THE EFFECACY OF DIFFERENT SURFACE CONDITIONING ON SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET BONDED TO LITHIUM DISILCATE CROWNS; AN IN VITRO STUDY

  • DAWOD KHUDEEDA AZAM Dept. of Pedodontics, Orthodontics and Preventive Dentistry, College of Dentistry, University of Duhok, Kurdistan Region-Iraq
  • YOUNIS M. S. HASAN Dept. of Pedodontics, Orthodontics and Preventive Dentistry, College of Dentistry, University of Mosul-Iraq
Keywords: Lithium disilicate ceramics; Sandblasting; Metal bracket; Shear bond strength; Surface conditioning.

Abstract

Background and objective: Lithium disilicate widely used, and it is important to correctly bond orthodontic brackets to such materials. This study aimed to assess the impact of various types of surface conditioning methods on the shear bond strength (SBS) of orthodontic metal brackets to lithium disilicate crown.

Materials and methods: In this in vitro study, 30 lithium disilicate specimens were prepared based on the type of surface conditioning into three surface conditioning groups (n=10 for each group). First group the semi-crowns surface was conditioned with 10% hydrofluoric acid etching, the second group was micro-etched with sandblast particles (50 um aluminum oxide particles) and the last group was conditioned with ultrasonic scaler. Valo light cure was utilized with 3200mw/cm2 light intensity. SBS was measured using a universal testing machine. The findings were statistically examined.

Result: The results showed significant difference among the three groups where the sandblasting group had the higher mean of SBS, while the hydrofluoric acid etching group had the lower value and in between, the mean of ultra-sonic intermediate.    

 Conclusions:  Although the means of the three types of surface conditioning were significantly different, shear bond strength was positively affected by all of them and subsequently all types may be considered recommended techniques for reliable shear bond strength

Downloads

Download data is not yet available.

References

Abu Alhaija, E. S., Abu AlReesh, I. A., & AlWahadni, A. M. (2010). Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces. European journal of orthodontics, 32(3), 274–280. https://doi.org/10.1093/ejo/cjp098
Alakus Sabuncuoglu, F., & Erturk, E. (2016). Shear bond strength of brackets bonded to porcelain surface: in vitro study. Journal of Istanbul University Faculty of Dentistry, 50(1), 9–18. https://doi.org/10.17096/jiufd.95403
Attia A. (2010). Influence of surface treatment and cyclic loading on the durability of repaired all-ceramic crowns. Journal of applied oral science: revista FOB, 18(2), 194–200. https://doi.org/10.1590/s1678-77572010000200015
Augusti, D., Gabriele, A., Francesca, C., & Dino, R. (2015). Does sandblasting improve bond strength between nano-ceramic resin and two different luting composites. Bioceram Dev Appl, 5(086), 2.
Ayad, M. F., Fahmy, N. Z., & Rosenstiel, S. F. (2008). Effect of surface treatment on roughness and bond strength of a heat-pressed ceramic. The Journal of prosthetic dentistry, 99(2), 123–130. https://doi.org/10.1016/S0022-3913(08)60028-1
Barceló Santana, H. F., Hernández Medina, R., Acosta Torres, S. L., Sánchez Herrera, L. M., Fernández Pedrero, A. J., & Ortíz González, R. (2006). Evaluation of bond strength of metal brackets by a resin to ceramic surfaces. The Journal of clinical dentistry, 17(1), 5–9.
Bavbek, N. C., Roulet, J. F., & Ozcan, M. (2014). Evaluation of microshear bond strength of orthodontic resin cement to monolithic zirconium oxide as a function of surface conditioning method. The journal of adhesive dentistry, 16(5), 473–480. https://doi.org/10.3290/j.jad.a32812
Bayoumi, R. E., El-Kabbany, S. M., & Gad, N. (2019). Effect of Different Surface Treatment Modalities on Surface Roughness and Shear Bond Strength of Orthodontic Molar Tubes to Lithium Disilicate Ceramics. Egyptian Dental Journal, 65(1-January (Fixed Prosthodontics, Dental Materials, Conservative Dentistry & Endodontics)), 641-656.
Bebsh, M., Haimeur, A., & França, R. (2021). The Effect of Different Surface Treatments on the Micromorphology and the Roughness of Four Dental CAD/CAM Lithium Silicate-Based Glass-Ceramics. Ceramics, 4(3), 467-475.
Bilgic, F., Alkis, H., Gungor, A. Y., Tuncdemir, A. R., & Malkoc, M. A. (2013). Shear bond strength of ceramic brackets bonded to three different porcelain surfaces. European Journal of Prosthodontics, 1(1), 17.
Bilgic, F., Alkis, H., Gungor, A. Y., Tuncdemir, A. R., & Malkoc, M. A. (2013). Shear bond strength of ceramic brackets bonded to three different porcelain surfaces. European Journal of Prosthodontics, 1(1), 17.
Buyuk, S. K., & Kucukekenci, A. S. (2018). Effects of different etching methods and bonding procedures on shear bond strength of orthodontic metal brackets applied to different CAD/CAM ceramic materials. The Angle orthodontist, 88(2), 221–226. https://doi.org/10.2319/070917-455.1
Cacciafesta V, Sfondrini MF, Scribante A, Boehme A, Jost-Brinkmann PG. Effect of light-tip distance on the shear bond strengths of composite resin. Angle Orthod 2005; 75(3): 386-91.
Cevik, P., Karacam, N., Eraslan, O., & Sari, Z. (2017). Effects of different surface treatments on shear bond strength between ceramic systems and metal brackets. Journal of adhesion science and Technology, 31(10), 1105-1115.
Chen, J. H., Matsumura, H., & Atsuta, M. (1998). Effect of etchant, etching period, and silane priming on bond strength to porcelain of composite resin. Operative dentistry, 23(5), 250–257.
Denry, I., & Holloway, J. A. (2010). Ceramics for dental applications: a review. Materials, 3(1), 351-368.

Endo, T., Ozoe, R., Shinkai, K., Shimomura, J., Katoh, Y., & Shimooka, S. (2008). Comparison of shear bond strengths of orthodontic brackets bonded to deciduous and permanent teeth. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 134(2), 198–202. https://doi.org/10.1016/j.ajodo.2006.05.045
Erdur, E. A., & Basciftci, F. A. (2015). Effect of Ti:Sapphire-femtosecond laser on the surface roughness of ceramics. Lasers in surgery and medicine, 47(10), 833–838. https://doi.org/10.1002/lsm.22432
Faltermeier, A., & Reicheneder, C. (2013). Bonding orthodontic ceramic brackets to ceramic restorations: Evaluation of different surface conditioning methods.
Girish, P. V., Dinesh, U., Bhat, C. S., & Shetty, P. C. (2012). Comparison of shear bond strength of metal brackets bonded to porcelain surface using different surface conditioning methods: an in vitro study. The journal of contemporary dental practice, 13(4), 487–493. https://doi.org/10.5005/jp-journals-10024-1174
Goswami, A., Mitali, B., & Roy, B. K. (2014). Shear bond strength comparison of moisture-insensitive primer and self-etching primer. journal of orthodontic science, 3(3), 89.
Grewal Bach, G. K., Torrealba, Y., & Lagravère, M. O. (2014). Orthodontic bonding to porcelain: a systematic review. The Angle orthodontist, 84(3), 555–560. https://doi.org/10.2319/083013-636.1
Grewal Bach, G. K., Torrealba, Y., & Lagravère, M. O. (2014). Orthodontic bonding to porcelain: a systematic review. The Angle orthodontist, 84(3), 555–560. https://doi.org/10.2319/083013-636.1
Guarda, G. B., Correr, A. B., Gonçalves, L. S., Costa, A. R., Borges, G. A., Sinhoreti, M. A., & Correr-Sobrinho, L. (2013). Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic. Operative dentistry, 38(2), 208–217. https://doi.org/10.2341/11-076-L
Guess, P. C., Zavanelli, R. A., Silva, N. R., Bonfante, E. A., Coelho, P. G., & Thompson, V. P. (2010). Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. The International journal of prosthodontics, 23(5), 434–442.
Harari, D., Shapira-Davis, S., Gillis, I., Roman, I., & Redlich, M. (2003). Tensile bond strength of ceramic brackets bonded to porcelain facets. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 123(5), 551–554. https://doi.org/10.1067/mod.2003.S0889540602569134
Keshvad, A., & Hakimaneh, S. (2018). Microtensile Bond Strength of a Resin Cement to Silica-Based and Y-TZP Ceramics Using Different Surface Treatments. Journal of prosthodontics: official journal of the American College of Prosthodontists, 27(1), 67–74. https://doi.org/10.1111/jopr.12622
Kocadereli, I., Canay, S., & Akça, K. (2001). Tensile bond strength of ceramic orthodontic brackets bonded to porcelain surfaces. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 119(6), 617–620. https://doi.org/10.1067/mod.2001.113655.
Kurt, İ., Çehreli, Z. C., Özçırpıcı, A. A., & Şar, Ç. (2019). Biomechanical evaluation between orthodontic attachment and three different materials after various surface treatments: A three-dimensional optical profilometry analysis. The Angle orthodontist, 89(5), 742–750. https://doi.org/10.2319/072918-547.1
Kurtulmus-Yilmaz, S., Cengiz, E., Ongun, S., & Karakaya, I. (2019). The Effect of Surface Treatments on the Mechanical and Optical Behaviors of CAD/CAM Restorative Materials. Journal of prosthodontics : official journal of the American College of Prosthodontists, 28(2), e496–e503. https://doi.org/10.1111/jopr.12749
Lee, J. Y., Kim, J. S., & Hwang, C. J. (2015). Comparison of shear bond strength of orthodontic brackets using various zirconia primers. Korean journal of orthodontics, 45(4), 164–170. https://doi.org/10.4041/kjod.2015.45.4.164
Lung, C. Y., & Matinlinna, J. P. (2012). Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dental materials: official publication of the Academy of Dental Materials, 28(5), 467–477. https://doi.org/10.1016/j.dental.2012.02.009
Lung, C. Y., & Matinlinna, J. P. (2012). Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dental materials : official publication of the Academy of Dental Materials, 28(5), 467–477. https://doi.org/10.1016/j.dental.2012.02.009
Marshall, S. J., Bayne, S. C., Baier, R., Tomsia, A. P., & Marshall, G. W. (2010). A review of adhesion science. Dental materials: official publication of the Academy of Dental Materials, 26(2), e11–e16. https://doi.org/10.1016/j.dental.2009.11.157
Mobilio, N., Fasiol, A., Mollica, F., & Catapano, S. (2015). Effect of Different Luting Agents on the Retention of Lithium Disilicate Ceramic Crowns. Materials (Basel, Switzerland), 8(4), 1604–1611. https://doi.org/10.3390/ma8041604
Nakazawa, K., Nakamura, K., Harada, A., Shirato, M., Inagaki, R., Örtengren, U., Kanno, T., Niwano, Y., & Egusa, H. (2018). Surface properties of dental zirconia ceramics affected by ultrasonic scaling and low-temperature degradation. PloS one, 13(9), e0203849. https://doi.org/10.1371/journal.pone.0203849
Naseh, R., Afshari, M., Shafiei, F., & Rahnamoon, N. (2018). Shear bond strength of metal brackets to ceramic surfaces using a universal bonding resin. Journal of Clinical and Experimental Dentistry, 10(8), e739.
Oliveira, G., Macedo, P. D., Tsurumaki, J. N., Sampaio, J. E., & Marcantonio, R. (2016). The effect of the angle of instrumentation of the Piezoelectric Ultrasonic Scaler on root surfaces. International journal of dental hygiene, 14(3), 184–190. https://doi.org/10.1111/idh.12134
Özdemir, H & Aladağ L. (2017). Effect of different surface treatments on bond strength of different resin cements to lithium disilicate glass ceramic: an in vitro study, Biotechnology & Biotechnological Equipment, 31:4, 815-820, DOI: 10.1080/13102818.2017.1334589
Prochnow, C., Venturini, A. B., Grasel, R., Bottino, M. C., & Valandro, L. F. (2017). Effect of etching with distinct hydrofluoric acid concentrations on the flexural strength of a lithium disilicate-based glass ceramic. Journal of biomedical materials research. Part B, Applied biomaterials, 105(4), 885–891. https://doi.org/10.1002/jbm.b.33619
Ramakrishnaiah, R., Alkheraif, A. A., Divakar, D. D., Matinlinna, J. P., & Vallittu, P. K. (2016). The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics. International journal of molecular sciences, 17(6), 822. https://doi.org/10.3390/ijms17060822
Recen, D., Yildirim, B., Othman, E., Comlekoglu, E., & Isil, A. R. A. S. (2021). Bond strength of metal brackets to feldspathic ceramic treated with different surface conditioning methods: an in vitro study. European Oral Research, 55(1), 1-7.
Reynolds, I. R., & von Fraunhofer, J. A. (1976). Direct bonding of orthodontic attachments to teeth: the relation of adhesive bond strength to gauze mesh size. British journal of orthodontics, 3(2), 91–95. https://doi.org/10.1179/bjo.3.2.91
Sachdeva, K., Singla, A., Mahajan, V., Jaj, H. S., & Saini, S. S. (2012). Effect of storage media on shear bond strength of orthodontic brackets: An in vitro study. Journal of Indian Orthodontic Society, 46(4), 203-209.
Salvio, L. A., Correr-Sobrinho, L., Consani, S., Sinhoreti, M. A., de Goes, M. F., & Knowles, J. C. (2007). Effect of water storage and surface treatments on the tensile bond strength of IPS Empress 2 ceramic. Journal of prosthodontics: official journal of the American College of Prosthodontists, 16(3), 192–199. https://doi.org/10.1111/j.1532-849X.2006.00171.x
Schmage, P., Nergiz, I., Herrmann, W., & Ozcan, M. (2003). Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 123(5), 540–546. https://doi.org/10.1067/mod.2003.S0889540602569110
Spohr, A. M., Sobrinho, L. C., Consani, S., Sinhoreti, M. A., & Knowles, J. C. (2003). Influence of surface conditions and silane agent on the bond of resin to IPS Empress 2 ceramic. The International journal of prosthodontics, 16(3), 277–282.
Türkkahraman, H., & Küçükesmen, H. C. (2006). Porcelain surface-conditioning techniques and the shear bond strength of ceramic brackets. European journal of orthodontics, 28(5), 440–443. https://doi.org/10.1093/ejo/cjl026
Veríssimo, A. H., Moura, D., Tribst, J., Araújo, A., Leite, F., & Souza, R. (2019). Effect of hydrofluoric acid concentration and etching time on resin-bond strength to different glass ceramics. Brazilian oral research, 33, e041. https://doi.org/10.1590/1807-3107bor-2019.vol33.0041
Vigolo, P., & Motterle, M. (2010). An in vitro evaluation of zirconia surface roughness caused by different scaling methods. The Journal of prosthetic dentistry, 103(5), 283–287. https://doi.org/10.1016/S0022-3913(10)60059-5
Whitlock, B. O., 3rd, Eick, J. D., Ackerman, R. J., Jr, Glaros, A. G., & Chappell, R. P. (1994). Shear strength of ceramic brackets bonded to porcelain. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 106(4), 358–364. https://doi.org/10.1016/S0889-5406(94)70056-7
Yoon, H. I., Noh, H. M., & Park, E. J. (2017). Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing. The journal of advanced prosthodontics, 9(3), 188-194
Zachrisson, B. U., Skogan, Ö., & Höymyhr, S. (1980). Enamel cracks in debonded, debanded, and orthodontically untreated teeth. American journal of orthodontics, 77(3), 307-319.
Zarif Najafi, H., Mousavi, M., Nouri, N., & Torkan, S. (2019). Evaluation of the effect of different surface conditioning methods on shear bond strength of metal brackets bonded to aged composite restorations. International orthodontics, 17(1), 80–88. https://doi.org/10.1016/j.ortho.2019.01.009
Published
2022-12-06
How to Cite
AZAM, D. K., & HASAN, Y. M. S. (2022). THE EFFECACY OF DIFFERENT SURFACE CONDITIONING ON SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET BONDED TO LITHIUM DISILCATE CROWNS; AN IN VITRO STUDY. Journal of Duhok University, 25(2), 416-424. https://doi.org/10.26682/sjuod.2022.25.2.38
Section
Pure and Engineering Sciences