COMPARISON OF THE MECHANICAL PROPERTIES FOR FIBER REINFORCED AND BULKFILL COMPOSITES

  • DELAN SIDQE SALEEM College of Dentistry, University of Duhok, Kurdistan Region–Iraq
  • ALI MOAYID RASHEED College of Dentistry, University of Mosul–Iraq
Keywords: Fiber reinforced composites, Bulkfill composites, Flexural strength (FS), Fracture toughness (FT) , Diametral tensile strength (DTS)

Abstract

purpose: To assess and compare specific mechanical characteristics including ; flexural strength (FS), fracture toughness (FT) and diametral tensile strength (DTS) of two short fiber reinforced composites formulation (SFRCs) (everXPosterior and everXFlow , GC Corporation ,Tokyo, Japan)  with one of  conventional bulkfill composite (CBF) (Tetric R N-Ceram, Ivoclar Vivadent AG, Schaan, Liechtenstein).

Methods: The properties investigated were flexural strength (FS), fracture toughness (FT), and diametral tensile strength (DTS) following ISO standards. For each investigated test the prepared specimens were divided in to three groups, G1 were fabricated from conventional bulkfill composite (TetricR N-Ceram, Ivoclar Vivadent AG), G2 were fabricated from SFRCs (everXPosterior, GC Corp) and G3 from SFRCs (everXFlow, GC Corp).  Consequently, they were incubated in distilled water at 37˚C for 24 h before operating the mechanical tests. The specimens were assessed in a universal material testing machine at 1.0 mm/min crosshead speed until failure. The data were be statistically evaluated with SPSS (Statistical Package for Social Science Ver.25) using Analysis Of Variance (ANOVA) followed by a Tukey HSDa test to define the differences between the tested groups.

Results: The SFRC everXPost. and  everXFlow exhibited significantly higher flexural strength (100.2 MPa, 99.1 MPa) and fracture toughness (1.23 MPa m1/2 , 1.16 MPa m1/2,) values respectively than bulk fill conventional composite (TetricR N-Ceram)( 58.2 MPa, 0.6 MPa m1/2). The DTS of everXFlow was statistically superior (54.3 MPa) than the everXPost. composite (44 MPa) and conventional bulkfill (TetricR N-Ceram) composite (37.3MPa).

Conclusion: According to the obtained results the SFRCs everXPost. and everXflow showed better mechanical properties than conventional bulkfill composite and could be applied well in posterior restorations

Downloads

Download data is not yet available.

References

Abbasi, M., Moradi, Z., Mirzaei, M., Kharazifard, MJ., & Rezaei, S. (2018) .Polymerization shrinkage of five bulk-fill composite resins in comparison with a conventional composite resin. JDent (Tehran),15,365-374.
Abouelleil,H., Pradelle, N., Villat, C., Attik,N., Colon, P., & Grosgogeat,B. (2015). Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites. Restor. Dent. Endod. 40, 262–270.
Aldhuwayhi, S. D., Sajjad, A., Bakar, W. Z. W., Mohamad, D., Kannan, T. P., & Moheet, I. A. (2021). Evaluation of Fracture Toughness, Color Stability, and Sorption Solubility of a Fabricated Novel Glass Ionomer Nano Zirconia-Silica-Hydroxyapatite Hybrid Composite Material. International Journal of Polymer Science, 2021.‏
Alshabib, A., Silikas, N., & Watts, DC. (2019). Hardness and fracture toughness of resin-composite materials with and without fibers. Dent Mater ,35,1194-1203.
Alvanforoush, N., Palamara, J., Wong, RH., et al.(2016). Comparison between published clinical success of direct resin composite restorations in vital posterior teeth in 1995–2005 and 2006-2016 periods. Aust Dent J ,62,132–145.
Anusavice, K. J., and Shen, H. R. (2012). Phillips’ Science of Dental Materials. 12th ed. (St. Louis: Elsevier), 58 -277.
Anusavice, KJ. (2003). Phillips: science of dental materials. 11th ed. St. Louis: W B Saunders.
Bijelic-Donova, J., Garoushi, S., Lassila, LV., Keulemans, F., & Vallittu, PK. (2016). Mechanical and structural characterization of discontinuous fiber-reinforced dental resin composite. J Dent ,52,70-78.
Czasch, P., & Ilie, N. (2013). In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig,17, 227-235.
Della Bona,A., Benetti,P., BorbaM., & D. Cecchetti,D.(2008). Braz. Oral Res. 22, 84–89.
Eronat, N., Candan, U., &Türkün, M. (2009). Effects of glass fiber layering on the flexural strength of microfill and hybrid composites. J Esthet Restor Dent, 21(3),171-8.
Fennis, WM., Tezvergil, A., Kuijs, RH., Lassila, LV., Kreulen, CM., & Creugers, NH., et al.(2005). In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations. Dent Mater ,21, 565-572.
Garoushi, S., Lassila, LV., & Vallittu, PK. (2012). The effect of span length of flexural testing on properties of short fiber reinforced composite. J Mater Sci Mater Med ,23,325-328.
Garoushi, S., Säilynoja, E., Vallittu, P., & Lassila, L. (2013) .Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater, 29,835–841
Garoushi, S., Säilynoja, E., Vallittu, P., & Lassila, L. (2013). Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater,29, 835-841.
Heintze, SD., Ilie, N., Hickel, R., Reis, A., Loguercio, A., &Rousson, V. (2017). Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials —A systematic review. Dent Mater,33, 101-114.
Huang, SH., Lin, LS., Fok, AS., & Lin, CP.(2012). Diametral compression test with composite disk for dentin bond strength measurement – finite element analysis. Dent Mater,28,1098–104.
Ilie, N., Hilton, T. J., Heintze, S. D., Hickel, R., Watts, D. C., Silikas, N., ... & Ferracane, J. L. (2017). Academy of dental materials guidance—Resin composites: Part I—Mechanical properties. Dental materials, 33(8), 880-894.‏
International Organization for Standardisation. ISO 4104. (1984). Dental zinc polycarboxylate cements. ISO, Geneva.
ISO 4049:2019 Dentistry—Polymer-Based Restorative Materials; International Organization for Standardization: Geneva, Switzerland.
Kassem, AS., Atta, O., & El-Mowafy, O. (2012). Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns. J Prosthodont ,21,28–32.
Kim, KH., & Okuno, O.(2002). Micro fracture behavior of composite resins containing irregular-shaped fillers. J Oral Rehabil,29,1153-1159.
Kramer, MR., Edelhoff, D., & Stawarczyk, B. (2016). Flexural strength of preheated resin composites and bonding properties to glass-ceramic and dentin. Materials (Basel) ,9,83.
Lassila, L., Garoushi, S., Vallittu, PK., & Säilynoja, E. (2016). Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution. J Mech Behav Biomed Mater, 60,331-338.
Lassila, L., Keulemans, F., Säilynoja, E., Vallittu, PK., & Garoushi, S. (2018) .Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dent Mater,34,598–606.
Lassila, L., Keulemans, F., Vallittu, P. K., & Garoushi, S. (2020). Characterization of restorative short-fiber reinforced dental composites. Dental Materials Journal, 39(6), 992-99
Lassila, L., Säilynoja, E., Prinssi, R., Vallittu, P., & Garoushi, S. (2019).
Characterization of a new fiber-reinforced flowable composite. Odontology, 107(3), 342-352.
Pałka, K., Kleczewska, J., Sasimowski, E., Belcarz, A., & Przekora, A. (2020). Improved fracture toughness and conversion degree of resin-based dental composites after modification with liquid rubber. Materials, 13(12), 2704.‏
Rohr, N., & Fischer, J. (2017). Effect of aging and curing mode on the compressive and indirect tensile strength of resin composite cements. Head Face Medicine, 13(1), 22.
Shouha, P., Swain, M., & Ellakwa A. (2014). The effect of fiber aspect ratio and volume loading on the flexural properties of flowable dental composite. Dent Mater ,30,1234–44.
Sihivahanan, D., & Nandini, V. V. (2021). Comparative evaluation of mechanical properties of titanium dioxide nanoparticle incorporated in composite resin as a core restorative material. The Journal of Contemporary Dental Practice, 22(6), 686-690.
Tanaka, C. B., Lopes, D. P., Kikuchi, L. N., Moreira, M. S., Catalani, L. H., Braga, R. R., ... & Gonçalves, F. (2020). Development of novel dental restorative composites with dibasic calcium phosphate loaded chitosan fillers. Dental Materials, 36(4), 551-559.‏
Tsujimoto, A., Barkmeier, WW., Takamizawa, T., Latta, MA., & Miyazaki, M. (2016) .Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite. Dent Mater J, 35, 418-424
Tsujimoto, A., Barkmeier, WW., Takamizawa, T., Latta, MA., & Miyazaki, M. (2016) .Bonding performance and interfacial characteristics of short fiber-reinforced resin composite in comparison with other composite restoratives. Eur J Oral Sci, 124, 301-308
Vallittu, PK. (2015). High-aspect ratio fillers: fiber-reinforced composites and their anisotropic properties. Dent Mater, 31, 1-7.
Zorzin, J., Maier, E., Harre, S., Fey T, Belli R, & Lohbauer U et al. (2015). Bulk-fill resin composites: polymerization properties and extended light curing. Dent Mater ,31,293-301
Published
2022-12-06
How to Cite
SALEEM, D. S., & RASHEED, A. M. (2022). COMPARISON OF THE MECHANICAL PROPERTIES FOR FIBER REINFORCED AND BULKFILL COMPOSITES. Journal of Duhok University, 25(2), 425-435. https://doi.org/10.26682/sjuod.2022.25.2.39
Section
Pure and Engineering Sciences