83(1), 171–174. https://doi.org/DOI: 10.1017/S0021859600047134
Ginther, O. J., Beg, M. A., Donadeu, F. X., & Bergfelt, D. R. (2003). Mechanism of follicle deviation in monovular farm species. In Animal Reproduction Science (Vol. 78, Issues 3–4, pp. 239–257). https://doi.org/10.1016/S0378-4320(03)00093-9
Gutiérrez, C. G., Campbell, B. K., & Webb, R. (1997). Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics. Biology of Reproduction, 56(3), 608–616. https://doi.org/10.1095/biolreprod56.3.608
Hastie, P. M., & Haresign, W. (2006). Expression of mRNAs encoding insulin-like growth factor (IGF) ligands, IGF receptors and IGF binding proteins during follicular growth and atresia in the ovine ovary throughout the oestrous cycle. Animal Reproduction Science, 92(3), 284–299. https://doi.org/https://doi.org/10.1016/j.anireprosci.2005.05.022
Hernandez‐Medrano, J. H., Campbell, B. K., & Webb, R. (2012). Nutritional influences on folliculogenesis. Reproduction in Domestic Animals, 47, 274–282.
Hunter, M. G., Robinson, R. S., Mann, G. E., & Webb, R. (2004). Endocrine and paracrine control of follicular development and ovulation rate in farm species. Animal Reproduction Science, 82–83, 461–477. https://doi.org/https://doi.org/10.1016/j.anireprosci.2004.05.013
Ipsa, E., Cruzat, V. F., Kagize, J. N., Yovich, J. L., & Keane, K. N. (2019). Growth Hormone and Insulin-Like Growth Factor Action in Reproductive Tissues . In Frontiers in Endocrinology (Vol. 10). https://www.frontiersin.org/articles/10.3389/fendo.2019.00777
Juengel, J. L., Cushman, R. A., Dupont, J., Fabre, S., Lea, R. G., Martin, G. B., Mossa, F., Pitman, J. L., Price, C. A., & Smith, P. (2021). The ovarian follicle of ruminants: the path from conceptus to adult. Reproduction, Fertility and Development, 33(10), 621–642. https://doi.org/10.1071/RD21086
Juengel, J. L., Smith, P. R., Quirke, L. D., French, M. C., & Edwards, S. J. (2018). The local regulation of folliculogenesis by members of the transforming growth factor superfamily and its relevance for advanced breeding programmes. Animal Reproduction (AR), 15(3), 180–190.
Leeuwenberg, B. R., Hurst, P. R., & McNatty, K. P. (1995). Expression of IGF-I mRNA in the ovine ovary. Journal of Molecular Endocrinology, 15(3), 251–258. https://doi.org/10.1677/jme.0.0150251
LeRoith, D., Holly, J. M. P., & Forbes, B. E. (2021). Insulin-like growth factors: Ligands, binding proteins, and receptors. Molecular Metabolism, 52, 101245. https://doi.org/https://doi.org/10.1016/j.molmet.2021.101245
Mazerbourg, S., & Monget, P. (2018). Insulin-Like Growth Factor Binding Proteins and IGFBP Proteases: A Dynamic System Regulating the Ovarian Folliculogenesis . In Frontiers in Endocrinology (Vol. 9). https://www.frontiersin.org/articles/10.3389/fendo.2018.00134
Mihm, M., & Evans, A. C. O. (2008). Mechanisms for Dominant Follicle Selection in Monovulatory Species: A Comparison of Morphological, Endocrine and Intraovarian Events in Cows, Mares and Women. Reproduction in Domestic Animals, 43(SUPPL.2), 48–56. https://doi.org/10.1111/j.1439-0531.2008.01142.x
Monget, P., Fabre, S., Mulsant, P., Lecerf, F., Elsen, J.-M., Mazerbourg, S., Pisselet, C., & Monniaux, D. (2002). Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals. Domestic Animal Endocrinology, 23(1), 139–154. https://doi.org/https://doi.org/10.1016/S0739-7240(02)00152-2
Monniaux, D. (2016). Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models. Theriogenology, 86(1), 41–53. https://doi.org/https://doi.org/10.1016/j.theriogenology.2016.04.017
Monte, A. P. O., Barros, V. R. P., Santos, J. M., Menezes, V. G., Cavalcante, A. Y. P., Gouveia, B. B., Bezerra, M. E. S., Macedo, T. J. S., & Matos, M. H. T. (2019). Immunohistochemical localization of insulin-like growth factor-1 (IGF-1) in the sheep ovary and the synergistic effect of IGF-1 and FSH on follicular development in vitro and LH receptor immunostaining. Theriogenology, 129, 61–69. https://doi.org/https://doi.org/10.1016/j.theriogenology.2019.02.005
Scaramuzzi, R. J., Baird, D. T., Campbell, B. K., Driancourt, M.-A., Dupont, J., Fortune, J. E., Gilchrist, R. B., Martin, G. B., McNatty, K. P., McNeilly, A. S., Monget, P., Monniaux, D., Viñoles, C., & Webb, R. (2011). Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reproduction, Fertility and Development, 23(3), 444–467. https://doi.org/10.1071/RD09161
Scaramuzzi, R. J., Murray, J. F., Downing, J. A., & Campbell, B. K. (1999). The effects of exogenous growth hormone on follicular steroid secretion and ovulation rate in sheep. Domestic Animal Endocrinology, 17(2–3), 269–277.
Singh, J., Paul, A., Thakur, N., Yadav, V. P., Panda, R. P., Bhure, S. K., & Sarkar, M. (2015). Localization of IGF proteins in various stages of ovarian follicular development and modulatory role of IGF-I on granulosa cell steroid production in water buffalo (Bubalus bubalis). Animal Reproduction Science, 158, 31–52. https://doi.org/https://doi.org/10.1016/j.anireprosci.2015.04.006
Skinner, M. K., Nilsson, E. E., & Bhandari, R. K. (2010). Cell–cell signaling in the testis and ovary. In Handbook of cell signaling (pp. 2663–2678). Elsevier.
Spicer, L. J., & Aad, P. Y. (2007). Insulin-Like Growth Factor (IGF) 2 Stimulates Steroidogenesis and Mitosis of Bovine Granulosa Cells Through the IGF1 Receptor: Role of Follicle-Stimulating Hormone and IGF2 Receptor1. Biology of Reproduction, 77(1), 18–27. https://doi.org/10.1095/biolreprod.106.058230
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., & von Mering, C. (2015). STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.org/10.1093/nar/gku1003
Talia, C., Connolly, L., & Fowler, P. A. (2021). The insulin-like growth factor system: A target for endocrine disruptors? Environment International, 147, 106311. https://doi.org/https://doi.org/10.1016/j.envint.2020.106311
Webb, R., Garnsworthy, P. C., Campbell, B. K., & Hunter, M. G. (2007). Intra-ovarian regulation of follicular development and oocyte competence in farm animals. Theriogenology, 68, S22–S29. https://doi.org/https://doi.org/10.1016/j.theriogenology.2007.04.036
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(1), 1–11.
Yu, Y., Li, W., Han, Z., Luo, M., Chang, Z., & Tan, J. (2003). The effect of follicle-stimulating hormone on follicular development, granulosa cell apoptosis and steroidogenesis and its mediation by insulin-like growth factor-I in the goat ovary. Theriogenology, 60(9), 1691–1704.
Published
2022-11-27
How to Cite
AHMED, S. J., & MOHAMMED, B. T. (2022). BIOLOGICAL RELATIONSHIP BETWEEN INSULIN-LIKE GROWTH FACTORS (IGF1 AND IGF2) GENES AND STEROIDOGENESIS IN OVINE OVARIAN ANTRAL FOLLICLES. Journal of Duhok University, 25(2), 201-210. https://doi.org/10.26682/ajuod.2022.25.2.18
Section
Agriculture and Veterinary Science