DETECTION OF MULTI-DRUG RESISTANT KLEBSIELLA PNEUMONIAE FROM SPUTUM SAMPLES AMONG ICU PATIENTS UTILIZING PCR AND VITEK2 SYSTEM

  • DIYAN HASSAN IBRAHIM Dept. of Microbiology, College of Health Science, University of Duhok, Kurdistan Region-Iraq
  • BLAND HUSAMULDEEN ABDULLAH Dept. of Microbiology, College of Health Science, University of Duhok, Kurdistan Region-Iraq
  • ISMAIEL MOHAMMED ABDULQADIR Dept. of Microbiology, College of Health Science, University of Duhok, Kurdistan Region-Iraq
Keywords: Klebsiella Pneumoniae, Multi-Drug Resistant, PCR System, Vitek2 System

Abstract

The study aimed to detect the rate of K. pneumoniae in sputum samples among patients with pneumoniae. It also strives to determine Klebsiella pneumonia isolates among ICU patients and the frequency of multidrug-resistant (MDR) K. pneumoniae isolates. In the current study, 150 samples were collected from hospitalized adult male and female patients in the ICU unit. Growth of bacteria on MacConkey agar, chocolate agar and blood agar followed by gram staining were used for detection of the bacteria and confirmed by PCR. Out of the 150 study samples, only 39 (26%) samples of K. pneumoniae were identified, the remaining 111 samples were variants of bacteria mainly Acinetobacter baumannii. Frequency tabulations and the Chi-square test testing for statistical significance were performed using SPSS version 24. Consequently, the susceptibility rate of Klebsiella pneumoniae to antibiotics was determined by using the VITEK2 system. The results revealed that K. pneumonia isolates were less sensitive to Cefixime, Ceftazidime, Ceftriaxone, and Cefepem, and completely resistant to Ampicillin and Piperacillin/Tazobactam. Furthermore, the K. pneumoniae isolates were highly resistant to Cefixime, Ceftazidime, Ceftriaxone, and Cefuroxime followed by Amoxicillin/clavulanic acid and Cefepem which showed equal rates of resistance. The study concludes that ICU patients are more vulnerable to contracting MDR Klebsiella pneumonia because of the high percent of susceptible patients in the ICU units, the frequent use of invasive devices and the excessive consumption of antibiotics exerting selective pressure on bacteria. Amid such observations, the study underscores the importance of (1) determining various resist typing patterns of antibiotics which is vital to produce new and highly effective antibiotics treatment and (2) targeting consumers, prescribers and pharmacy dispensers to reduce OTC antibiotics dispensing

Downloads

Download data is not yet available.

References

Ahmadi, M., Ranjbar, R., Behzadi, P., & Mohammadian, T. (2022). Virulence factors, antibiotic resistance patterns, and molecular types of clinical isolates of Klebsiella Pneumoniae. Expert Review of Anti-infective Therapy, 20(3), 463-472.
Al-Mosawe, A. M., & Fayadh, N. A. H. (2021). Spectrum of CT appearance and CT severity index of COVID-19 pulmonary infection in correlation with age, sex, and PCR test: an Iraqi experience. Egyptian Journal of Radiology and Nuclear Medicine, 52(1), 1-7.
Aminul, P., Anwar, S., Molla, M. M. A., & Miah, M. R. A. (2021). Evaluation of antibiotic resistance patterns in clinical isolates of Klebsiella pneumoniae in Bangladesh. Biosafety and Health, 3(06), 301-306.
Anosike, I. K., Edet, U. O., Umoafia, G. E., Agbo, B. E., Ejelonu, V. O., & Onyesoro, V. (2020). Prevalence and antimicrobial susceptibility of Klebsiella pneumoniae isolated from hospitalized patients at General Hospital, Etim Ekpo, Akwa Ibom State, Nigeria. World Scientific News, 145, 222-233.
Baier, C., Pirr, S., Ziesing, S., Ebadi, E., Hansen, G., Bohnhorst, B., & Bange, F. C. (2019). Prospective surveillance of bacterial colonization and primary sepsis: findings of a tertiary neonatal intensive and intermediate care unit. Journal of Hospital Infection, 102(3), 325-331.
Ben-David, D., Kordevani, R., Keller, N., Tal, I., Marzel, A., Gal-Mor, O., ... & Rahav, G. (2012). Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clinical Microbiology and Infection, 18(1), 54-60.
Bengoechea, J. A., & Sa Pessoa, J. (2019). Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS microbiology reviews, 43(2), 123-144.
Cai, B., Echols, R., Magee, G., Arjona Ferreira, J. C., Morgan, G., Ariyasu, M., ... & Nagata, T. (2017, July). Prevalence of carbapenem-resistant Gram-negative infections in the United States predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Oxford University Press Open forum infectious diseases, 4(3), 1-7.
Cristea, O. M., Avrămescu, C. S., Bălășoiu, M., Popescu, F. D., Popescu, F., & Amzoiu, M. O. (2017). Urinary tract infection with Klebsiella pneumoniae in Patients with Chronic Kidney Disease. Current health sciences journal, 43(2), 137-148.
Curcio, D. (2008). Treatment of recurrent urosepsis with tigecycline: a pharmacological perspective. Journal of Clinical Microbiology, 46(5), 1892-1893.
Datta, S., Wattal, C., Goel, N., Oberoi, J. K., Raveendran, R., & Prasad, K. (2012). A ten year analysis of multi-drug resistant blood stream infections caused by Escherichia coli & Klebsiella pneumoniae in a tertiary care hospital. The Indian journal of medical research, 135(6), 907-912.
Elemam, A., Rahimian, J., & Mandell, W. (2009). Infection with panresistant Klebsiella pneumoniae: a report of 2 cases and a brief review of the literature. Clinical infectious diseases, 49(2), 271-274.
Fatima, S., Liaqat, F., Akbar, A., Sahfee, M., Samad, A., Anwar, M., ... & Khan, A. (2021). Virulent and multidrug‐resistant Klebsiella pneumoniae from clinical samples in Balochistan. International Wound Journal, 18(4), 510-518.
Feretzakis, G., Loupelis, E., Sakagianni, A., Skarmoutsou, N., Michelidou, S., Velentza, A., ... & Koutalas, E. (2019). A 2-year single-centre audit on antibiotic resistance of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae strains from an intensive care unit and other wards in a general public hospital in Greece. Antibiotics, 8(2), 62-74.
Feriotti, C., Sa-Pessoa, J., Calderón-González, R., Gu, L., Morris, B., Sugisawa, R., ... & Bengoechea, J. A. (2022). Klebsiella pneumoniae hijacks the Toll-IL-1R protein SARM1 in a type I IFN-dependent manner to antagonize host immunity. Cell Reports, 40(6), 1-29.
Gao, R., Hu, Y., Li, Z., Sun, J., Wang, Q., Lin, J., ... & Feng, Y. (2016). Dissemination and mechanism for the MCR-1 colistin resistance. PLoS pathogens, 12(11), 146-147.
Girschick, H. J., Guilherme, L., Inman, R. D., Latsch, K., Rihl, M., Sherer, Y., ... & Doria, A. (2008). Bacterial triggers and autoimmune rheumatic diseases. Clinical and experimental rheumatology, 26(2), 12-17.
Joseph, N. M., Sistla, S., Dutta, T. K., Badhe, A. S., & Parija, S. C. (2010). Ventilator-associated pneumonia: a review. European journal of internal medicine, 21(5), 360-368.
Kotwani, A., Joshi, J., & Lamkang, A. S. (2021). Over-the-counter sale of antibiotics in India: A qualitative study of providers’ perspectives across two states. Antibiotics, 10(9), 1-19.
Meatherall, B. L., Gregson, D., Ross, T., Pitout, J. D., & Laupland, K. B. (2009). Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. The American journal of medicine, 122(9), 866-873.
Medina, E., & Pieper, D. H. (2016). Tackling threats and future problems of multidrug-resistant bacteria. How to overcome the antibiotic crisis, 398(1), 3-33.
Najim, Y. A., Janan, S. M., & Blind, A. H. (2012). Incidence and antibiotic susceptibility pattern of pseudomonas aeruginosa in burns infections in Dohuk City. Dohuk Medical Journal, 6(1), 8-16.
Nirwati, H., Sinanjung, K., Fahrunissa, F., Wijaya, F., Napitupulu, S., Hati, V. P., ... & Nuryastuti, T. (2019, December). Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BioMed Central, 13(11), 1-8.
Norsigian, C. J., Attia, H., Szubin, R., Yassin, A. S., Palsson, B. Ø., Aziz, R. K., & Monk, J. M. (2019). Comparative genome-scale metabolic modeling of metallo-beta-lactamase–producing multidrug-resistant Klebsiella pneumoniae clinical isolates. Frontiers in cellular and infection microbiology, 9(161), 1-9.
Ogalo, E. A., Owuor, C. O., Boor, K. G., & Mutai, K. K. (2016). High prevalence of multi-drug resistant Klebsiella pneumoniae in a tertiary teaching hospital in Western Kenya. African journal of infectious diseases, 10(2), 89-95.
Pachori, P., Gothalwal, R., & Gandhi, P. (2019). Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes & diseases, 6(2), 109-119.
Pessoa-Silva, C. L., Moreira, B. M., Almeida, V. C., Flannery, B., Lins, M. A., Sampaio, J. M., ... & Gerberding, J. L. (2003). Extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit: risk factors for infection and colonization. Journal of Hospital Infection, 53(3), 198-206.
Pokharel, S., & Adhikari, B. (2020). Antimicrobial resistance and over the counter use of drugs in Nepal. Journal of Global Health, 10(1), 1-4.
Polse, R. F., Qarani, S. M., Assafi, M. S., Sabaly, N., & Ali, F. (2020). Incidence and Antibiotic Sensitivity of Klebsiella pneumonia isolated from urinary tract infection patients in Zakho emergency hospital/Iraq. Journal of Education and Science, 29(3), 257-268.
Ranjbar, R., Izadi, M., Hafshejani, T. T., & Khamesipour, F. (2016). Molecular detection and antimicrobial resistance of Klebsiella pneumoniae from house flies (Musca domestica) in kitchens, farms, hospitals and slaughterhouses. Journal of infection and public health, 9(4), 499-505.
Ruiz, J., Gordon, M., Villarreal, E., Frasquet, J., Sánchez, M. Á., Martín, M., ... & Ramirez, P. (2019). Influence of antibiotic pressure on multi-drug resistant Klebsiella pneumoniae colonisation in critically ill patients. Antimicrobial Resistance & Infection Control, 8(1), 1-7.
Sah, R., Begum, S., & Anbumani, N. (2022). Colistin and Tigecycline susceptibility among carbapenemase producing Enterobacteriaceae at a tertiary care hospital of South India. Microbes and Infectious Diseases, 3(2), 387-397.
Silva, N., Oliveira, M., Bandeira, A. C., & Brites, C. (2006). Risk factors for infection by extended-spectrum beta-lactamase producing Klebsiella pneumoniae in a tertiary hospital in Salvador, Brazil. Brazilian Journal of Infectious Diseases, 10, 191-193.
Sood, U., Bajaj, A., Kumar, R., Khurana, S., & Kalia, V. C. (2018). Infection and microbiome: impact of tuberculosis on human gut microbiome of Indian cohort. Indian Journal of Microbiology, 58, 123–125
Spanu, T., De Angelis, G., Cipriani, M., Pedruzzi, B., D'Inzeo, T., Cataldo, M. A., ... & Tacconelli, E. (2012). In vivo emergence of tigecycline resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli. Antimicrobial agents and chemotherapy, 56(8), 4516-4518.
Thuy, D. B., Campbell, J., Nhat, L. T. H., Hoang, N. V. M., Hao, N. V., Baker, S., ... & Thwaites, C. L. (2018). Hospital-acquired colonization and infections in a Vietnamese intensive care unit. PLoS One, 13(9), 1-16.
Tugal, D., Lynch, M., Hujer, A. M., Rudin, S., Perez, F., & Bonomo, R. A. (2015). Multi-drug-resistant Klebsiella pneumoniae pancreatitis: a new challenge in a serious surgical infection. Surgical infections, 16(2), 188-193.
Zhu, J., Wang, T., Chen, L., & Du, H. (2021). Virulence factors in hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology, 12, 1-14
Published
2022-12-08
How to Cite
IBRAHIM, D. H., ABDULLAH , B. H., & ABDULQADIR, I. M. (2022). DETECTION OF MULTI-DRUG RESISTANT KLEBSIELLA PNEUMONIAE FROM SPUTUM SAMPLES AMONG ICU PATIENTS UTILIZING PCR AND VITEK2 SYSTEM. Journal of Duhok University, 25(2), 473-481. https://doi.org/10.26682/sjuod.2022.25.2.43
Section
Pure and Engineering Sciences